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ABSTRACT

The properties of localised dipole emitters in the form of a quantum dot or a colour centre embedded in a crystal
environment can be drastically modified by a change in the composition, size and shape of the environment in
which the emitter is embedded. Thanks to recent advances in material deposition techniques and lithography,
as well as the advances in detection techniques and optical manipulation, experimental work is now capable of
revealing a new range of physical phenomena when the typical dimensions are of the order of an optical dipole
transition wavelength and below. These advances have arisen at a time of a heightened research effort devoted to
the important goal of identifying a qubit and a suitable environment that forms the basis for a scalable hardware
architecture for the practical realisation of quantum information processing. A physical system that we have
recently put forward as a candidate for such a purpose involves localised emitters in the form of quantum dots
or colour centres embedded in a nanocrystal. This suggestion became more persuasive following the success of
experiments which, for the first time, were able to demonstrate quantum cryptography using a nitrogen vacancy
in a diamond nanocrystal as a single-photon source. It has, however, been realised that a more versatile scenario
could be achieved by making use of the interplay between dielectric cavity confinement and dipole orientation.
Besides position dependence the main properties exhibit strong dipole orientational dependece suggesting that the
system is a possible candidate as a qubit for a scalable hardward architecture for quantum information processing.
Cavity confinement can control processes since it can lead to the enhancement and the complete suppression of
the de-excitation process, with further control provided by the manipulation of the dipole orientation by optical
means. This article is concerned with the modelling of quantum processes for quantum systems localised in
artificially fabricated structures made of high conductivity metals and dielectric cavities. The essential features
of cavity field confinement in this context are presented and the effects on de-excitation rates are assessed.

1. INTRODUCTION

Electromagnetic field confinement due to surfaces in material cavities of typical length scales comparable to
an optical dipole transition wavelength involves a set of modes that are restricted in both spatial and spectral
distributions relative to the case in the unbounded bulk. These restricted modes have important consequences for
the properties of quantum systems that are localised at sub-wavelength distances from cavity surfaces. When the
typical cavity dimensions are on the nanometre to micrometer scale, most of the familiar quantum phenomena
are liable to change. For instance, spontaneous emission can be drastically reduced or enhanced and it can
even be completely suppressed.1 The quantum system in question can be any system capable of excitation and
de-excitation, for example by optical means: neutral atoms, ions, molecules, quantum wells, quantum dots and
quantum wires. A variety of effects are realisable, depending on the geometry and the material constituents
forming the structure. Recent advances in material deposition techniques and lithography,2 together with the
advances in detection and optical manipulation of individual atoms and molecules,3 are now capable of revealing
a new range of physical phenomena when the typical length scales become comparable to or smaller than an
optical dipole transition wavelength.

The simplest cavity effects occur when real space is divided into two half-spaces, one half-space is occupied
by a perfect conductor, while the other half space is occupied by a dielectric or vacuum. A quantum system
interacts with the electromagnetic fields that are confined by the metallic half-space. The next system in the
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order of complexity is that of two parallel thick conductor slabs separated by a dielectric.4 This system should, in
principle, exhibit quantum charge states of a complicated nature than those arising for a single conductor. Such
states have been shown to be akin to bonding and anti-bonding states similar to those of the hydrogen molecule
ion. The theme of planar conductors forming a cavity can be generalised one step further to the case in which
two conductors intersect at a general angle of intersection. For an acute angle of intersection, we have a wedge
and the three dimensional analogue of the wedge is a corner, arising from the intersection of three conductors,
the simplest of which is the case where the intersections form right angles. The interaction of an excited dipole
emitter in the presence of conductors leads to a shift in the transition frequency and modifications of the rate of
de-exciation5.6

Other structures formed of planar conductors would be a waveguide with a rectangular cross-section and a
quantum dot formed of six planar surfaces for which the confined fields are also well known and their influence on
quantum systems localised within it are calculable in a straightforward manner7.8 Continuing along the perfect
conductor theme, the next cases generalise the Cartesian geometry to cylindrical9 or spherical11 symmetry. An
obvious case here is that involving a cylindrical structure with a diameter in the nanoscale, either forming a
perfect quasi-one dimensional conductor (nanowire), or a cylindrical cavity in a conducting medium. Similarly
a spherical quantum dot cavity in a conducting medium or a spherical conductor in vacuum are the natural
generalisations of the nanostructures formed of planar surfaces.

