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Issues in Relating Hard and Soft  Information
for Fusion

Ivan Kadar 
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Invited Panel Discussion: 

“Real-World Issues and Challenges in Hard and Soft Fusion”
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“Signal Processing, Sensor Fusion and Target Recognition XX”

Orlando, FL 25-27 April 2011

Motivation

The purpose of this talk is to explore and highlight a 
naïve view of a not fully understood (by the speaker) 
basic component needed to implement soft and hard 
fusion systems.

It should be noted that this presentation was 
prepared prior to receiving materials from the panel 
participants.

Hopefully the material presented will serve to 
motivate  discussion by the expert panel participants 
who will address the subject and detail several 
important related topics in the presentations to 
follow.
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How to Align, Register, Associate & Process Hard 
and Soft Data for Fusion?
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Space

Issues:
- Reliability
-Confidence
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Associated or
Individual H Reports 
- Report/Info Format: 

Voice or Text
-Translate

- Context/Semantics
- Interpret

- Info/Rprt Processing
and Transmission

How to
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Targets states & IDs

Targets states & IDs
Either based on Report/Information
from individual observers or Associated
Information from  H human observers

Combined/fused
Targets states & IDs

T1
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Open Floor for a Short Discussion

The purpose of this talk was to explore a naïve, not 
fully understood (by the speaker), perspective of the 
basic component needed to implement hard and soft 
fusion systems.

Does the stated problem make sense? 

What is best way to formulate it and address it?

Panel participant’s presentations to follow.
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Issues in Relating Hard and Soft Information for Fusion 

 
Ivan Kadar 

Interlink Systems Sciences, Inc.  

Lake Success, NY 11042, USA  
 

                                                              1.0 INTRODUCTION 

The purpose of this position paper, along with the accompanying viewgraphs, is to highlight an essential component of 

Hard and Soft Fusion, stated in the title, which is associated with the salient problems identified in introductory 

statement for the “Invited Panel Discussion on Real-World Issues and Challenges in Hard and Soft Fusion”: 

 

“The panel will address salient real-world issues and challenges in hard and soft data fusion illuminated by invited 

experts. Accurate situation assessment [1-4] sometimes cannot be accomplished using just hard or soft data sources 

alone. Specifically sources of "hard information" are physics-based sources that provide sensor observables such as radar 

or video data, while "soft information" is usually provided by human-based sources [5, 6]. Fusion of hard and soft data 

can provide situation pictures that are better than those using hard or soft data alone. For example, patrol reports provide 

soft data in addition to hard data from physical sensors in urban operational environments. While algorithms for fusing 

information from physical sensors has a substantial development history as well as maturity [7-14], complex technical 

issues remain in the representation of human-based information [6] to make it suitable for combining with sensor based 

information. Conceptual real-world related examples associated with the overall complex problem will be addressed by 

the panel to highlight issues and challenges. Audience participation is welcomed to provide a forum for exchange of 

ideas”. 

 

Keywords: Information Fusion, Hard-Soft Fusion, Human-based information 

 

                                                     2.0 PROBLEM STATEMENT 

 
The purpose of this position paper and the accompanying viewgraphs is to explore and highlight a naïve view of a not 

fully understood (by the writer) basic component needed to implement soft and hard fusion systems.  

 

Specifically, the issue is how to “relate” hard and soft information for fusion. It should be noted that the associated 

presentation was prepared prior to receiving materials from the panel participants. “Hopefully the material presented will 

serve to motivate discussion by the expert panel participants who will address the subject and detail several important 

related topics in the presentations to follow” (documented in the individual presenters’ viewgraphs and position papers). 

 

The word “relate” is used to describe a set of complex processes needed: align, register, associate and estimate the 

parameters needed for hard and soft information for fusion in the sense depicted in Figure 1. However, given the nature 

of human information, while the above processes directly apply to hard information, the stated processes do not 

explicitly apply to soft data directly making the problem complex. 

 
There have been several papers published discussing many aspects of hard and soft fusion, specifically related to soft 

data, such as: ontology [15, 16] (defined in computer science “as a rigorous and exhaustive organization of some 

knowledge domain that is usually hierarchical and contains all the relevant entities and their relations” [17]), clearly 

relevant to the processing and interpretation of textural and voice data from human sources; text-based data exploitation 

and uncertainties [18]; context; semantics; methods of human data representation (e.g., symbolic) and interpretation,  

[19], idea of generation of a fundamental data set for hard and soft information fusion [5], and a book on human 

centered information fusion [6], which represent a small subset of many publications in this area. 
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Figure 1: How to Align, Register, Associate and Process Hard and Soft Data for Fusion? 

 

Given the above, the unsolved problem remains is how to align, register, associate and process hard and soft information 

for fusion. Figure 1 depicts a set of targets potentially observed by both hard and soft sensors. 

 

Both the hard (Sensors: 1, 2,…,N), and soft (Human sensors: 1,2,…,H) sensors could possibly observe all the targets or 

only a subset of the targets. That is, the hard Sensors can be considered to operate in the well known Multitarget Multi-

Sensor Tracking/ID and Fusion mode and/or provide reports level data only for commensuration with unassociated H 

(human) sensors.  The corresponding Human sensors, even if able observe the same targets, may not be able distinguish 

which target is which, what it is, and where is which, especially in a dynamic environment.  

 

Therefore, H sensors could send incorrect reports, or send false reports. That is the reliability, context, semantics, and 

interpretation of human textual or voice reports (can be based on visual sightings or on data from human controlled and 

read adjunct hard sensors in a dynamic environment) can possibly be subject to a high degree of uncertainty and be 

incomplete. Furthermore, the human reports may be processed and send on an individual report basis rather than 

“associated H reports” as noted above, and in Figure 1. 

 

                                                                  3.0 SUMMARY 
 

Based on the forgoing, as far as this writer knows, there have not been any general unified theoretic methods established 

to combine hard and soft information to date.  Related works, both the presentations prepared by the expert panelists and 

the papers listed in the references, did not specifically address the general problem.  
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Questions arise, such as: how to pre-process and map to a common framework (e.g., statistical, symbolic, information 

theoretic, etc.) and fuse (combine) hard and soft information on the same basis in a unified manner. These questions 

await joint solutions. 

 

The purpose of the position paper and the associated presentation was to explore a naïve, not fully understood (by the 

writer), perspective of the basic component needed to implement hard and soft fusion systems, i.e., relating hard and soft 

information for fusion.  

Issues need to be addressed: 

- Does the stated problem make sense?  

- What is best way to formulate it and address it? 
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Operational Questions
• Who are the soft observers (viz., soldiers, civilians, a 

mix)?
• What is their level of experience/training as 

observers?
• How are the observers tasked – is it ad hoc, do they 

have assignments, is there interaction (real time or 
otherwise between the observers and the analysts?

• What feedback is provided related to knowledge 
elicitation?

• What is the timeliness, timeframe for reporting (e.g., 
real-time, after action reports, etc.)

• What is the mode of input – twitter, text, web site (a 
la usahidi)?

• What if any are the restrictions on input form (e.g., 
restricted vocabulary, selection from a check box or 
icons, etc)

• What is the nature of the regarding assertions of 
location, identity, characteristics, uncertainty, etc.?

• In the transformation from the observation to the 
input report – what form is the input report expressed 
in (e.g., Word document text, XML, transformation to 
“graphlet”)?

• Will we know the location of the observer?
• What information will we know about the observer?
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Challenges in hard and soft information fusion: Worth the effort? 
 

David L. Hall 

College of IST, The Pennsylvania State University, University Park, PA, USA 16802 
 

The simultaneous proliferation of mobile phones and ubiquitous sensing devices such as video surveillance cameras 

enables a near-continuous monitoring of environmental conditions, extreme events such as tsunamis, hurricanes and 

earthquakes, and human activities such as crime.    A challenge is how to fuse the “soft” (human reported) information 

with the “hard” (physical sensor) data.    Extensive research is on-going related to development of suitable architectures, 

adaptation of fusion algorithms to treat hard and soft data, and development of test-beds and data sets to allow evaluation 

of hard and soft fusion techniques.    This paper provides a summary of challenges in hard and soft fusion and addresses 

the question – is this fusion worth the effort. 

 

Keywords: hard and soft fusion, human-in-the-loop, humans as sensors  

1. INTRODUCTION  

Traditionally, information fusion systems have focused on fusion of data from physical (hard) sensors regarding an 

observed physical world ([1], [2]).       Examples include environmental surveillance, military situation awareness and 

threat warning systems and monitoring the condition of complex machines.    Moreover, these systems have tended to 

operate primarily in a data-driven fashion in which sensor data is processed for an information display (e.g., common 

operational picture) which is observed in a relatively passive way by a user/analyst.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Concept of Human-Centric Information Fusion (adapted from [3]) 

In recent years, four main factors have changed the concept of traditional data fusion.   These include: (1) interest in 

observing not only a physical environment but also the “human landscape” associated with an environment, event or 

activity, (2) the proliferation of smart phones [3] and ubiquitous communications that enable human observers to act as 

participatory observers;  (3) the evolution of human computer interaction (including 3-D immersive displays and 

advanced aural interfaces) to allow a user to participate in the fusion process, conducting pattern recognition and 

semantic reasoning to assist the automated computations [4]; and (4) improved collaboration environments such as 

second life [5] and social network tools to allow dynamic collaboration among analysts or decision-makers.    Hall and 

Jordan have described these trends and coined the term human-centric information fusion [6].   The concept of human-
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centric information fusion is shown in Figure 1.  In this paper we focus on the particular issues related to the combined 

use of human observers and physical sensors, and discuss challenges in hard and soft information fusion.  

2. OVERVIEW OF HARD AND SOFT FUSION  

The concept of hard and soft fusion is illustrated in Figure 2.    In that figure, we illustrate a traditional hard sensor data 

processing flow (in the upper left hand side of the figure) involving the standard functions of pre-processing (e.g., signal 

and image processing), association and correlation of data from diverse sensors and sensor types, report level fusion 

involving pattern recognition and statistical estimation to obtain a state vector (time, location, kinematics, attributes and 

identity) describing an observed target, entity, event or activity.  Numerous texts have addressed this processing flow 

and specific algorithms for the identified functions (e.g., [1], [2]).   Some specific examples of fusion processing for hard 

sensor data related to counter insurgency (COIN) operations are described by [7]. 

  

 

 

 

 

 

 

 

 

 

      

 

  

 

 

 

 

 

 

The lower left hand side of figure 2 shows a conceptual soft processing flow.   In this case, observations from human 

reporters are processed using the same types of functions (viz. preprocessing, association/correlation, report level 

fusion), as are proscribed for the hard sensor process.     Details of techniques for soft sensor processing are still 

emerging.   However, general frameworks for hard and soft fusion are being developed ([8], [9]), and algorithms are 

being developed utilizing graph matching theory [10].     The fusion of the hard and soft data is illustrated on the right 

hand side of figure 2.     

3. CHALLENGES IN HARD AND SOFT FUSION 

 
Table 1 provides a summary of specific issues related to hard and soft fusion.     These are categorized into five main 

areas including: (1) soft sensor characterization – how to characterize the behavior and capability of human observers;  

(2) soft sensor tasking, motivation and knowledge elicitation – how to task a human observer without prejudicing their 

observation or unknowingly eliciting false reports; (3) soft/hard fusion – how to combine information from physical 

sensors and human observations via automated processing; (4) test and evaluation – how to effectively test and evaluate 

hard and soft fusion systems and algorithms; and (5) translation to practice - how to transition prototype systems into 

practice.    

 

Figure 2:  Concept of Hard and Soft Fusion 

xxvi



 

 
 

 

Soft Sensor Characterization  

An initial problem in utilizing soft sensor data is the challenge of sensor performance characterization.    How can we 

develop the equivalent of receiver operating characteristic (“ROC”) curves that represent how humans perform in 

transforming their (human) multi-sensory inputs into observations, generally expressed in semantic terms (e.g., I see a 

suspicious person near the bank)?      While humans exhibit sensing limitations based on environmental conditions such 

as weather, and day/night conditions analogous to the performance changes of physical sensors, they also experience 

performance differences based on factors such as training, fatigue, expectations, focus of attention, how they are queried 

or tasked, ethnic background, age, gender and other personal characteristics, physical condition, ingestion of drugs or 

stimulants such as caffeine and even how they are feeling.    The output of the human sensor tends to be expressed in 

fuzzy semantic terms (e.g., “near”, “suspicious”) which in turn need to be transformed into standardized terms and scalar 

measures.   Even disregarding the issue of false reports, it is challenging to develop a characterization of the uncertainty 

of a human observation.   

A number of papers provide some insight into this problem.  For example, Z. Lu and B. A. Dosher [11] explore the 

application of traditional signal processing models to human perception and decision-making.   Steinberg et al [12] 

describe the results of a study they conducted for Lockheed Martin on issues in characterizing errors in human generated 

reports for data fusion.  Chapter 3 in Hall and Jordan [6] provides a framework for modeling the human observation and 

reporting process, and numerous papers exist on specific issues in human observation such as human vision models, etc.   

The issue of human observations and reports has been studied intensely for understanding the reliability and truthfulness 

of witnesses in trials.    Indeed, the Journal of Credibility Assessment and Witness Psychology is dedicated to reporting 

such studies. 

 

While significant research has been performed, it is still a challenging task to develop appropriate models for 

characterizing human observers as soft sensors.     At this time there does not appear to be a well-grounded “standard” 

model available for hard/soft fusion system designers to apply to represent model the characteristics of human observers. 

Soft sensor tasking, motivation and knowledge elicitation  

 

An issue that affects the performance of human observers is how they are tasked for information (e.g., via requests 

communicated over a cell phone; use of standard data input forms; encouragement of free texting via systems such as 

Twitter).  Unlike physical sensors, humans do not respond on an “on-call basis” to demands for information and are 

generally an uncontrolled source.  Even the use of a trained observer such as soldiers acting as sensors [13], involves a 

relatively weak interaction between an information fusion system and the observing humans.   Generally, such observers 

may entail a priori agreements or instructions and requesting the observers to provide “after action” reports.   By 

contrast, tasking may involve ad hoc reporting such as reporting of emergencies or “gossip” via Twitter [14].   

 

Closely related to observer tasking is observer motivation and the method of knowledge elicitation.    Observers may be 

motivated by a variety of feelings including altruism, fear, greed, competition, a sense of obligation, or malevolence.    

In the Wisdom of Crowds [15], Surowiecki argues that problems presented to a general population of potential 

respondents can produce results that greatly surpass the capabilities of an individual or small group, including observing 

phenomena of interest.     Palfrey and Gasser [16] describe the characteristics of the new generation of digital natives 

who have always known cell phones and the internet and have different perspectives on privacy and a sense of obligation 

in sharing information and observations.    Attempts to motivate observers to provide observations of an activity or event 

include competitions and transformation of the observing process into a game (e.g., “gamification”).  McGill [17], for 

example, has described experiments conducted at The Pennsylvania State University using competitive games to 

motivate students to act as observers for campus phenomena.      At a much larger scale, the Defense Advanced Research 

Projects Agency (DARPA) sponsored the Red Balloon contest [18]; a challenge contest to explore participatory sensing 

by offering teams $ 40,000 to find and verify the location of 20 red weather balloons placed around the U. S. on a 

Saturday in December.    Tang et al [19] describe the results of that experiment including issues related to the large 

percentage of false observations and the analysis methods used to validate observations. 

 

Finally,  the issue of knowledge elicitation is important – What are the specific mechanisms and methods to elicit  

information from humans; how can one address common biases without “leading” an observer;  what is the role of 

human aided knowledge elicitation (e.g., a 911 emergency operator) versus computer aided elicitation via structured 
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forms or guided questions.   Knowledge elicitation is a well studied area for developing the knowledge base for expert 

systems; however, issues in dynamic, ad hoc elicitation require further study. 

Soft/hard fusion   

Challenges in the processing of hard and soft data involve the fundamental question of how can we effectively combine 

data from traditional physics based sensors with human reports?  As previously noted, challenges in hard and soft fusion 

involve characterization of the human observer (characterizing the soft sensor data), understanding how to task human 

observers and how the tasking and knowledge elicitation impacts the reported observations, and challenges in the 

“down- stream” processing.    In particular, challenges exist in the overall processing flow:   

 Soft data transformation – transformation of soft data into a form and representation scheme that permits fusion 

with hard data (e.g., translating fuzzy semantic references into scalar and vector data); 

 Fusion architecture – choosing where in the processing flow to fuse the data (e.g., at the data level, report level, 

or decision level); 

 Uncertainty representation – How to represent information uncertainty from both physical sensors and from 

human observations.    Generally this will require a combination of techniques ranging from traditional 

probability based methods as well as confidence factors and fuzzy membership measures; 

 Addressing temporal inconsistencies – A challenge in human observations is addressing reports related to time.   

Physical sensors can simply “time stamp” the time of observation, while human observers may refer to past 

observations, current observations using fuzzy references “about noon”, or temporal relations such as “before” 

or “after”;      

 Data volume versus value – Almost any physical sensor can provide an overwhelming volume of data 

compared to a human observation.    Clearly, streaming video and persistent sensor surveillance can provide a 

huge amount of data compared to single human report.    It is important to address volume versus value of 

observations.    For example, a single human inference about intent or anomalies may exceed in value a huge 

amount of physical sensor data; 

 Undervaluing (or overvaluing) human reports – As above, it is important to seek accurate value of human 

reports, neither overvaluing a human observer or undervaluing the report and assuming that a human is a poor 

version of a hard sensor.     

 

General discussion of hard and soft fusion is provided by Hall and Jordan [6], Hall et al [8] and Llinas et al [9]. 

 

Test and evaluation 

In developing new algorithms and techniques for fusion of hard and soft data, a key challenge involves test and 

evaluation.   Traditional hard sensor fusion systems require testing “ground truth” sensor data obtained in a variety of 

observational conditions.    Typically data are obtained from test ranges or live exercises and used to evaluate the 

performance of data fusion algorithms and systems.    A discussion of the test and evaluation of hard sensor fusion 

systems is provided by Waltz and Llinas [20] and Liggins et al [2].   Issues include; (1) establishment of “ground truth” 

for the observed data,   (2) developing performance characteristics for the sensors,  (3) creating a sufficient training set 

for target identification and pattern recognition algorithms,  (4) developing a hierarchy of measures of performance 

(MOP), measures of effectiveness (MOE), measures of system effectiveness (MOSE), etc., (5) conducting tests 

involving performance “with” and “without” the fusion processes, and  (6) evaluating combined symbolic and numeric 

processes (e.g., numerical estimation of target location and characteristics as well as symbolic labeling of target 

identification and behavior), etc.    

Additional challenges in test and evaluation of hard and soft fusion systems are described by Graham et al [21] and an 

experimental laboratory for test and evaluation (T&E) of hard and soft fusion is described by Hall et al [22].   The test 

and evaluation of hard and soft fusion systems must not only address all of the issues for T&E of hard sensor systems, 

but also address the added complexities of soft data.    In our research, we found a particular challenge was obtaining a 

set of test data that included both hard and soft data.     While a number of data sets exist containing hard data alone or 

soft data alone, only a very limited number of data sets address both hard and soft data.   This is understandable because 

of the need to construct experimental set ups (or development of simulations) that produce data from physical sensors 

and coordinated observations by human observers.    This human in the loop experimentation is challenging and difficult 

to replicate.    At The Pennsylvania State University, we are developing both synthetic data sets for such T&E purposes 
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[23].    Our experimental setup allows experiments to address issues such as knowledge elicitation, observer training and 

other challenges.   This data will be made available to the research community to support evaluation of new fusion 

techniques.    

Translation to practice 

The final challenge area involves translation of hard and soft fusion to practice.    On one hand, the experiences and 

mentality of the digital natives lead to a tendency for routine sharing of information and observations.   This is coupled 

with the rapid increase in enabling technologies.     On the other hand, for traditional applications such as military 

situation awareness and emergency crisis management, organizations and doctrine are not yet established for use of such 

information.    Moreover for military applications, the mix of classified sources of data with open source information 

becomes problematic.    It is anticipated that the enabling technologies and cyber infrastructure will lead the 

organizational and doctrinal aspects of hard and soft fusion. 

 

Table 1:  Summary of Issues in Hard and Soft Data Fusion 

Issue Description Examples of Specific Issues References 

Soft sensor 

characterization 

How to develop the equivalent of a 

“ROC” curve to quantitatively 

characterize the performance of a 

human observer under varying 

conditions 

 Focus of attention 

 Training and domain expertise 

 Motivation 

 Ethnic background 

 Observer‟s age and gender 

 Effects of fatigue, drugs, physical 

conditioning, etc. 

 Emotional state 

[6], [11], [12] 

Tasking, motivation 

and knowledge 

elicitation 

How to task a human observer 

without prejudicing their observation 

or unknowingly eliciting false reports 

 Tasking of humans (gaming 

approaches, financial motivation) 

 Knowledge elicitation – how to 

elicit information without 

prejudicing or biasing observers 

 Addressing unanticipated effects 

such as creating false observations 

[14], [15], [16], 

[17], [18] 

Hard and soft fusion How to combine information from 

physical sensors and human 

observations via automated 

processing 

 Architecture – where to fuse 

 Transformation of soft data into 

common framework to be 

compatible with hard data 

 Uncertainty representation 

 Data amounts versus value 

 Tendency to consider humans as 

“poor” physical sensors 

[6], [8], [9] 

Test and evaluation How to effectively test and evaluate 

hard and soft fusion systems and 

algorithms 

 Same as test and evaluation of 

hard sensor systems 

 Increased challenges due to 

human observers 

 Need for integrated soft and hard 

“truthed” data set 

[2], [20], [21], 

[22] 

Translation to 

practice 

How to transition prototype systems 

into practice 
 Addressing new practices of 

digital natives 

 Changing doctrine and 

methodologies to reflect 

information sources enabled by 

technology changes 
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4. PERSPECTIVES ON THE VALUE OF HUMAN OBSERVERS 

There are numerous examples of humans acting as poor observers.   Graham et al. [21] cite three examples:  (1) Kaplan 

and Kaplan [24] describe the case in which the Rotterdam Zoo reported (in 1978) the escape of one of its red pandas; 

hundreds of helpful people called in, having spotted it in places all over the Netherlands – when in fact it had been run 

over by a train just a few yards from the zoo fence; (2) an experiment conducted by D. Simmons and C. F. Chabris [25] 

at the University of Illinois involve showing subjects a video clip of two teams of people (in white and black uniforms) 

passing a basketball back and forth.  The subjects were asked to count the number of passes by one team during a 60 

second period.   During the video, a person in a gorilla suit walks between the players, stops and waves and continues 

on.   A surprisingly high number of subjects fail to notice the gorilla; and (3) the failure of students at Virginia Tech 

University to observe the precursors to the shooting spree in which a 23 year old student, Seung-Hui Cho killed 27 

students, five teachers and himself.   Observable precursors included Cho practicing locking a building with chains (to 

prevent police from entering and stopping his shootings) two days prior to the actual event.   These examples and our 

everyday experiences would suggest that humans are a poor substitute for well placed and calibrated physical sensors.  

Despite these examples of poor performance, however, human observers can provide valuable information that simply 

cannot be obtained from physical sensors.    Humans can infer intent, detect anomalies in common situations, provide 

information about situation context, and determine when and when not to pay attention to physical sensor data.     A 

review of the emerging concept of “participatory sensing” is provided by [26].      Examples of the effective use of 

human observers can be found in a variety of applications including; 

 Law enforcement -  e.g., monitoring police reports and events and posting these for public use ([27], [28], [29]) 

or tasking non-police workers such as sanitation workers to identify anomalies [30], 

 Social movements or cultural identity support – e.g., the Photovoice Movement project in which rural Chinese 

women documented their daily lives via 35 mm cameras which raised awareness of government officials 

regarding childcare and midwife needs [31], use of web mash up mechanisms such as Ushahidi [32] to report 

political oppression; 

 Environmental monitoring – e.g., use of cell phones and specialized sensors to report air quality [33]; 

 Crisis management and reporting -  sharing of information by volunteers to support disaster relief ([34],[35]); 

and 

 Citizen scientists – use of civilians as observers for scientific phenomena such as earthquakes [36]. 

It can be argued that the combination of proliferation of mobile computing/communications devices, the increasing WiFi 

and cellular communications networks, and the evolution of the digital natives [16] combine to ensure that soft sensing 

will increasingly become an important information source.    The digital natives tend to view sharing of information as 

both natural and almost an obligation for participation in the current digital world.      