Most of the cases discussed above deal with extreme confinement effects in cavity quantum electrodynamics
where the perfect metal boundaries features prominently. More recently, the dielectric aspects of cavity quantum
electrodynamics have been discussed in connection with quantum processes. In particular, the influence of a
metallic film of nanometre thickness and finite conductivity deposited on a thick dielectric has been the subject
of investigation5.6 One of the applications of such a multilayer structure is in atomic mirrors,10 but its capability
of supporting surface plasma modes leads to strong coupling to quantum systems in the near zone. The more
general situation in which the two half spaces separated by the metallic film have different dielectric constants
presents a much richer set of physical phenomena involving the participation of the full set of allowed modes,
including evanescent and propagating modes as well as interface modes. This enables consideration of both the
near-zone, which is dominated by the interface modes, and the far-zone, which is dominated by the remaining
set of modes.

This paper is organised as follows. In section 2 we discuss the situation in the vicinity of a perfect mirror in the
form of a perfect conductor half-space. This enables useful comparisons to be made with the results of the more
complicated systems considered in the subsequent sections. In section 3 we describe the asymmetric dielectric
structure comprising two semi-infinite dielectric layers separated by a thin metallic film of finite conductivity. We
consider the coupling of the modes to a single dipole emitter localised on either side of the metallic film, which
allows the variations of the de-excitation rate with the dielectric constants, the metallic areal electron density, the
dipole orientation and the dipole position relative to the metallic film to be explored. Correlations between the
dipole and its image are pointed out and we also discuss pair correlations involving cooperative effects exhibited
by two real dipole emitters embedded in the structure and which can be located on the same side or on different
sides of the metallic film. Sections 4 and 5 extend the planar surfaces theme in new directions, introducing a
model of dipole relaxation in spaces with two (section 4) and three (section 5) mirror boundaries, forming an
edge and a corner. It is shown that the behavior in these cases can be expressed in terms of the coupling of the
dipole with all of its images in the mirrors, with the images themselves mutually non-interacting. The relevance
of the work for quantum information processing is pointed out and discussed in the final section 6, along with
comments and conclusions.

2. THE EFFECTS OF A PLANAR MIRROR

The simplest cavity effects arise in the situation where a perfect conductor occupies the half-space z < 0 and
the second half-space z > 0 is a dielectric of dielectric constant ε. The perfect conductor is assumed to exclude
all electromagnetic fields from its interior so that the interface at z = 0 is effectively a perfect mirror to all
electromagnetic fields on the dielectric side. A dipole emitter localised in the dielectric can only interact with
and via electromagnetic fields satisfying mirror boundary conditions. The de-exciatation rate for an excited
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Figure 1: A schematic figure showing the asymmetric multilayer dielectric cavity, consisting of two dielectric
half spaces of dielectric constants ε1 and ε2, separated by a thin metallic sheet with finite areal conductivity ns.
Dipole emitters on either side are shown as arrows.

emitter whose dipole moment vector is oriented in the direction µ̂ is given by the Golden Rule:

Γµ̂(R) =
2π

�2ε2
0

∑

Q

|〈e; {0} |−µ.D(R)| g; {Q}〉|2 δ(ω(Q) − ω0) (1)

where µ is the transition diplole moment vector of the emitter, |{Q}〉 stands for a one-quantum state of the
electromagnetic field satisfying the boundary conditions at the wedge surfaces, �ω(Q) is the one-quantum energy
and |{0}〉 stands for the electromagnetic vacuum field state. D is the quantised electric displacement field
operator, evaluated at the position R of the emitter. The emitter is represnted here as a two-level system of
excited state |e〉 and ground state |g〉 and a separation energy �ω0, i.e. ω0 is the dipole excitation frequency.
Direct evaluations for a dipole emitter situated at a distance z from the surface yield the following results for a
dipole parallel to the surface (Γ‖(z)) and perpendicular to it (Γ⊥(z))

Γ‖(z) = Γ0

{
1 − 3

2

(
sin 2k0z

2k0z
+

cos 2k0z

(2k0z)2
− sin 2k0z

(2k0z)3

)}
(2)

Γ⊥(z) = Γ0

{
1 − 3

(
cos 2k0z

(2k0z)2
− sin 2k0z

(2k0z)3

)}
(3)

where k0 = ω0/c and the rate is normalised in terms of the rate Γ0 in an infinite dielectric given by Γ0 =
4µ2k3