5. SUMMARY 

Rapid changes in communications and mobile computing devices enable a new era of human observations.   The 

combination of ubiquitous sensing and the proliferation of cell phone technology create a self-aware planet in which 

human and physical sensor observations can be combined for global situation awareness.    However, many challenges 

must be addressed to take advantage of these opportunities.    It is anticipated that the data fusion and cognitive 

psychology communities will focus on these challenges for ultimate routine fusion of hard and soft data. 

 

6. ACKNOWLEDGEMENTS 

We gratefully acknowledge that this research activity has been supported in part by a Multidisciplinary University 

Research Initiative (MURI) grant (Number W911NF-09-1-0392) for “Unified Research on Network-based Hard/Soft 

Information Fusion”, issued by the US Army Research Office (ARO) under the program management of Dr. John 

Lavery. 

xxx



 

 
 

 

REFERENCES  

[1] D. Hall and S. A. H. McMullen, Mathematical Techniques in Multisensor Data Fusion, Artech House, 2 ed., 2004 

[2] M. E. Liggins, D. L. Hall, and J. Llinas, Handbook of Multisensor Data Fusion: Theory and Practice. CRC Press, 

2nd ed., 2008 

[3]  J. Brandon, Digital Trends, Feb 16, 2010, http://www.digitaltrends.com/features/the-future-of-smartphones-2010-

2015-and-beyond/ 

[4] D. Hall, C. M. and  S. A. H. McMullen, S. A. H., “Perspectives on the Human Side of Data Fusion: Prospects for 

Improved Effectiveness using Advanced Human-Computer Interfaces,” chapter 20 in Handbook of Multisensor 

Data Fusion, 2
nd

 edition, edited by M. Liggins, D. Hall and J. Llinas, CRC Press, 2008 

   

[5]   Hall, D. Hall, C., McMullen, S. McMullen. M. and Pursel, B., “Perspectives on visualization and virtual world 

technologies for multi-sensor data fusion,” Proceedings of the 11
th

 International Conference on Information 

Fusion, Cologne, Germany, June 30- July 03, 2008 

 

[6]  D.L. Hall and J.M. Jordan, Human-centered Information Fusion, Boston: Artech House, 2010 
 

[7] M. S. Baran, D. J. Natale, R. L. Tutwiler, M. McQuillan, C. Griffin, J. Daughtry, J. Rimland and D. Hall, “Hard 

sensor fusion for COIN inspired situation awareness,” Proceedings of the SPIE Conference, Orlando, FL, April 26, 

2011 

 
[8]  Hall, D., McNeese. M., Llinas, J., and Mullen, T., “A framework for hard/soft fusion,” Proceedings of the 11

th
 

International Conference on Information Fusion, Cologne, Germany, June 30 – July 03, 2008 

 

[9] J. Llinas, R. Nagi, D. Hall and J. Lavery,  “A multidisciplinary university research initiative in hard and soft 

information fusion: overview, research strategies and initial results,” in Proceedings of the 13
th

 International 

Conference on Information Fusion, Edinburgh, UK, July, 2010 

 

[10]  A. Haghighi, A.Y. Ng and C.D. Manning, "Robust textual inference via graph matching. HLT-EMNLP 2005", 

Robust Textual Inference via Graph Matching. HLT-EMNLP 2005, 2005 

 

[11] Z. Lu and B. A. Dosher, “Characterizing observers using external noise and observer models: Assessing internal 

representations with external noise,” Psychological Review, vol. 115, No. 1, pp 44-82, 2008 

 

[12] A. Steinberg, J. Llinas, A. Bisantz, C. Stoneking and N. Morizio, “Human Source Characterization”, June, 2007 

(see http://www.atl.lmco.com/papers/1484.pdf)  

 

[13] S. Magnuson, “Army wants to make „every soldier a sensor‟”, National Defense Magazine, May, 2007 

 

[14] M. Williams, “Governments use Twitter for emergency alerts, traffic notices and more,” Government Technology, 

January 7, 2009 

 

[15] J. Surowiecki, The Wisdom of Crowds, Anchor Books, NY, 2004 

 

[16] J. Palfrey and U. Gasser, Born Digital: Understanding the First Generation of Digital Natives, Basic Books, 2008 

 

[17] W. McGill, “The gamification of risk management”, internet blog at http://www.professormcgill.com/, downloaded 

on February 22, 2011 

 

[18] https://networkchallenge.darpa.mil/rules.aspx  

 

xxxi



 

 
 

 

[19] J. Tang, M. Cebrian, N.Giacobe, Hyun-Woo Kim, T. Kim and D. Wickert, “Reflecting on the DARPA red balloon 

challenge”, accepted for publication in the Communications of the ACM (Association for Computing Machinery) 

[20] E. Waltz and J. Llinas, Multisensor Data Fusion, Artech House, 1990 

 

[21] J. Graham, J. Rimland, M. McNeese, D. Hall and W. McGill, “Human-centric information fusion: Human in the 

loop experiments to investigate the role of humans in situation awareness,” Proceedings of the 14
th

 International 

Conference on Information Fusion, Chicago, IL, July, 2011 

 

[22] D. Hall, B. Hellar, and M. D. McNeese, “The Extreme Events Laboratory: A cyber infrastructure for performing 

experiments to quantify the effectiveness of human-centered information fusion,”   Proceedings of the 2009 

International Conference on Information Fusion (Fusion 2009), Seattle, Washington, July, 2009 

 

[23] J. Graham, D. Hall and J. Rimland, “A synthetic dataset for evaluating soft and hard fusion algorithms,” accepted 

for publication in the Proceedings of the SPIE Defense, Security and Sensing Symposium, 25-29 April, 2011, 

Orlando, Fl 

 

[24]  M. Kaplan and E. Kaplan, Bozo Sapiens: Why to err is Human, Bloomsbury Press, New York, 2009 

[25] D. J. Simons and C. F. Chabris, “Gorillas in our midst: sustained in-attentional blindness for dynamic events,” 

Perception, 1999, vol. 28, pp 1059-1074 

 

[26] Participatory Sensing: A Review of the Literature and State of the Art Practices, technical report prepared by the 

staff of the Penn State Center for Network Centric Cognition and Information Fusion, November 20, 2009 

 

[27] Crime  reports (http://crimereports.com) 

 

[28] Crime mapping (http://www.crimemapping.com) 

 

[29] Spot crime reporting (http://www.spotcrime.com)    

 

[30] J. D. Glater, “Helping keep a city clean, and maybe safer,” New York Times, January 18, 2009 

 

[31] J. Burke and D. Estrin, “Participatory sensing”, WSW‟06 at SenSys‟06, Boulder, CO, ACM, 2006 

 

[32] http://www.ushahidi.com/  

 

[33] E. Paulos, R. J. Honicky, et al, “Citizen science: enabling participatory urbanism”, in Handbook of Research on 

Urban Informatics: The Practice and Promise of the Real-Time City, edited by M. Foth, Hershey, PA, 2009 

 

[34] C. Jones and S. Mitnick, “Open source disaster recovery”, First Monday, 2006, see 

http://131.193.153.231/www/issues/issue11_5/jones/index.html  

 

[35] B. Schneiderman and J. Preece, “911.gov: community response grids”, Science, 315 (5814): 944, 2007  

 

[36] A. L. Hughes, L., Palen, “Twitter Adoption and Use in Mass Convergence and Emergency Events”, Proc. of the 

6th International ISCRAM Conference, Gothenburg, Sweden, 2009 

xxxii



Automating Soft Data Exploitation: 
Opportunity & Challenges

Richard T. Antony
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Invited Panel Discussion
25 April 2011

Opportunity: Fusion of hard & soft data sources offers more holist (& more robust) 
approach to Situation Awareness (SA) development

Some of the challenges to text-based data exploitation 
• Ingestion: Information extraction from unstructured  text
• Source normalization: Across soft & hard information
• Source registration: Dealing with semantic descriptions of  space & time
• Effective utilization of domain context : Context discovery & exploitation

Position & Perspectives 
On automated fusion of hard & soft data sources
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Opportunity 
More Holistic Approach to Situation Awareness

Hard sensor Soft source DB

Hard sensor ELINT correlated to GMTI
vehicle tracker

Real time soldier report of 
blue pickup with missing 
front fender linked to 
vehicle tracker

ATM transaction linked to 
vehicle tracker

Soft source Iris scan linked to suspicious 
person report

Informant report linked to 
surveillance report

Suspicious person report 
linked to existing criminal 
reports

DB Vehicle tracker constrained 
to road network

Text information linked to
social, cultural, economic, 
etc. overlays

Traditional data mining

True all-source fusion
• Hard sensor
• Text-based sources
• Databases • Entity-state information (Level-1)

• Explicitly stated relationships  (Level-2)
•Objective, purpose, intent      (Level-3)

• Entity-state information (Level-1)

Traditional fusion focus

Potentially vast amounts of 
supporting data

Challenge 1:
Extracting & exploiting relevant information from unstructured text

Challenge Issues Examples
Hard for even a human to 
know what is relevant

Needle in the haystack
Hidden relations

Blue pickup with missing fender
Khalid Sattar

Fact extraction from free 
text is beyond the state of 
the art

Tagging, parsing, pronoun
resolution, non-grammatical, …
Semi-automated parsing

Complex syntax & semantics

Appropriate data element 
selection

Subject-verb-object-location-
time…

Indirect objects, how, why

Entity & word resolution Aliases, code names, code words KS, apples & flour
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Semantics tend to be context sensitive
Predator 
• Deviant behavior (bad person)
• Carnivorous animal
• Tactical UAV

Codes words employed to obscure meaning
“Toothpaste” used in place of “bomb”

Ambiguous meaning, use of slang
The “goods” have arrived

Ambiguous pronoun reference

Source reliability, information fidelity, deliberate deception, …

Challenging syntax/grammar
“He said a man in a tattered coat who later ran away acted highly suspicious”

Sample Challenges

Challenge 2: 
Normalizing Hard-Soft Information

Accommodate traditional sources & text-based input through “fact” normalization*

Source Subject Verb Object Location Time
HUMINT
(Level-1)

Khalid Sattar was seen NA al-Anbia 
Mosque

afternoon
2 June 2010

HUMINT
(Level-2)

Khalid Sattar spoke with Suffian 
Mashhadan

al-Anbia 
Mosque

mid afternoon
2 June 2010

HUMINT
(Level-3)

Khalid Sattar intends to bury IED near al-Anbia 
Mosque

next week

Fact = Subject – verb – object – location - time independent of data source

*Including verb and noun taxonomies
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Challenge 2: 
Normalizing Hard-Soft Information

Accommodate traditional sources & text-based input through “fact” normalization*

Source Subject Verb Object Location Time
HUMINT
(Level-1)

Khalid Sattar was seen NA al-Anbia 
Mosque

afternoon
2 June 2010

HUMINT
(Level-2)

Khalid Sattar spoke with Suffian 
Mashhadan

al-Anbia 
Mosque

mid afternoon
2 June 2010

HUMINT
(Level-3)

Khalid Sattar intends to bury IED near al-Anbia 
Mosque

next week

Radar UNK 2301 detected
(default)

NA (lat/lon) 14:10:16 
2 June 2010

Imagery report Air defense 
node

detected
(default)

NA (lat/lon);
ellipse

14:10:16 
2 June 2010

*Including verb and noun taxonomies

Challenge 3:
Space-time registration

• Near Building B
• Between Building B & Mosque E
• IVO intersection of Roads C & D
• Along Road D near Mosque E
• Near Road C & Mosque E
• Just northeast of Building F

• (36.7654, 24.12345) degrees (implied accuracy)

• Error ellipse

Semantic location descriptions

Deterministic & probabilistic location descriptions

Lat/lon

BF

E

Spatial normalization across all Intel sources is a key component of effective all-source fusion 

The above 8 locations describe 
essentially the same region in space
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Near
100%
80%
60%
40%
20%

Normalizing Semantic Spatial Descriptions
Vision-Inspired Spatial Engine (VISE)

Behind al-Anbia Mosque

Across the road from
al-Anbia Mosque

Between building &
al-Anbia Mosque

Near al-Anbia Mosqueal-Anbia Mosque Very near Al-Anbia Mosque

Spatial distribution functions for sample shapefile-based features

VISE-indexed shapefile

Near (context-sensitive) 
large cultural feature

Just NE of al-Anbia Mosque (context-sensitive resolution)

Temporal normalization can use an analogous 1-D approach

Challenge 4: 
Effective Exploitation of Problem/Domain Context

Static context
Natural features – terrain, vegetation, water ways, soil type, …
Cultural features – buildings, roads, power lines, bridges, …

Quasi-static context
Natural features – weather, sunspots, diurnal cycle
Cultural features – economic, religious, ethnic, economic, atmospherics, language
Recent activity

Dynamic context
“Current” individuals and activities

Humans naturally exploit context when analyzing data & solving problems
Automated fusion demands automated context exploitation
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Dulami

al-Obeidi

Surhin
Aga

Hamid

Mashhadan

Red - strong
Blue - moderate
Green - weak

SattarAnour HusseinAl-Ani

Storyteller – Behavior Understanding Support Service

Entity behavior relative to derived context

Dossier Entity Level of 
Interest (LOI)

Key Location 
association

Relationships with named individuals

Automatically generated link diagram

Smart Track:
Associations with HVEs

• Map with red circles around hospital and a building that looked like a school found in  (known 
al Qaeda member) Ziyad al-Obeidi’s home near Yarmuk hospital (fusion-discovered context)

Context Exploitation Example

• Khalid has possible (fusion-discovered context) relationships with high value individuals (HVI)

• Khalid appears to hate the US

• He cut ties with this family

• He is in charge of “something very big”

• He had been associated with a user define key location (fusion-discovered context) where officials 
(later) found documents about liquid explosives (fusion-discovered context)

• He has applied for a job as an ambulance driver at Yarmuk Hospital even though he showed 
no prior interest in health care or emergency services

Fusion-discovered context
• The ambulance service at Yarmuk hospital has been deteriorating, 
• Doctors there suspect insurgents have infiltrated the services, and 
• Ambulance drivers there don’t seem to know what they were doing

• He spent several hours with known HVI (Suffian Mashhadan) at a suspected safe house (fusion-
discovered context)

Story Summarization Report* for Khalid Sattar (scenario data set)

*SAIC Storyteller
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Position Summary

Objective: Develop a more holist approach to Situation Awareness that fully integrates 
the broadest range of data sources
• Physics-based sensors
• Text-based data sources
• Databases

Challenges discussed (text-based sources)
• Ingestion: Improved automated information extraction from unstructured  text
• Normalization: Compatible data structures (hard & soft sources)
• Registration: Fuzzy semantic distribution functions for space & time
• Domain context exploitation: Context discovery supports more robust fusion

• Static
• Quasi-static
• Dynamic 

xxxix
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Data fusion automation has made considerable strides in fields from military to medical applications. 
Traditional fusion systems have focused largely on the combination of output from physics-based sensors. However, 
in many fields, exploiting both text-based as well as database resident information has the potential to further enhance 
product robustness. Whereas hard sensors tend to provide only entity state information (attributes, location, time), text-
based information can express (1) entity state, (2) entity relationships, and (3) objectives or intent. Databases can 
potentially be mined for a wide range of supporting information that can be used to infer/refine entity attributes as well 
as suggest potential relationships between and among entities.  
 

Table 1 provides examples of the nine possible binary combinations of the three primary data classes: (1) 
hard sensor output, (2) soft (or text-based) sources, and (3) databases. Given that virtually all information sources 
possess both strengths and weaknesses, a holistic approach to fusion must seek to combine the broadest range of 
relevant data sources. Given the ever-expanding range of those sources and the exponentially increasing volume of 
available information, effective exploitation demands increased levels of fusion automation. 
 
 
Table 1. Examples of the nine possible binary combinations across the three principal data sources. 
 
 Hard sensor Soft source DB 

Hard sensor License plate detection system 
correlated to vehicle tracker 

Real time soldier report of 
blue pickup with missing front 
fender linked to vehicle 
tracker 

ATM transaction linked to vehicle 
tracker 
 

Soft source Iris scan linked to suspicious 
person report 

Informant report linked to 
surveillance report 

Suspicious person report linked to 
existing criminal reports 

DB Vehicle tracker linked to road 
network 

Text information linked to 
social, cultural, economic, etc. 
overlays 

Traditional data mining 

 
While the advantages of fusing data from a wide range of data sources tend to be self-evident, automating 

such a process involves many challenges. In this short position paper, we address four specific challenges:  
Extracting & exploiting relevant information from unstructured text 
Normalizing hard-soft information 
Space-time registration 
Effective exploitation of problem context 
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Automated fact extraction from free text involves more than word tagging and parsing. Individual words tend 
to be context sensitive; sentence syntax may not follow well-structured rules of grammar; combinations of words can 
have multiple meanings; pronoun, location, and time resolution are far from trivial. Dealing with source reliability, 
deliberate deception, and alias resolution all present challenges. Assuming the objective of the system is to find a 
specific class of “needles hidden in a haystack,” the information value of any given fact is hard to judge in isolation 
(e.g., due, in part, to unknown or purposely hidden relationships and motives of both individual entities as well as 
groups of entities). Table 2 summarizes a number of these considerations. 
 
Table 2. Variety of challenges to a holistic approach to fusion automation 
Challenge Issues Examples 

Hard for a human to know 
what is relevant 

Needle in the haystack 
Hidden relations 

Blue pickup with missing fender 
Khalid Sattar 

Fact extraction from free text is 
beyond the state of the art 

Tagging, parsing, pronoun resolution, … Complex syntax & semantics 

Appropriate data element 
selection 

Subject-verb-object-location-time… Indirect objects, how, why 
 

Entity resolution Aliases & code names KS, apples & flour 

Managing semantic 
descriptions of space & time 

“Register” with conventional space/time 
representations 

Behind the mosque, IVO an intersection, mid 
afternoon 

Appropriate DB structure Capture “meaning” of facts & pedigree for 
all products 

Hybrid entity-relationship + RDBMS + … 

 
 

In order to fuse information from a wide range of sources, some form of normalization is required (fusion 
level-0). Because soft data tends to have a richer set of attributes than hard sensors, normalization of soft data must 
drive the normalization process. A minimal set of fact attributes for text-based extraction would include the following: 
 

Subject (entity) – state of being or activity – direct object (entity) – location – time 
 

Because text can contain indirect objects, relevant phrases, and other types of information, a robust approach to 
normalization must address these issues, as well. In many cases, facts can be re-expressed (a sentence or sentence 
fragment rewritten) to fit into the above five-attribute form. As seen in Table 3, this five-attribute formulation readily 
accommodates traditional hard sensor data. 
 
Table 3. Source normalization 
Source Subject Verb Object Location Time 

HUMINT 
(Level-1) 

Khalid Sattar was seen NA al-Anbia Mosque afternoon 
2 June 2010 
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HUMINT 
(Level-2) 

Khalid Sattar spoke with Suffian Mashhadan al-Anbia Mosque mid afternoon 
2 June 2010 

HUMINT 
(Level-3) 

Khalid Sattar intends to bury IED near al-Anbia Mosque next week 

Radar UNK 2301 detected 
(default) 

NA (lat/lon) 14:10:16  
2 June 2010 

Imagery 
report 

Air defense 
node 

detected 
(default) 

NA (lat/lon); 
ellipse 

14:10:16  
2 June 2010 

 
Note that Table 3 references both traditional spatial and temporal representations (deterministic with possible 

statistical error distribution functions) as well as semantic descriptions (near, mid afternoon). In order to seamlessly 
handle source data that may have mixed representations, a systematic methodology is required. During the US Army 
STEF program the author developed a hierarchical fuzzy representation approach that automatically converts spatial 
and temporal attributes to a consistent internal (fuzzy distribution function) representation permitting fully automated 
space-time intersection among all ingested data. 
 
Finally, automated fusion approaches need to exploit relevant context in order to generate appropriately robust 
products. Humans naturally “integrate” context into their reasoning process but in an automated system, context must 
be deliberately introduced and effectively utilized. Context can loosely be divided into three broad categories:  

Long-term (static) - natural & geographic features, historical, conventions 
Medium-term (quasi-static) – cultural, economic, religious, ethnic, recent events 
Short-term (dynamic) – current possibly related activities and entities  

An application (referred to as Storyteller) was developed to provide analysts with potentially relevant fusion-
discovered context in order to support behavior understanding of both individual entities and groups of entities. 

xlii



Hard-Soft Data 
Ontology Alignment Challenges 

Erik Blasch
erik.blasch@gmail.com

Erik Blasch – SPIE11 2

Outline

• Hard (physics-based) and Soft (human-based reports)
• Hard-Soft Information Fusion Challenges

• Data registration (Common Coordinates)

• Data association (Ontology Alignment)

• Data fusion (Uncertainty Analysis)

• Ontology Alignment based on Uncertainty
• Metrics: Measures of Quality and Uncertainty (Vocabulary)

• Human Processing: Semantic Distance and Coding (Meaning)

• Geographical Hard-Soft Fusion
• Example : Maritime Domain Awareness (AIS) 

• Image (Hard) Processing: determine areas of vehicle traffic

• Semantic (Soft) Fusion: translation of multiple databases
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Hard/Soft –Ontology

Ontology Alignment Evaluation Initiative 
http://oaei.ontologymatching.org
with the goals of: 

• assessing strength and weakness of alignment/matching 
systems; 

• comparing performance of techniques; 

• increasing communication among algorithm developers; 

• improving evaluation techniques; 

• most of all, helping improving the work on ontology 
alignment/matching. 

To meet these goals, controlled experimental evaluation of 
the techniques and performances are conducted.

HARD SOFT

Erik Blasch – SPIE11 4

Ontology

Gruber succinctly defines an 
ontology is a specification of a conceptualization. 

Ontologies have been designed for knowledge 
management, use, and sharing. 
Since an ontology is a theory of a consistent (but not 
complete) formal vocabulary, agents operate on the 
information which can be uncertain.  
Classes, relations, functions, or other objects in normal 
human discourse and readable text describing what the 
names mean enable communication; however, if agents do 
not share the exact vocabulary, there can be mismatches or 
inexact meanings in the understanding of knowledge.

xliv
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Semantics

From http://en.wikipedia.org/wiki/Generative_lexicon

In computer science, where it is considered as an application of mathematical logic, formal 
semantics of programming languages reflects the meaning of programs or functions.

In this regard, semantics permits programs to be separated into their syntactical part (grammatical 
structure) and their semantic part (meaning). For instance, the following statements use 
different syntaxes, but issue the same instructions:

x += y             (C, Java, Ruby, etc.)
x := x + y       ( Pascal)
LET X = X + Y (early BASIC)
x = x + y                    (most BASIC dialects, FORTRAN)
(incf x y)  (COMMON LISP)

Generally these operations would all perform an arithmetical addition of 'y' to 'x' and store the result 
in a variable called 'x'.

Semantics for computer applications falls into three categories:[14]

Operational Semantics: The meaning of a construct is specified by the computation it induces when 
it is executed on a machine. In particular, it is of interest how the effect of a computation is 
produced. 

Denotational Semantics : Meanings are modeled by mathematical objects that represent the effect 
of executing the constructs. Thus only the effect is of interest, not how it is obtained. 

Axiomatic Semantics : Specific properties of the effect of executing the constructs as expressed as 
assertions. Thus there may be aspects of the executions that are ignored. 

The Semantic Web refers to the extension of the WWW through the embedding of additional 
semantic metadata; s.a. Web Ontology Language (OWL).

HARD

SOFT
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Evidence

From EXPERT SYSTEMS - Principles and Programming, Giarratano, PWS-Kent 1989

Evidence Terms

Term Evidence Relative to Hypothesis
impossible
possible
plausible
probable
certain

definitely known against
not definitely disproved
some evidence exists
some evidence for
definitely known supporting

HARD

SOFT
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Outline

• Hard (physics-based) and Soft (human-based reports)
• Hard-Soft Information Fusion Challenges

• Data registration (Common Coordinates)

• Data association (Ontology Alignment)

• Data fusion (Uncertainty Analysis)

• Ontology Alignment based on Uncertainty
• Metrics: Measures of Quality and Uncertainty (Vocabulary)

• Human Processing: Semantic Distance and Coding (Meaning)

• Geographical Hard-Soft Fusion
• Example : Maritime Domain Awareness (AIS) 

• Image (Hard) Processing: determine areas of vehicle traffic
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Ontology Uncertainty Fusion 

From http://en.wikipedia.org/wiki/Semiotics
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User Fusion Model
From E. Blasch, “” Fusion 2004
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Geographical Ontology Alignment

M. Duckham and M. Warboys, “Automated Geographical Information Fusion and Ontology Alignment”, Ch 6 in 
Spatial Data on the Web (eds.) A. Belussi, B. Catania, E. Clementini, and E. Ferrari, Springer, 2007.