0/(3πε�) where ε is the electric permittivity of the dielectric in which the emitter is embedded. This rate
should be modified by a correction factor to account for the local field correction. The results can be interpreted
as arising from a cooperative effect between the real dipole and its image in the conductor.5

3. ASYMMETRIC DIELECTRIC STRUCTURE

We now consider a planar dielectric cavity, as shown schematically in Fig.1, involving a finite conductivity metallic
film occupying the plane z = 0, separating two dielctric half-spaces with ε1 and ε2 different dielectric constants.
The thin metallic film is characterised by its finite electron density ns and so has a finite conductivity σ at
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frequency ω, given by σ = inse
2/{m∗(ω+ iγ)} where m∗ and e are the electronic mass and charge in the metallic

film and the small imaginary term iγ in the denominator accounts for the plasma loss. The finite conductivity
induces an in-plane electric current density J‖ = σE‖ and this affects one of the electromagnetic boundary
conditions involving the tangential magnetic field vector. We have ẑ×{H(z = 0+) − H(z = 0−)} = σE‖(z = 0)
where 0± = limη→0(±η). The magnetic field function follows from the electric field using Maxwell’s equations.

In order to determine the mode functions we need the boundary condition, together with the continuity of the
tangential component of the electric field at z = 0. There are three types of mode emerging from this procedure:
(i) propagating modes, which have sinusoidal dependence in both regions of the structure; (ii) evanescent modes,
which propagate in one region, but exponentially decay away from the interface in the other region and (iii)
interface modes, which decay exponentially away from the interface in both regions of the structure. The de-
excitation of quantum states occurs by emission into the three types of mode. Calculations are typically done
by evaluating contributions from an individual type of mode and the result for a given situation is the sum of
all contributions.

3.1. De-excitation of a single dipole emitter

Consider a single dipole emitter localised near the metallic film. Note that the novelty of this system stems partly
from the fact that dipole emitters can be localised on either side of the film as shown in Fig 1. We evaluate the
de-excitation rate analytically, but the results for a given set of parameters proceed using numerical methods.
In particular, we can explore variations with the electron density ns of the film and for varying emitter position,
both in the near zone and in the far zone of the structure. The de-excitation rate is given by the Golden Rule,
but now all the three types of mode described above participate in the de-excitation process. The details will not
be presented here.5 Figure 2 displays the variations of the emission rate with the electron density for an emitter
fixed at the point z = 50nm. The parameters are such that ε2 = 1, while ε1 takes three diffferent values: ε1 = 1, 2
and 3. The results of this figure show that the relaxation rate exhibits a minimum at low density which can be
explained as due to screening arising from the propagating modes. As the density increases, the relaxation rate
increases and exhibits a maximum at a density which is characteristic of that emitter position. The rate then
decreases as the density increases further, diminishing to small values, consistent with the screening expected
at much higher electron densities. The large density limit is formally identified as equivalent to the perfect
conductor film limit where the metallic film completely screens electromagnetic fields sampled by dipole emitters
located on either side of the film.

Figure 3 shows the variation with the emitter position of the relaxation rate when the a dipole moment is
oriented parallel to the film plane. It is seen that the rate variation in the near zone (the region close to the
film on both sides) is such that the relaxation process is dominated by emission into the interface mode channel.
In the intermediate and far zones, the role of the interface modes is negligible and the dominant role is taken
up by emission into the propagating and evanescent mode channels. At dipole positions far removed from the
screen on either side, we recover the result Γ0(ε) appropriate for the unbounded dielectric in which the dipole is
located.

3.2. Pair correlations

Consider a pair of identical dipole emitters, labelled 1 and 2, localised at the space points r1 and r2. The
lowest excited state energy of the pair is �(ωe + ωg), corresponding to the state in which one of the emitters
is in state |e〉 and the other in state |g〉. This quantum energy level is doubly degenerate and is spanned
by two independent states, namely the symmetric state |e+〉 and the antisymmeteric state |e−〉 in the form
|e±〉 = 1√

2
(|e1g2〉 ± |g1e2〉) . The ground state |f〉 = |g1g2〉 is singlet and has energy 2�ωg.