Duckham and Worboys list many categories of GIS data 
uncertainty
Semantic alignment: whether or not the labeling correspond to meaningful 
categories of alignment.

Inaccuracy of information: the segmentation of the geographical boundaries
Imprecision: the representation of the segmented areas
Vagueness: uncertainty in the boundaries
Uncertainty: the stochastic randomness in the collection boundaries.

Geo-pragmatics enhances ontologies by establishing context 
for users to reason over the data. 

Using “situated concepts” to help guide ontology development, both method-
driven and knowledge (epistemic-driven) determine the dimensions of origin, 
use, and effects of information for humans and machines.

SOFT

HARD
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Automatic Identification System (AIS) 

FROM :  http://en.wikipedia.org/wiki/Automatic_Identification_System

The Automatic Identification System (AIS) is a short range coastal tracking 
system used on ships and by Vessel Traffic Services (VTS) for identifying and 
locating vessels by electronically exchanging data with other nearby ships and 
VTS stations. Information such as unique identification, position, course, and 
speed can be displayed on a screen or an ECDIS. AIS is intended to assist the 
vessel's watchstanding officers and allow maritime authorities to track and 
monitor vessel movements

SOFTHARD
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CanCoastWatch Example

Want to align
Geographical (Hard) data      with

Semantic (Soft) Data

SOFT

HARD
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Ontological Fusion

Hard Data 
(images)

Soft Data 
(text)

Hard Data 
(images)

Soft Data 
(text)

Hard Data 
(images)

Soft Data 
(text)

Image 
Segmentation

Region Labeling

Temporal/Spatial      
Alignment/ Registration

Freq/Pixel 
Analysis

Object Labeling
Ship

Waterway

Waterway

Ship 
on 

Semantic/Context    
Alignment/ Registration

Ship Waterway

Coastal

Ship

a)

b)

c)

E. Blasch, É. Dorion, P. Valin, E. Bossé, and J. Roy, “Ontology Alignment in Geographical Hard-Soft Information Fusion 
Systems,” Fusion2010, 2010.
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CanCoastWatch Example

Geographical 
Information Overlay of Land and Sea/Coastal Areas

E. Blasch, É. Dorion, P. Valin, E. Bossé, and J. Roy, “Ontology Alignment in Geographical Hard-Soft Information Fusion 
Systems,” Fusion2010, 2010.
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CanCoastWatch Example
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CanCoastWatch Example

Extensional 
Information

Data Set B

Shipping TouristFishingSOFT

HARD

li



Erik Blasch – SPIE11 19

CanCoastWatch Example
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CanCoastWatch Example
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Geographical Ontology Alignment(1)

Fig. 6.1. Simplified example of inductive reasoning for automated geographical 
information fusion

Ontological 
Information

Data Set A Data Set BFused Data Set

Instance 
Information

Shipping    TouristCommercial    Recreational

Comm.    Tourist

Ship    Comm.    Rec.          
Tourist

E. Blasch, É. Dorion, P. Valin, E. Bossé, and J. Roy, “Ontology Alignment in Geographical Hard-Soft Information Fusion 
Systems,” Fusion2010, 2010.
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HARD

Erik Blasch – SPIE11 22

Outline

• Hard (physics-based) and Soft (human-based reports)
• Hard-Soft Information Fusion Challenges

• Data registration (Common Coordinates)

• Data association (Ontology Alignment)

• Data fusion (Uncertainty Analysis)

• Ontology Alignment based on Uncertainty
• Metrics: Measures of Quality and Uncertainty (Vocabulary)

• Human Processing: Semantic Distance and Coding (Meaning)

• Geographical Hard-Soft Fusion
• Example : Maritime Domain Awareness (AIS) 

• Image (Hard) Processing: determine areas of vehicle traffic

• Semantic (Soft) Fusion: translation of multiple databases
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Hard-Soft Data Ontology Alignment Challenges

Erik P. Blascha,b 
aDefence R&D Canada-Valcartier, 2459 Pie-XI Blvd. North, Quebec, QC, Canada; 

bAir Force Research Laboratory, Rome, NY, 13441, USA 

Abstract:  With the advent  of  the world-wide web,  social  media,  and mobile  communications,  there  are  numerous 
sources for human-based soft reports (e.g. textual and voice communications) that can augment traditional hard physics-
based sensing (e.g. video and weather maps.  Combining the information can be cross-cueing, alerting, and simultaneous 
displays.  Merely  presenting  the  data  would  overload  the  human  processing  limits,  so  there  is  a  need  for  more 
fundamental assessment of how to combine and link the hard and soft information. One commonality of the challenges is 
developing a  shared ontology that enables a combination of the various sources of structured and unstructured data. 
Using such an ontology might enable a solution to the operational hard-soft data challenges of data/information source 
(1) registration in a common coordinate system, (2) correlation of information in data bases, (3) association through  
ontology alignment,  (4) characterization with standard metrics, and (5) collection, presentation, and manipulation to  
support user’s needs for uncertainty reduction and situational awareness extension.    

Keywords: Information Fusion, Hard-Soft Fusion, Ontologies, IMINT, HUMINT, User Refinement

Recent  efforts  are  underway to look  at  the  developments  that  have  enabled  seamless  communication  anywhere  to 
augment traditional sensor-based collections.  Summarizing the types of data, the technologies, algorithms, and various  
programs would not catch up to the applications that are being developed in real time.  However, there has yet to be 
vetted formalism that is able to generally relate the developments in soft processing to that of hard processing.  One  
example is situation assessment [1] of combining a social  network analysis  (SNA) with that  of annotated imagery,  
shown  in  Figure  1  [2].  From  the  simple  example,  there  is  a  common  reference  frame  (persons  address),  static 
information (authors name) that can be associated in a database, and the display fusion of information for operator use  
(world map). Another example is relating the textual properties to the terrain [3].  These examples provide a useful 
illustration of discussion of future challenges for a dynamic situation that is altered by the vocabulary of an organization.

 

Figure 1. SNA linked to Annotated Imagery [1]. Figure 2. Textual Labeling of Geographic Imagery [2].

To fully exploit the fusion hard and soft data requires further analysis when the information is incomplete, uncertain, and 
dynamic. Relating events in time and space would require data extraction, reordering, and tagging that presents a new set  
of challenges shown in Table 1. Furthermore a  shared ontology (representation of a knowledge conceptualization) is 
needed between physics-based sensing and human-derived data products to process the meaning and provide contextual  
reasoning. The shared ontology challenge covers the alignment/registration [4], information exchange for correlation and 
association [5], as well as utilization of contextual culture for user refinement [6].

Hard-Soft Fusion Challenge Issues of Sensing, Processing, Exploitation, and Assessment
Registration Relating textual reports to imagery in common and meaningful coordinates 
Correlation Linking, processing, and reducing uncertainty through information fusion

liv



Association Extraction of sensor/database information and linking activities in space and time
Metrics Determining measures of performance and effectives for resource control
User Refinement Answering user queries and utilizing human reasoning over abstract reports

• Registration of H/S information is difficult as most data is collected and stored in an unstructured format.  Soft 
data (e.g. images, documents) does not have a codified hard sensing-based protocol. There are needs to provide 
joint data management so that future processes of data correlation and association are attainable. [2]
• Correlation of data relates to the processing of the data through H/S extraction and representation.  A shared  
vocabulary of quality is needed to relate conflicting, partial, and incomplete information. [7]
• Association of information (i.e. data mining and linking) is altered by the characterization of the data. If the H/S 
systems do not share the same vocabulary then inexact meanings and imprecise knowledge understanding cannot 
be determined. [8]
• Metrics are needed to determine the strength of association, evaluation of uncertainty reduction, and methods to  
interact with the user. Standards are need for homogeneous and heterogeneous hard and soft collection systems  
before the data quality can be determined. With hard quality of service and soft information quality standards, 
methods of fusion could be corrected assessed and evaluated. [9, 10, 11]
• User refinement (or human-centered engineering) requires the both the presentation of information and the 
ability of  the user to interact  and provide inputs [12,  13].  Since a user  can reason over both hard and soft 
information, there is a challenge to effectively and appropriately utilize a variety of users with different mental 
models, perceptions, bias, expertise, skill sets, and organization affiliation through a common ontology [14].   

Practically,  the  need  for  hard/soft  fusion  is  connected  with  the  application,  mission,  and  organization.  The  H/S 
application is  determined  from the above relations.  The mission is  usually within a geo-political  environment  that  
includes business operations,  cultural  factors,  security/proprietary restrictions, and ideology.   Sharing of information 
could  be  enhanced  by  need  for  collaboration  or  reduced  due  to  competition,  biased  based  on  language  and 
communication mechanisms, or altered based on weather and community infrastructure availability.  Table 2 presents  
relationships between hard and soft fusion that are affected by the organization.  Figure 3 is a representation of the 
intelligence (INT) information that can be gathered as a function of hard/soft collection resources, but does not capture  
the organization constructs that could relate the information in each collection INT column. One example is MOVINT  
(intelligence about a dynamic object) that can be sensed with physical sensors for object time and space, but does not  
capture the changing organizational affiliations associated with soft information.

Soft Hard Organization
Ancestry
Language
Documents
Agreements
Agents
Transportation
Activities
Networks
Behavior

Location
Geography
Citizenship
Transactions
Social Events
Road Networks
Meteorology
Datalinks
Legal Protocols

Geo-political 
Cultural Context
Affiliations
Business Associations
Friends Network
Infrastructure
Planned events
Chain of command
Ideology

Table 2: Organization effects on H/S Data                           Figure 3: Hard/Soft Relations of Intelligence Information [7]
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Observational data:  Soft data that come from:
--Uncalibrated and uncalibrate-able humans of all description under a wide variety 
of observational conditions, observing (and judging) all kinds of things
--And are expressed in ambiguous unconstrained natural language, with the 
NLP problem far from solved

A priori deductive knowledge:  Very weak a priori deductive knowledge
Contextual Information and Knowledge: Generally weak and ephemeral 
Socio-cultural knowledge

FUSION PROCESS DESIGN INFORMATION/KNOWLEDGE:
• OBSERVATIONAL DATA
• A PRIORI DEDUCTIVE KNOWLEDGE
• CONTEXTUAL INFORMATION/KNOWLEDGE
• LEARNED KNOWLEDGE
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SOFT DATA AND SOFT DECISIONSSOFT DATA AND SOFT DECISIONS
SOFT FUSION PROCESS DESIGN CHALLENGESSOFT FUSION PROCESS DESIGN CHALLENGES

• Common Referencing/Alignment:
– Temporal: very complex due to mixed tenses of language and metadata

• Past-present-future tenses all complexly mixed
• Imputes OOSM problem beyond what the fusion community has addressed

– Uncertainty: mixed representational forms that are natural to Hard 
(probabilistic) and Soft (possibilistic)

• Data Association:
– Requires robust semantic scoring techniques
– Potentially high dimensionality Assignment problems
– Most human observations unqualified
– Requires robust Ontology for efficiency

• State Estimation:
– Lack of reliable a priori dynamic knowledge models imputes a Discovery-

Learning-based approach
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1. Trying to Understand the Counterinsurgency Operational and Decision-Making Domains 

1.1 The Operational Domain 

Managing and executing Counterinsurgency (COIN) operations is complicated business. Before entering 
into a discussion on this topic, it is useful to discuss the definition(s) and nature of insurgency and COIN.  
Insurgency is defined in US Joint Publication 1-02 as “an organized movement aimed at the overthrow of 
a constituted government through use of subversion and armed conflict”.  This definition as a 
movement sets it apart from both guerilla warfare and terrorism, as they are both methods available to 
pursue the goals of the political movement; insurgencies do however typically employ violent means 
toward their ends but those means could, by explicit choice, exclude terrorism.  The action space for 
COIN can be broken into “direct” and “indirect” classes of actions, where direct actions are those 
focused on insurgent force structure in the traditional military sense, and indirect actions those focused 
on undermining support to the insurgents while simultaneously attacking them militarily.  Notice that 
there is an immediate impact of dimensionality for Information Fusion (IF) support that now involves 
both the repertoire of “kinetic” actions and soft actions.  Another way to look at these distinctions is 
from the viewpoint of theories of war and action, and in particular the notion of “lines of operation”, a 
principle of war put forward by the famous war theorist Antoine-Henri Jomini, who was a French and 
later Russian general [Shy, 1986].  Jomini asserted that there were natural lines of operation—in his day 
these were largely topographically based; alternately, other lines of operation were those concerned 
exclusively with strategic choice about where to fight, to what purpose, and with what proportional 
force, etc. 

These principles seem present in the modern Army Field Manual literature, for example in [Tactics in 
Counterinsurgency, 2009] where there is a discussion about “Lines of Effort (LOE)”, defined as a line 
that links multiple tasks and missions using the logic of purpose—cause and effect—to focus efforts 
toward establishing operational and strategic conditions. A plan based on LOEs unifies the efforts of 
all actors participating in a counterinsurgency toward a common purpose.  Each LOE represents 
a conceptual category along which the COIN force commander intends to attack the insurgent 
strategy and tactics.  Figure 1 below shows example COIN LOEs.  

1.2 Effects-Based Operations 

It can also be argued that the End States of any LOO or LOE are “Effects” created by the sequence of 
actions (the “Course of Action”, discussed later) “along” the LOE.  Our research on Effects Based 
Operations (EBO), not a new term but interestingly actively revisited for the COIN problem (e.g. [Davis, 
2001]), shows that many references suggest that EBO is a viable concept for COIN, in part because 
effects are soft-type results, and subsume behavioral end-states, reflecting a human focus.  EBO is not 
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Figure 1  Lines of Effort for COIN Operations (Stability Operations); from [Operations, 2011] 

 
an element of Doctrine but rather one way of conducting operations and thus falls into the category of 
Operational Art.  EBO was studied over a long period of time until the mid-2000’s,  and is somewhat 
controversial since some consider it a reductionist approach which is largely incorrect, since most 
technical treatments of EBO treat it as stochastically/probabilistically-based (e.g., [Yan-guang, 2010]). 
Influence Nets of various type have been the most used paradigm in studying EBO, and most are framed 
in a probabilistic context. The most recent U.S. Army guidance on this aspect provides guidance for a 
systemic “Design” approach as in Figure 2 [JFCOM, 2010] but we see this as not really different than the 
EBO concept; the “reframing” step defines it as sequential, and so this process seems to embody many 
of the action-effect steps of an EBO type course of action. 

 

Figure 2  The “Design” Methodology (from [JFCOM, 2010]) 

If we examine the characterization of a typical Course of Action, a COA is sensibly always defined as a 

sequential operation (a series of partial plans is another way to characterize it).  Darr et al [Darr, 2009] 

provide an ontological definition of a COA in which a COA has activities within phases, with those 

activities oriented toward specific outcomes, and where the activities should have some MOPs by which 
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they can be measured, and the outcomes some MOE’s which allow their measurement in turn.  Figure 3 

shows the idea: 

 

Figure 3  Ontological Characterization of a COA (from [Darr, 2009]) 

Building upon this “neutral” characterization of activities and outcomes, a Counterinsurgency LOE may involve an 
operation as follows: 

 

Figure 4 Notional Course of Action 

Still further extensions of this idea are in [Wagenhals, 2007] that addresses the important aspect of 

socio-cultural influences on a COA prototype, shown here as a Timed Influence Net: 

 

Figure 5 Timed Influence Net with Socio-cultural Influences Accounted (from [Wagenhals, 2007]) 
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Campaiqn Time

Figure 3-1: Campaign Plan Elements

Note that this is a single COA or LOE; in a COIN campaign of multiple LOE’s as per Figure 1, there is the 

need to account for inter-COA/LOE interactions and interdependencies; Allen et al [Allen, 2006] study 

this in a DARPA effort program initially called Integrated Battle Command and then named as Conflict 

Modeling, Planning and Outcomes Experimentation Program (COMPOEX); they depict these interactions 

as in Figure 6: 

 

Figure 6 Notion of a Campaign Plan Employing Multiple LOEs (from [Allen, 2006]) 

1.3 Developing a Course of Action 

Assuming that the consequences or outcomes of any action can be modeled to some degree (else why 

would anyone take a specific action?), and allowing that such dependencies have some type of 

unpredictability—say expressed probabilistically—and also realizing that the temporal inter-

action/outcome sequences have a temporal uncertainty as well, a decision-maker might be faced with 

the type of problem environment shown in Figure 7: 

 

Figure 7 The User’s Dilemma in Choosing COA’s and Making Decisions (from [Levis, 2000]) 
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Here, the user would have the “Plausible Futures” projections from the fusion/decision-support system 

and COA-modeling system that would provide timed, probabilistically-framed projections of the 

likelihood of the various outcomes.  Each would have some level of value and thereby provide a 

quantitative basis for option selection.  The process is not unlike Model-Predictive Control (MPC) from 

control theory that involves an n-step projection process over a future horizon, but where, using these 

projections, only the best current option is chosen and the process repeated as the actual outcome 

unfolds and estimates of that unknown true outcome are made.  The notional MPC process is shown in 

Figure 8: 

 

Figure 8 Concept of Model Predictive Control 

2.  Impacts on Hard and Soft Fusion 

The ramifications of this decision-making environment on a Hard and Soft Fusion process are 

considerable.  If we think about the informational components that support the design of any IF process 

we have: 

 Observational data (and known sensor characteristics, as well as metadata) 

 A priori deductive knowledge (classical example is object dynamic model for Kalman Filter 

design) 

 Contextual information and knowledge 

 Knowledge learned in runtime (discovery, data mining, inductive processes) 

For the modern COIN problem we have: 

 Observational data:  Soft data that come from: 

o Uncalibrated and uncalibrate-able humans of all description under a wide variety of 

observational conditions, observing (and judging) all kinds of things 

o And are expressed in ambiguous unconstrained natural language, with the NLP problem 

far from solved 

 A priori deductive knowledge:  Very weak a priori deductive knowledge—a good example is the 

range of required deductive models as described by Kott [Kott, 2007] in the DARPA COMPOEX 

program, shown in Figure 9: 
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Figure 9 COIN Modeling Dilemma (from [Kott, 2007]) 

 Contextual Information and Knowledge: Generally weak and ephemeral Socio-cultural 

knowledge 

These factors result in a process design environment that has much higher than traditional uncertainties 

and mixed representations of uncertainty (probabilistic for hard sensor data and very likely possibilistic 

for linguistic data); the weak knowledge environment can also result in the use of second-order 

uncertainty such as interval or parametric representations of knowledge uncertainty. 

In turn, these factors result in very difficult Data Association problems related to developing effective 

methods for semantic similarity scoring and potentially high dimensionality in Assignment problem 

formulations. 

Complexities can also result from the temporal alignment problem, since any linguistic message of a few 

phrases or larger can have past, present, and future tense references of non-trivial extent (“last 

week/month….I saw…..”) that impute out-of-order processing requirements onto the fusion process. 

Thus, the core functionalities of any Information Fusion process can be seriously impacted by this new 

operating environment.  Note too that the decision-making problem may need to be cast into the 

domain of decision-making under “strict uncertainty”, involving “best of the worst” type paradigms such 

as Wald’s Maximin, etc. 
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Introduction
• Many challenges of fusing hard and soft data have been identified, e.g., 

Fusion XX conferences, NSSDF, SPIE
• Challenges of using soft data

• Perception process varies from person to person
• Perceptual bias is sensitive to context
• Performance is affected by training and workload
• Natural language output is imprecise and subject to different interpretation
• Modeling and verification is difficult
• Human sources may intentionally lie

• Challenges of fusing with hard data
• Common representation
• Alignment and association of non-numeric with numeric data
• Reasoning with different uncertainty representations

• This talk will discuss challenges for a simple tracking problem

lxvii



©2011 BAE Systems. 3

Video Sensor 1

Tracking with Hard Data from Physical Sensors

• Fusion combines video data to form tracks and estimate kinematic states 
and activities by

• Forming video tracklets from each sensor
• Associating video tracklets from both sensors over time to form tracks 
• Estimating kinematic state for each track
• Estimating activity for each track

Fusion

Video Sensor 2

Video Data

Video Data

Tracks with 
Kinematic State
and Activity 
Estimates
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Video Sensor 1

Tracking with Hard Data and Soft Data

• Bandwidth limits communication from Video Sensor 2 to Fusion
• Human observer processes data from Video Sensor 2 to generate reports 

by
• Forming tracks manually
• Adding attributes to tracks
• Inferring activities from tracks and context
• Summarizing results in text, with possible reference to map

Fusion

Video Sensor 2

Video Data

Video 
Data

Human Observer Human
Reports

Tracks with 
Kinematic State
and Activity 
Estimates
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Scenario

• Light blue vehicle:
• 1200: leaves A
• 1215 to 1230: stops at gas station E
• 1245 to 1300: stops behind B
• 1325:  arrives at D

5

Tall Building B
Suspicious 

House A

Gas 
Station E

Gas 
Station F Suspicious 

House C

Video Sensor 1

Video Sensor 2

House D

• Dark blue vehicle:
• 1210: leaves starting point
• 1240 to 1255: stops behind B
• 1305 to 1315: stops at gas station F
• 1330:  arrives at C

©2011 BAE Systems.

Hard Data

• Sensor/processors generate video tracks with kinematic state and attribute 
estimates

• Video tracks will break when vehicles stop (e.g., at gas stations) or go 
behind obscurations

• Fusion stitches tracklets together

6
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Hard and Soft Data

• Human observer watches video and generates reports for vehicles of 
interest

• Report 1: Light blue vehicle leaves A at about noon, stops for gas, and 
disappears behind building B at about 1245

• Report 2: Blue vehicle leaves building B at just before 1300, refuels, and 
reaches C at 1320

• , 
7
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Tracklets

Tracklets from Human Observers
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Characteristics of Human Reports

• Summarize information by text: attribute, location, time, activity
• Exploit human understanding and context

• Focus of attention on (perceived) high value targets
• Visual continuous tracking
• Activity inference from tracks and context

• Reflect human limitations and bias
• Not all targets reported
• Not all attributes reported
• Imprecise location and time

Report 1: Light blue vehicle leaves A at about noon, stops for gas, and 
disappears behind building B at 1245

Report 2: Blue vehicle leaves building B at just before 1300, refuels, 
and reaches C at 1320

Attribute ActivityLocation Time
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Association of Hard and Soft Tracklets

• Soft tracklets
• S1: Light blue vehicle leaves A at about noon, 

stops for gas, and disappears behind building 
B at 1245

• S2: Blue vehicle leaves building B at just 
before 1300, refuels, and reaches C at 1320

9

Tall Building B
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House A

Gas 
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Gas 
Station F Suspicious 

House C
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H1

H2

H3

H4

H5

H6

H7

S1 S2

• Hard tracklets
• H1: t_start, x_start, t_end, x_end, attribute
• H2: t_start, x_start, t_end, x_end, attribute
• H3: t_start, x_start, t_end, x_end, attribute
• H4: t_start, x_start, t_end, x_end, attribute
• H5: t_start, x_start, t_end, x_end, attribute
• H6: t_start, x_start, t_end, x_end, attribute
• H7: t_start, x_start, t_end, x_end, attribute

©2011 BAE Systems. 10

Track and Association Hypotheses

• Track hypotheses
• Hard data only: H1H2H5, H3H4H5, H1H2H6H7, H3H4H6H7, H2H5, H3H4
• Soft data only: S1, S2, S1S2
• Hard and soft data: H1H2H6H7S2, H3H4S1H5, H3H4S1H6H7S2

• Association hypotheses
• {H1H2H6H7S2, H3H4S1H5}
• {H3H4S1H6H7S2, H1H2H5}
• {H1, H2H5, H3S1H4, H6S2H7} 
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House D
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H6

H7

S1 S2
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Hypothesis Scoring Challenges

• Associating likelihood of tracklets involves alignment and comparison of 
non-numeric, non-probabilistic quantities

• Kinematic
• Attribute
• Activity

11

Tracklet Hard Soft
Time 1205 about noon

Kinematic 
state

estimate,
covariance near A

Attribute prob (color) light blue
Activity prob(activity) refuel

Tracklet Soft Soft

Time At 1245 Just before 
1300

Kinematic 
state behind B At B

Attribute light blue blue

Activity stop at gas 
station refuel
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Additional Challenges in Association

• Human observers do not report everything they see
• Only targets that they care about
• Leaving out tracks that could be associated with hard data

• Human observers do not report what they don’t see
• Only what they can see
• Negative information cannot be used for association

12
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Tracklets from Sensor 1
Tracklets from Sensor 2

Omitted from soft data
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Conclusions

• Human observer acts as intelligent tracker
• Exploitation of human understanding and context to estimate activities
• Focus of attention on (perceived) high value targets

• Track association with soft data has to address challenges due to
• Processing of non-numeric data
• Incomplete reporting of human observers

• Hard and soft data fusion for tracking can benefit from
• Training of human observers to produce information that fusion needs
• Characterization of human observer performance

lxxiii
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ABSTRACT 

Hard and soft data fusion can potentially produce better results than fusion with hard or soft data alone because the 
sources provide different but complementary information. However, many challenges have to be addressed before the 
potential of hard and soft data fusion can be realized. In particular, soft data exploitation has to deal with the human 
operator as a sensor. Target tracking with multiple sensors is a common and important fusion problem. Many challenges 
of hard and soft data fusion are revealed by considering a tracking problem where one of the sensors is replaced by a 
human source. 