Both emitters interact with the same quantised field at their locations r1 and r2, so that the interaction
Hamiltonian is Hint = −µ1.D(r1, t)/ε0 − µ2.D(r2, t)/ε0. The rates of de-excitation corresponding to the pair
states |e±〉 are functions of r1 and r2 and are given by

Γ±(r1, r2) =
2π

�2

∑

Q

|〈e±, {0} |Hint| f, {Q}〉|2 δ(ωif − ωQ) (4)
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Figure 2: Variations of the dipole relaxation rate with the electron density ns for a single dipole emitter of
frequency ω0 such that �ω0 = 2.0 eV. The emitter is situated at a distance z = 50 nm in dielectric 2 (taken to
be vacuum where ε2 = 1) in front of the metallic sheet as an overlayer on three different types of dielectric 1,
for which ε1 = 1, 2, and 3. See the text for a description of these results.

The transition frequency in both cases is ωif = ω0 ≡ ωe − ωg. The ensuing expressions can be written in the
following form

Γ±(r1, r2) =
1
2
{Γ0(r1) + Γ0(r2)} ±

∑

i,j

µ̂
(1)
i µ̂

(2)
j Γij(r1, r2) (5)

where Γ0(r1) and Γ0(r2) are the individual emission rates at the points where the dipole emitter 1 and dipole
emitter 2 are localised, respectively. µ̂

(1)
i and µ̂

(2)
j are the ith and jth Cartesian vector components of unit

vectors in the direction of the dipole moments of emitters 1 and 2, respectively. Γij are functions of the the
emitter positions. Unfortunately, even for the simplest cases, these analytical functions are too complicated
to be displayed here. Meaningful results are obtainable with the help of numerical techniques. It is useful to
select a few special cases for illustration purposes and, as we shall see, this is reasonably effective in uncovering
interesting trends.

Figure 4 shows the variations of the ± emission rates for a pair of emitters with dipole vectors oriented
parallel to the metallic film plane. Here dipole 1 is fixed at z1 = −20 nm (near zone), while the position of
dipole 2 varies across the sheet from left to right. The parameters are such that ε1 = 2.0; ε2 = 1 and metallic
sheet density ns = 1.7 × 1020 m−2. The dipole oscillation frequency is such that �ω0 = 2.0eV. There are three
interesting observations here. First we note the strong enhancement in the near-zone, when dipole 2 is close to
the surface on both sides of the screen. Secondly, when the position of dipole 2 coincides with that of dipole 1,
on the left of the screen, we get the expected superradiance for Γ+ and sub-radiance in Γ−. However, identical
behaviours can be seen when the position of dipole 2 is at the image position z2 ≈ +20nm, i.e. to the right of the
screen. We deduce from this that there are superradiance and subradiance phenomena displayed by image-type
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Figure 3: Variations of the emission rate with dipole position for a dipole of frequency ω0 such that �ω0 = 2.0
eV. The film electron density is ns = 51.73 × 1020m−2.

Figure 4: Cooperative rates Γ± in the near zone. Here dipole 1 is fixed at z1 = -20 nm in region 1, where ε1 = 2.
Dipole 2 changes position from the left of the screen in region 1 to the right of the film in region 2, where ε2 = 1.
Here the dipoles are both antiparallel to interface as shown in the insets of the figure. The density of the film is
ns = 1.7 × 1020m−2, and the value of the dipole frequency is �ω0 = 2eV.
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Figure 5: The cooperative rates Γ± in the far zone for the case ε2 = 1 and ε1 = 4. The two dipoles are both
perpendicular to the film plane and antiparallel, with oscillation frequency ω0 such that �ω0 = 2.0 eV and the
density is ns = 1.73×1020m−2. Dipole 1 is fixed at z1= -500 nm and dipole 2 changes position across the screen.

effects. At the point z2 = 20nm, dipole 2 and the image of dipole 1 coincide in position. The real dipoles are
parallel, but at the image position, dipole 2 and the image of dipole 1 are antiparallel and we get superradiance
for Γ+ and subradiance for Γ− at this position in this near-zone situation.

Figure 5 shows the situation in the far zone. Here dipole 1 is fixed at the position z1 = −500nm and dipole
2 varies in position across the screen. When dipole 2 is far to the left or far to the right the dipole system
displays oscillations with distance which are consistent with a dipole pair in free space. This interpretation
can be confirmed by comparing a period of this oscillations with a transition wavelength λ0 = 2π/k0. In the
right-hand region we see that superradiance and subradiance effects are exhibited by Γ+ and Γ−, respectively.
However, on the left hand side, the situation is reversed: Γ− shows superradiance and Γ+ subradiance. This
behaviour can be explained in terms of correlation between dipole 2 and the image of dipole 1 at z = +500nm.
Note, however, that Γ− is not exactly zero at z2 = +500nm. This can be traced to the effects of a finite electron
density. We have checked that as the density increases the superradiance behaviour Γ−(z2) = +500nm indeed
vanishes, as it should.