Keywords: hard and soft data fusion, target tracking, physical sensors, human sensors 

1. INTRODUCTION 
Hard and soft data fusion has become an active area of research recently [1 – 5] because of its potential to produce good 
results in mission areas such as counter-insurgency and urban operations, where human reports are often the most 
important sources of information. In these mission areas, fusion is used to gather information about individuals, such as 
their activities and behaviors, as well as their social networks. While physical sensors can provide some data on 
movements and even activities, their utility is limited due to obscuration in urban environments. On the other hand, 
human sources can collect information close to the entities of interest and produce information not available from 
physical sensors, e.g., relationships. 

Since soft data are generated by humans, the challenges of hard and soft data fusion are also the challenges of dealing 
with human sources and how to fuse these data with hard data from physical sensors. These challenges include: 

• Perception process varies from person to person 
• Perceptual bias is sensitive to context 
• Performance is affected by training and workload 
• Natural language output is imprecise and subject to different interpretation 
• Human sources may intentionally lie 

The manifestation of these challenges in fusion problems depends on the specific nature of problem, e.g., the physical 
and human sources, the entities of interest, and the contextual environment. Target tracking with multiple sensors is a 
common and important fusion problem. Many challenges of hard and soft data fusion are revealed by considering a 
tracking problem where one of the sensors is replaced by a human source. 

2. HARD AND SOFT DATA FUSION FOR TARGET TRACKING 
Most traditional tracking systems process data from physical sensors such as video cameras. When multiple sensors are 
involved, the tracking system associates the data across sensors and over time to generate tracks. Then it estimates the 
kinematic state and activity for each track. This type of system can be converted into one that fuses hard and soft data if 
a human observer processes the data from one sensor before communicating it to the fusion component. By performing 
some front-end processing, the human compresses the data and reduces the bandwidth required. More importantly, the 
human observer is good at exploiting context to infer activities. 

 

*chee.chong@baesystems.com, cychong@ieee.org; phone 1 650-210-8822; fax 1 650-210-8824 
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The human observer produces soft data that is different in both form and content from the hard data from physical 
sensors (Figures 1). Most of the information is in natural language with its inherent imprecision and ambiguity, without a 
standard representation of uncertainty. A main challenge of exploiting this soft data is extracting the information and 
aligning it with the hard data to support tracking functions such as gating, association, state estimation, etc. 

 

Report 1: Light blue vehicle leaves A at about noon, stops for gas, and 
disappears behind building B at 1245

Report 2: Blue vehicle leaves building B at just before 1300, refuels, 
and reaches C at 1320

Attribute ActivityLocation Time

 
Figure 1: Soft data from human observer 

Furthermore, human observers do not report everything they see, only those targets that they care about, and leave out 
tracks that could be associated with hard data. Human observers also do not report what they do not see, and only what 
they can see. Thus, negative evidence not reported cannot be used for association with the hard data. 

3. SUMMARY 
Human observer acts as intelligent tracker that provides soft data into the fusion system. A human observer can exploit 
human understanding and context to estimate activities, and focuses attention on (perceived) high value targets. 
However, track association with soft data has to address challenges due to processing of non-numeric data, and 
incomplete reporting of human observers. Hard and soft data fusion for tracking can benefit from training the human 
observers to produce information that fusion needs, e.g., using a controlled format. Furthermore, characterization of 
human observer performance is essential before any fusion can be performed. 
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to Improve Prediction and Retrodiction

2

Motion pattern extraction:
– Automatic classification of targets based on kinematic and non-

kinematic data (motion patterns)
– Extraction of road maps or “movement maps”
– Motion change detection (e.g., application to IED)
– Extract collaborative/group patterns

Prediction:
– Destination/intent prediction (e.g., urban environments, probability of 

attack)
– Consideration of external factors (e.g., weather, shipping lanes, roads, 

intelligence)
Forensic analysis (retrodiction):
– Extract past path
– Find origin 
– Associate past path with events (e.g., oil spill, IED) and targets

Beyond Tracking and Fusion
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Abstract 

 
Multitarget tracking and multisensor fusion have received much attention in the literature during 
the last four decades. Significant advances have been made in these fields during this period. 
With the existing computational resources, it is possible to track thousands of targets and fuse 
information from a multitude of heterogeneous sensors in real-time. However, the threats faced 
today are radically different from those during yesteryears and they continue to evolve, 
increasingly becoming difficult to track. In order to improve overall results, soft and hard fusion 
is essential in that highly quantifiable hard data and fuzzy soft data need to be fused. Soft and 
hard fusion can improve the results not only at the current time, but it can be used to improve 
prediction and retrodiction results as well. In this position paper, we explore the use of soft and 
hard fusion to improve tracking, prediction and forensic results. 
 
1. Soft/Hard Fusion for Tracking 
While the use of hard kinematic measurements alone may suffice in sparse scenarios with few 
measurement origin ambiguities, it will result in poor tracking performance in dense scenarios 
with closely spaced targets and heavy clutter. In this case, additional non-kinematic (or attribute 
or feature) information will significantly improve the overall tracking results by reducing the 
data association ambiguities. With the availability of large knowledge databases like intelligence 
data, road maps and video, it is possible to enhance the results even further. In addition to the 
massive size of these databases, their disparate nature also poses problems in consistently 
integrating them into the tracker while ensuring real-time feasibility. It is necessary to develop 
optimal search and matching technique for using information from large databases in conjunction 
with kinematic data. These algorithms must incorporate database information in a systematic 
manner, not be distracted by (or robust against) spurious data contained in the database, and be 
able to improve tracking performance in a quantifiable manner. In addition, occasional (i.e., with 
long revisit intervals), and possibly, out-of-sequence, data input from people, satellites and 
intelligence sources must be incorporated without the need to reprocess the previous datasets. 
Another candidate for incorporating uncertain, occasional database information is Monte Carlo 
methods. Because of their high computational complexity, the practical value of Monte Carlo 
methods in such large-scale problems is limited in spite of their robustness against uncertainties. 
It is then necessary to develop efficient sampling (Monte Carlo) strategies to probe large-
databases for useful information for integration with tracker.  
 

In most tracker extensions that handle non-kinematic information [Bar-Shalom05], 
composite tracks that consist of kinematic and non-kinematic information are maintained. That 
is, tracks subsume kinematic and non-kinematic input data and the corresponding resultant 
estimates. The Flexible Association ID-Aided Tracking (FA/IDAT) [Sinha10] provides an 
alternative framework in which tracks and IDs are maintained in two lists and then a dynamic 
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association between track and ID lists is performed in order to resolve any ambiguities. That is, 
kinematic and non-kinematic information are maintained separately in contrast to traditional 
trackers like the MHT or MFA. This provides a flexible framework in resolving past ambiguities 
and, in preliminary experiments, FA/IDAT yielded better results combining kinematic and non-
kinematic information at the association level. In [Chong09], the MHT algorithm was augmented 
with a track segment graph to represent association ambiguities. The idea is to improve long-
term tracking by generating long term track hypotheses and compactly representing them with 
track segment graphs. An extended duration MHT (EDMHT) addition module that can also 
incorporate feature measurements was used to augment the standard MHT tracker, which 
processes only kinematic data. The development of these algorithms is incomplete (e.g., details 
such as the extension to handle false alarms and the specific way to integrate feature/ID 
information are missing in [Chong09] and the number of targets is assumed to be known in 
[Sinha10]). In addition they are not capable of handling group targets or coordinated motion.  
 
2. Beyond Tracking… 
In addition to obtaining track estimates, it is desirable, wherever possible, to identify and classify 
the targets and predict their intent. The state estimation and classification go hand-in-hand in 
asset protection where classification results can play a significant role in the countermeasures 
against identified targets. The biggest challenge in soft hard fusion will be the scale of available 
data in making inferences on a large number of significant threats and connecting them for 
overall threat detection and evaluation. The handling of possibly non-informative data is 
important because of the nature of the problem, where multiple disparate sources produce data 
on unknown events that do not occur on a regular basis. The challenge is in quantifying the 
information contributed by each piece of data, for which one may not have an accurate statistical 
model. Another difficulty with terrorism related events is their time-varying multi-modal nature. 
 

In [Garcia06] the application of a machine-learning approach to classify ATC trajectory 
segments from recorded opportunity traffic was addressed. In [He10] a joint class identification 
and target classification algorithm that can simultaneously build class types on the basis of target 
kinematic and feature measurements and classify targets according to the identified classes even 
when there is switching among classes is proposed. In [Pang11] models and algorithms for 
detection and tracking of group and individual targets were described. Two group dynamical 
models within a continuous time setting using stochastic differential equations (SDE) that aim to 
mimic behavioural properties of groups were developed.  
 

The problem of detecting an anomaly (or abnormal event) is such that the distribution of 
observations is different before and after an unknown onset time, and the objective is to detect 
the change by statistically matching the observed pattern with that predicted by a model. In 
[Singh09] feature-aided tracking combined with HMMs for analyzing asymmetric threats was 
proposed. Also it provided a summary of various related work, ranging from visualization to 
algorithmic threat projection, and described a human-centered framework that associates 
situation assessment processes and models with requirements needed to enhance situation 
awareness. In [Sathyan06] a framework was presented for tracking multiple mobile targets in an 
urban environment based on data from multiple sources of information, and for evaluating the 
threat these targets pose to assets of interest. In [Blasch04] a method was developed to 
incorporate intent into a tracking and target identification system to improve performance. 
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Optimal Processing of Hard + Soft Measurements, 1

Q
quantized data

α
operator-extracted

attributes

φ
DSP-extracted

features

S
natural-language

statements

S1 ⇒ S2
inference rules

(from knowledge-base)

generalized
likelihood 
function

generalized
likelihood 
function

generalized
likelihood 
function

generalized
likelihood 
function

generalized
likelihood 
function

generalized
likelihood 
function

Bayes filters: 
- e.g., PHD/CPHD filters  

z
traditional data

• My claim:
– I have developed a systematic, unified, and 

Bayesian solution to the hard + soft fusion problem
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Optimal Processing of Hard + Soft Measurements, 2

• The core approach:
– unified theory of measurements

• represents both hard and soft information in a common probabilistic 
framework:  the generalized measurement

– unified single- and multi-target Bayes filtering theory
• based on the concept of a generalized likelihood function

• Consequence:  Hard and soft measurements can be 
processed in exactly the same way:

radar detection

natural-language report

single-target 
or 

multitarget 
Bayes filter

fused state-estimates 
and error-covariances

Conceptual Starting Point:  Quantized Measurements

• voltage source of type   c

voltage,  V = η(c) + U

199.96 199.97 199.98 199.99 200.00

199.98 observed measurement,  
J  =  (199.975,  199.985]

+

digital voltmeter
displays a voltage
rounded off to two

decimal points
(quantization)

the measurement is an INTERVAL 
(a SUBSET) of measurement space, 
not a POINT in measurement space

in expert-system theory, this is known
as an IMPRECISE MEASUREMENT
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Measurements in General

Chapter 3

• First step:  formulate the "measurement" concept so
that it encompasses both hard and soft information:
– a measurement is an opinion ventured by an information source 

(a sensor, a human expert) regarding what has or has not been observed.