4. QUANTUM EFFECTS NEAR MATERIAL WEDGES

Another dielectric cavity QED system is when dipole emitters are localised near the sharp end of a wedge-shaped
dielectric slice of an arbitrary angle φ0. The faces of the wedge are in contact with another material that, in
general could be a dielectric or a metal, but here we shall consider the case of a wedge bordered by a high
conductivity metal. As illustrated schematically in Fig. 6, the dipole emitter is situated in the wedge region at
the general space point R = (r‖, 0) ≡ (r‖, φ, 0) in cylindrical polar coordinates, with the planar surfaces of the
wedge defined by the equations φ = 0 and φ = φ0.

The evaluation of the de-excitation rate requires the construction of the displacement field vector operator
D in terms of field quanta satisfying electromagnetic boundary conditions at the wedge interfaces. For perfectly
conducting boundaries the field modes emerge as either transverse electric TE, for which Ez = 0 or transverse
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Figure 6: Schematic diagram representing the position of a dipole emitter of arbitrary orientation in a dielectric
wedge, bounded by perfect conductor at φ = 0 and φ = φ0. The dipole emitter is represented by an arrow at
the general cylindrical polar coordinate R = (r‖, φ, z).

magnetic TM for which Bz = 0. Using cylindrical coordinates R = (r‖, z) we write

D(R) =
∑

η=1,2

∑

n

∫
d2k‖

{
E(η)

k‖,n(r‖, z, t)aη(k‖, n) − h.c.
}

(6)

where k‖ is a two-dimensional wavevector in the x−y plane. The operator aη(k‖, n) and its Hermitian conjugate
are annihilation and creation operators for the quanta of the mode of polarisation η, where η is either TE for
which η = 1, or TM , for which η = 2. The vector functions E(η)

k‖,n(r‖, z, t) are the mode spatial distribution
functions. For TE modes, η = 1, the mode functions can be written as

E(1)
k‖,n(r‖, z, t) =

(
�ω

2πεφ0k2
‖

) 1
2 {

Jm(k‖r‖)
nπ

φ0
sin

(
nπ

φ

φ0

)
r̂‖
r‖

− ∂Jm(k‖r‖)
∂r‖

cos
(

nπ
φ

φ0

)
φ̂

}
ei[kzz−ω(k‖,n)t] (7)

where carets denote unit vectors and kz is given by k2
z = εω/c2 − k2

‖. In Eq.(7) and subsequently, Jm(x) are
Bessel functions, where m is related to integer n ≥ 0 by m = nπ/φ0. For the TM mode (η = 2) we have

E(2)
k‖,n(r‖, z, t) =

{
ξ(k‖)

∂Jm(k‖r‖)
∂r‖

sin
(

nπ
φ

φ0

)
r̂ + ξ(k‖)Jm(k‖r‖)

nπ

φ0
cos

(
nπ

φ

φ0

)
φ̂

r‖

+ k‖Jm(k‖r‖) sin
(

nπ
φ

φ0

)
ẑ
}(

�ω

2πεφ0k2
‖

) 1
2

ei[kzz−ω(k‖,n)t] (8)

where ξ(k‖) =
(

1 − c2k2
‖

εω2

) 1
2

. For obtuse angles, such as 3π/4, the problem takes a totally new perspective;

it becomes that of an emitter embedded in a bulk dielectric near and outside a metallic protrusion of wedge
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Figure 7: Dielectric wedge for which φ0 = π/4 embedded in a perfect conductor. The main figure shows the
spatial distributions of the relative emission rate Γ/Γ0 for dipole emitters in the x-y plane when the dipole
moment is (a) oriented along the z axis (perpendicular case) and (b) oriented parallel to the x-y plane (along
the azimuthal direction φ̂). Distances are in units of 1/k0 where λ0 = 2π/k0 is the dipole transition wavelength.
The brightest regions represent maximum emission rates. The inset for each case shows the variation of the
corresponding relative rate at points along the symmetry line φ = π/8.

Figure 8: Metallic half-plane embedded in a dielectric φ0 ≈ 2π. Spatial distributions of the relative emission
rate,Γ/Γ0, for dipole emitters in the x-y plane when the dipole moment is (a) oriented along the z axis (perpen-
dicular case) and (b) oriented in the x-y plane (along the radial direction r̂‖). Distances are measured as in Fig.
7 and the brightest regions are regions of highest emission rates. The insets for each case show the variation of
the corresponding relative rate at points along the symmetry line φ = π in the upper inset, and along a line at
φ = π/50 in the lower.

shape. In the limit of φ close to 2π we have an emitter localised near the edge of a metallic sheet. It should
be emphasised that all elements of our formalism, including the quantised fields defined above, are applicable to
all these cases with φ0 assuming continuous values between 0 and 2π. It is possible to examine the manner in
which the de-excitation rate distribution for emitters localised in the z = 0 plane evolves with changing angle
φ0 between the two extreme cases mentioned above. Illustrative results, as displayed in Figs. 7 and 8, are in
the form of colour-coded graphs in which the rate is enhanced in certain regions (regions of superradiance) and
suppressed in other regions (regions of sub-radiance).

In Figs. 7 and 8 we should note in particular the marked change in behaviour when the dipole orientation is
switched from parallel (along the z-axis) and perpendicular (in the x-y plane). Note also that in the perpendicular
polarisation case the region nearest to the wedge tip is a region of high suppression. Excited emitters situated
in this region, in principle, preserve their state of excitation indefinitely. If an emitter situated in these dark
regions is suddenly made to change its state of polarisation (for example by optical means) from perpendicular
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to parallel, the emitter should be de-excited and in certain positions the de-excitation process is enhanced. As
we explain in the concluding section, we envisaged that this in situ control of de-excitation from subradiant to
superradiant could be useful in quantum information processing.

We should also highlight the interesting extreme case of the system we have defined, namely the case in which
the angle φ0 becomes approximately equal to 2π. In this limit the dipole emitter is near a metallic half-plane
occupying half the x − z plane, with the rest of the space occupied by the dielectric. It is seen from Fig. 8 that
the rate varies symmetrically round the line of termination (the z-axis) for all excited emitters localised in the
dielectric in the vicinity of the edge. A change in the polarisation modifies the rate distribution near the edge
markedly.

5. EMITTERS NEAR A 3D RIGHT ANGLE CORNER

Finally we consider a significant variant of the geometry involving material interfaces in which the main feature
is a corner. For simplicity, we focus here on a case in which the physics is particularly transparent, namely a
corner formed due to a right angle intersection of three planar conductor surfaces. The quantum systems are
situated at fixed positions from the corner. The procedure for evaluating the emission rate can follow that for
the edge case, but with the added complication that the fields in the vicinity of the corner have to satisfy the
electromagnetic boundary conditions at three surfaces. In any case, the de-excitation rate for an emitter at
r0 = (x0, y0, z0) emerges as the sum of eight terms

Γ = Γ0 + Γx0 + Γy0 + Γz0 + Γx0z0 + Γx0y0 + Γy0z0 + Γx0y0z0 (9)

The first term is the de-excitation rate in an unbounded medium. The remaining terms arise from quantum
interference due to the presence of the corner. We have

Γu0 = Im[ũ µΘ̃(2u0)µ], (10)

Γu0v0 = Im[ũ ṽ µ∗Θ̃(2u0 + 2v0)µ], (11)

Γx0y0z0 = Im[µ∗Θ̃(2x0 + 2y0 + 2z0)µ], (12)

In the above u and v are x,y or z, such that ũ and ṽ are reflection operators in the x, y, z planes, and u0 and
v0 become x0,y0 or z0, where

Im
{

µR
∗Θ̃(R)µ

}
=

3
2
Γ0

{
ξ1

sin (k0R)
k0R

+ ξ3

[
cos (k0R)

k2
0R

2
− sin (k0R)

k3
0R

3

]}
, (13)

is the imaginary part of the retarded dielectric tensor. The dipole orientation factors ξp ≡ ξp (R) are defined by

ξp = µ̂∗
R
.µ̂ − p

(
µ̂∗

R
.R̂

)(
R̂.µ̂

)
; (p = 1, 3) (14)

where carets denote unit vectors and µ2x0
= x̃µ; µ2y0

= ỹµ and µ2x0+2y0
= x̃ỹµ. The notation is such that,

for instance, x̃r0 ≡ (x0,−y0, 0), ỹr0 ≡ (−x0, y0, 0), and x̃ỹr0 ≡ (−x0,−y0, 0).