• Consequence:  
– if a measurement is an opinion or interpretation, then it is implicitly a 

collection of hypotheses about what has or has not been observed.

• Types of measurements:
precise

z ∈ Z0

measurement

(e.g., vector)

measurement
space 

(e.g., Euclidean)

source believes that it 
has identified the 

measurement with 
complete certainty

imprecise

z ∈ S1 ⊆ Z0

constraint  on  z

(e.g., quantized 
measurement)

source knows 
measurement only

to within 
some constraint

Vague (“fuzzy”)

nested constraints

z ∈ S1 ⊆ … Sn ⊆ Z0

w1 +…+wn = 1
weights (degrees of belief in constraints)

source is 
uncertain about

the correct degree 
of constraint

Uncertain (“Dempster-Shafer”)

z ∈ S1 ,…, z ∈ Sn ⊆ Z0

w1 + … + wn = 1

source 
believes that

constraints are
not nested

Measurements = Random Subsets of Measurement Space

imprecise η(x) ∈ S0

vague
(fuzzy)

η(x) ∈ S0 ⊂ … ⊂ Sm

draws from random set  Θ Pr(Θ=Si) = pi

uncertain
(Dempster-Shafer) η(x) ∈ S0 ,…, Sm

draws from  Θ Pr(Θ=Si) = pi

in general Θ η(x) ∈ Θ
arbitrary random subset of measurement space  

precise . η(x) = z−V Chapter 4
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Generalized Likelihood Functions

• likelihood function for conventional measurements:  

fk+1(z|x)   =  fV(z−η(x))  =  “Pr( η(x)∈{z−V} )”

• generalized likelihood function for general  measurements:  

fk+1(Θ|x)  =  Pr(η(x) ∈ Θ)

Section 5.3

• joint generalized likelihood function for general measurements:  

fk+1(Θ,Θ′|x)  =  Pr(η(x)∈Θ,  η(x)∈Θ′)

Generalized Likelihoods:  Summary

fk+1(g|x)  = g(η(x)) 
fuzzy 

measurements
g(z) 

fk+1(µ|x)  =           pj ⋅ 1 (η(x))    
mΣ j = 1 Sj

Dempster-Shafer 
measurements

µ(Sj) = pj

fk+1(µ|x)  =           pj ⋅ gj(η(x))    
mΣ j = 1

fuzzy D-S 
measurements

µ(gj) = pj

fk+1(g ⇒g′|x)      =  (g∧Α,Α′g′)(η(x)) +    (1− g(η(x)))    1  
2  

fuzzy 
rules
g ⇒g′
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Single-Target Unified Measurement Fusion

• Bayesian fusion of independent general measurements:

fk+1|k+1(x|Θ,Θ′) = 
fk+1(Θ|x) ⋅ fk+1(Θ′|x) ⋅ fk+1|k(x)

fk+1(Θ|y) ⋅ fk+1(Θ′|y) ⋅ fk+1|k(y)dy∫

• given:  general measurements  Θ,Θ′

• Bayesian fusion of non-independent general measurements:

fk+1|k+1(x|Θ,Θ′) = 
fk+1(Θ,Θ′|x) ⋅ fk+1|k(x)

fk+1(Θ,Θ′|y) ⋅ fk+1|k(y)dy∫

Unified Multisource-Multitarget Fusion & Filtering
• given new nontraditional measurement-set, Zk+1 = {Θ1,...,Θm}

Dk+1|k+1(x|Z(k+1))  ≅ L    (x|Z(k)) ⋅ Dk+1|k(x|Z(k))Zk+1

L (x|Z(k)) = 1 − pD(x)  + pD(x) LΘ(x)Σ
Θ∈Zk+1

λk+1ck+1(z) + Dk+1|k[pDLz]Zk+1

Section 14.4.2

generalized likelihood function: LΘ(x)  = fk+1(Θ|x)
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Unified Hard + Soft Information Fusion

Position Paper: Panel on Real-World Issues and Challenges in Hard and Soft Fusion

Ronald Mahler

Lockheed Martin MS2, Eagan, MN

In the context of this panel discussion, hard fusion refers to the process of fusing and exploiting “hard

information”–i.e., data generated by physical sensors such as radars, sonars, cameras, etc. Hard and soft fusion,

by way of contrast, refers to information fusion and exploitation when data can be “soft” as well as hard. Soft

information typically (but not always) involves human mediation, and “soft measurements” include such things as

(1) attributes extracted from an image by human operators; (2) natural-language statements reported by human

observors; (3) inference rules drawn from knowledge-bases compiled by human experts; and (4) target-signature

databases constructed by human domain experts. In addition to these, I include (5) features extracted from a

sensor signature by digital signal processing (DSP) algorithms. This is because features are often ambiguous

in somewhat the same way that human-generated attributes are ambiguous, even though they are typically not

human-mediated.

According to the panel problem statement, the fundamental problem to be addressed is as follows: “While

algorithms for fusing information from physical sensors has a substantial development history as well as maturity,

complex technical issues remain in the representation of human-based information to make it suitable for combin-

ing with sensor based information.” In the book Statistical Multisource-Multitarget Information Fusion,1 I have

proposed what I believe is the first and only systematic, unified, and probabilistic (indeed, Bayesian) solution to

the hard + soft fusion problem. The core approach has two parts:

• a unified theory of measurements, which represents both hard information and soft information in a common
probabilistic framework called a “generalized measurement”; and

• a unified single-target and multitarget Bayes filtering theory for generalized measurements, which is based

on the concept of a “generalized likelihood function.”

Taken together, these two approaches permit soft measurements (e.g., a natural language report) to be processed

in exactly the same way as hard measurements (e.g., a radar detection). The purpose of this position paper is

to briefly summarize and advocate this unified hard/soft fusion approach: measurements in general, statistical

representations of general measurements, generalized measurement models, generalized likelihood functions, and

single- and multi-target Bayes filtering of both hard and soft measurements.

Measurements in General.1,Chapter 3 The first step is to formulate the concept of a “measurement” so that

it encompasses both hard and soft information sources: A measurement is an opinion ventured by an information

source (a sensor, a human expert) regarding what has or has not been observed.1,p.97 But if a measurement is an

opinion or interpretation, then, at least implicitly, it is actually a collection of hypotheses about what has or has

not been observed.

The theory of measurements that I have proposed is based on standard expert systems concepts. It employs
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a taxonomy of increasingly more general kinds of measurements: precise (a.k.a. “crisp”), vague (a.k.a. “fuzzy”),

uncertain (a.k.a. “Dempster-Shafer”), contingent (as with rules), and general. Suppose that the measurement

space Z0 of the sensor/source is a Euclidean space. Then a precise measurement is just a conventional

measurement-vector z ∈ Z0. In this case, the source believes that it has identified the measurement with

complete certainty. Not all measurements are precise, however. Quantized measurements are the most familiar

non-precise measurements. A quantized measurement is a “cell”–that is, a subset 1 ⊆ Z0 of Z0–that

contains the actual measurement z. It specifies that z is known only to within containment in 1. In the

expert-systems literature, such measurements are commonly known as imprecise. Suppose now that the source

believes that z is constrained to being within 1, but cannot be completely certain that 1 is the actual or

best constraint. In this case, the measurement reported by the source might be best represented by a nested

sequence 1 ⊂ 2 ⊂  ⊂  of subsets of Z0, together with degrees of belief 1   in these different

interpretations, with 1 + + = 1 . Each  is a different hypothesis about what the correct bound on z

should be. Such a measurement is commonly described as vague or “fuzzy”. Finally, suppose that the observer

cannot be certain that the interpretations 1   should be nested. Then the measurement 1   is

uncertain (“Dempster-Shafer”).

Statistical Representation of Measurements in General.1,Chapter 4 Note that an uncertain measure-

ment can be represented as a random subset Θ of Z0 which has the instantiations Θ = 1   and

whose probability of selecting  is Pr (Θ = ) = . This leads us to the general definition of a (fixed)

measurement : it is an arbitrary random (closed) subset Θ of Z0. Though I cannot explain why here, it

turns out that even more general kinds of measurements, such as inference rules, can be represented as random

subsets of Z0. Furthermore, this definition also encompasses randomness in the usual sense. For example,

even though a measurement is known to be precise, the sensor/source may observe different versions of it at

different times. In this case the measurement is actually a random vector. Similarly, even though the observer

may “see” a particular imprecise measurement 1 at a particular time, it may observe different versions of it at

different times. In this case, the measurement is actually a random subset of Z0. More generally, even though

any particular observation is known to be interpretable as a set of hypotheses 1  , the sensor/source may

observe different versions of these hypotheses at different times. So the sequence 1   of hypotheses may

itself be random–and can in turn be represented as a particular random subset Θ of Z0.

Generalized Measurement Models.1,Chapters5,6 It is not possible to exploit any kind of measurement

unless one has some idea about how measurements are related to targets. The relationship between precise

measurements and targets is conventionally specified by a measurement model of the form

Z =  (x) +V (1)

where x is the target state-vector, where z =  (x) is a deterministic description of which measurements are

generated by which targets, and where V is a zero-mean noise vector. It turns out that, for a generalized

measurement Θ, the corresponding measurement model has the form

 (x) ∈ Θ (2)

(This model is consistent with the traditional model. Suppose that

Θz = z −V = {w −V| w ∈ z} (3)

where z is a very small (hyper)sphere centered at z. Then the model  (x) ∈ Θz approximates the model

 (x) = z−V.)

However, note that there is a hidden assumption here, namely that the function  (x) is presumed to be

precisely known. That is, we know with certainty that, if the effects of (conventional) randomness are ignored,

then a target with state-vector x will always produce measurement-vector  (x). But in many cases–if z is

an attribute that describes target identity, for instance–the precise value of  (x) may not be known. (For

example, suppose that  () is the observed number of wheels on a vehicle of class . Then there may be
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a target type 0 for which the exact number of wheels is not known with certainty. Indeed, it may even be

completely unknown.) In this case, the generalized measurement model  (x) ∈ Θ must be further generalized,

to the form

Θ ∩Σx 6= ∅ (4)

where Σx is a random set representation of the uncertainty involved in the specification of  (x). That is, target

x “matches” the generalized target-model Σx if it does not completely contradict the observed measurement

Θ.

Generalized Likelihood Functions.1,Chapters5,6 In a Bayesian approach, measurements are not processed

directly–they are mediated by likelihood functions. Thus the model Z =  (x) +V must first be transformed

into the corresponding likelihood function

 (z|x) = V (z−  (x))  (5)

where  (z|x) is the probability that measurement z will be collected if a target with state x is present.

Intuitively speaking,  (z|x) is the probability that  (x) ∈ {z −V}. In like manner, if a Bayesian approach

is to be applied, then the generalized measurement models  (x) ∈ Θ and Θ ∩ Σx 6= ∅ must be converted to

likelihood function form. These are the “generalized likelihood functions”

 (Θ|x) = Pr( (x) ∈ Θ) (6)

 (Θ|x) = Pr(Θ ∩Σx 6= ∅) (7)

(For example, if Θz is as defined earlier, then it can be shown that  (Θz|x) ∝  (z|x) as the hypervolume of
z becomes arbitrarily small, provided that  (Θz|x) is defined as in Eq. (6).)

Bayes Filtering of Hard and Soft Measurements.1 For single targets, Bayesian fusion and filtering of

(independent) precise measurements z1  z is accomplished using Bayes’ rule:

 (x|z1  z) =  (z1|x) · · ·  (z|x) · 0 (x)R
 (z1|y) · · ·  (z|y) · 0 (x) y

(8)

where 0 (x) is the prior distribution. Bayes fusion and filtering of (independent) generalized measurements

Θ1 Θ is similarly accomplished using Bayes’ rule:

 (x|Θ1 Θ) =  (Θ1|x) · · ·  (Θ|x) · 0 (x)R
 (Θ1|y) · · ·  (Θ|y) · 0 (x) y

(9)

Now consider multiple targets. Since (independent) precise measurements are mediated by likelihood func-

tions, they can be processed using the PHD, CPHD, or multi-Bernoulli filters. Generalized measurements can

be processed by the same filters, since they are mediated by generalized likelihood functions (which can simply

be substituted in place of conventional likelihood functions in the formulas for these filters.)
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