Figure 9 shows the spatial distribution of the emission rate when the dipole moment vector of the emitter is
directed along the z-axis. This figure is in the form of a set of colour-coded contour plots presenting the variation
of Γ/Γ0 at emitter positions (x0, y0, z0) where z0 is the value of z defining the plane. The planes are separated
by distance λ/4π, where λ is the dipole transition wavelength. Within a given plane z = z0 the rate is seen to
be subradiant near the x = 0 and y = 0 planes and there are clear regions of superradiance, as in the edge case.

6. CONCLUSIONS

In conclusion, we have systematised a procedure for modelling quantum optical processes and pair correlation
effects for radiating dipolar quantum systems localised at well defined distances of the order of a dipole transition
wavelength from dielectric cavity surfaces. The cavity structures we have concentrated on are in the form of
planar asymmetric metallic film sandwiteched between two dielectrics, dielectric wedges and corners in contact
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Figure 9: Colour-coded spatial distributions of the relative emission rate Γ/Γ0 when the emitter dipole moment
vector is parallel to the z-axis, µ= (0,0,µ). This figure consists of a set of contour plots, each plot showing the
variation of the relative emission rate on a plane defined by a certain value of z0=0,λ/4π,λ/2π,3λ/4π. The red
regions represent the highest values, and the purple regions lowest values of the relative emission rate. The tick
marks on the plane edges are spaced at units of λ/2π.

with a high conductivity metal, but these are primarily for illustration purposes; any desired shape and material
combinations forming the electromagneic environment can, in principle, be dealt with in a similar manner.
The key common observation is that there are distinct regions where the emitter is subject to suppression and
enhancement of the de-excitation process, depending on the dipole orientation. The details of our predictions
should be verifiable experimentally for transitions in the optical region of the spectrum. However, a proof of
principle, experiment has been conducted in the RF region of the spectrum using a radiowave antenna as the
dipolar emitter situated between conductor planes at an angle, forming a wedge.12 This set-up follows the
work by Seeley et al13 for a parallel planes. The results of the experiment are in excellent agreement with the
theoretical predictions shown here for the wedge case. However, the details of this and extended experimental
work will not be discussed any further here.

We suggest that this scenario could be exploited as a basis for the design of a scalable architecture for
quantum information processing. This suggestion became more persuasive following the success of experiments
which, for the first time, were able to demonstrate quantum cryptography using a nitrogen vacancy in a diamond
nanocrystal as a single-photon source14.15 Suitable emitters, such as atoms, molecules, or quantum dots, could
be positioned at well defined locations and their dipole moment vectors can be optically controlled. Our results
suggest that emission could be switched on and off, simply by a change of the dipole orientation. Furthermore, we
have seen that the emission process can be viewed as a coopertaive effect between the dipole and its set of images
in the conductors. In fact it is easy to see that in the present situation, the emission process arises as a transition
from a definite entangled symmetric excited state of the emitter and its images. For two identical emitters near
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an edge, the expected two-body entanglment should be modified significantly by the quantum interference. The
possibility of the applicability of the work presented here to the area of quantum information processes rests
in the suggestion that the de-exciation rate of dipole emitters can be controlled optically from totally dark to
superradiant by a change of dipole orientation. The dielectric environment should be particularly helpful for
emitters in the form of a colour centre, since in that case any recoil on emission is carried away by the whole
crystal, removing one of the sources of unwanted decoherence. Work is now in progress to expolre the two-body
and multi-body cooperative effects in the same environment since such effects are envisaged to be important for
the realisation of quantum gates1617.18 It would be intereting also to find out how transfer of energy between
such emitters is influenced by their proximity to the narrow end of such material wedges. The experimental
realisation of such a system should not pose great difficulties since any desired shape can now be created, thanks
to recent advances in material preparation at the nanoscale using modern deposition techniques and lithography.
These advances, coupled with parallel advances in the detection of atomic and molecular position to nanometer
accuracy3 should make the predictions we have made here amenable to experimental investigation. The two-body
entanglement need not be for emitters on the same x − y plane, but the emitters could be on different planes
near the edge and their dipole moment vectors could be oriented in arbitrary directions. Work on this relatively
more complicated situation is now in progress.
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