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ABSTRACT

A new, two-step scheme for the calculation of complex propagation constants in planar multilayer
waveguides is presented. In the first step, by introducing a '"Mode function', a fast determination of an
approximate value of the complex propagation constant for a chosen waveguide mode is found. In the
second step, in which a fast root-finding algorithm is used, the precise value of the propagation constant
is calculated. The result is a significant speeding up of the computational process in comparison to
traditional methods of determining complex propagation constants. Implemented in Turbo Pascal
Version 5.5 on an MS-DOS AT personal computer with co-processor and 10 MHz clock frequency, the
propagation constant of a four layer channel waveguide with absorbing layers can be computed, using
the effective index method, in 4 seconds after which the field profiles can be presented within a few
seconds.

1. INTRODUCTION

For research in integrated optics, the calculation of the propagation constants of waveguide modes in
both planar and channel waveguide structures is of fundamental importance. Once these are calculated,
other properties, like the modal field distributions, can be obtained. In general, for structures containing
absorbing dielectric layers and metals or for stacks permitting leaky waves (e.g. for prism-coupling), the
propagation constant will be complex. Then, calculation of the propagation constant comprises finding
the complex roots of a complex dispersion relation. This requires a two-dimensional search in the
complex plane which is usually very time-consuming.

It would be useful for research as well as for educational purposes if the theoretically expected effect
of a change in the waveguide structure (like number of layers, their thicknesses and refractive indices)
on the propagation index and the field profile could be calculated and graphically presented within a few
seconds on a small computer.

To this end a new, fast calculation scheme is developed. This is based upon thin-film matrix theory,
combining the useful properties of the modal-dispersion function introduced by Chilwell and

Hodgkinson! with those of a complex mode function as introduced below.

2. THIN-FILM MATRIX METHOD

Consider a waveguide consisting of J homogeneous thin layers between two semi-infinite media, with
arbitrary refractive indices. The media and their interfaces are numbered as depicted in Fig. 1. The x-axis
of a cartesian coordinate system is chosen perpendicularly to the interfaces, while the positive z-axis is
parallel to the propagation direction. The time- and z-dependences of monochromatic fields are given by

exp[i(ka - wt)].
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Fig.1. Multilayer stack consisting of J planar films enclosed between
the semi-infinite media 0 and J+1.

Here, i is the imaginary unit, ky the vacuum wave number, and ® the angular frequency. For a given

waveguide mode, B is the mode (or effective refractive) index. Defining the parameter ; for the j-th
layer by
2 o2

o = /n-p", (D

J

we introduce the polarization-dependent quantities &;, U and V as shown in Table 1. The latter two are
proportional to the y- and z-components of the electric or magnetic field amplitudes. According to the
thin-film matrix method!:2, the field components U and V in the interface planes at xj and xj-1 can be
related3 by a unimodular matrix M;, for both polarization directions:

sin®.
j cosd, -—3 i1
J a.
= J (2)
Vj a.sin®. cosd. Vj-l
j i j
Here,
(IJj = kvdjaj’ (3)

which is the B-dependent phase thickness of the jh layer, which has a geometrical thickness
dj = xj-xj-1. Since Uj and Vj are continuous across the layer interfaces, the field components at the
outermost interfaces Uy, Vy and Ug, Vg are related by the product matrix M:

m, my

J
M:]’IMj= . @

j=1 my, My
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Table I. Definition of the polarization dependent parameter @ and the field amplitude components U and
V; here, Zy is the vacuum wave impedance.

Polarization al; U v
o . E,
™ 02 Hy i1Zy
The boundary conditions for the fields at the outermost interfaces are
___0
VO =- T UO’ (5a)
_ a J+1
V= 5 U, (5b)
leading to the modal dispersion-relationl3
a a a
x(B) == (my - my, =) - (my, - my, =2 =0. (©)

Hence, the mode indices of the waveguide modes follow from the zeros of the modal-dispersion
function X(B).
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Fig. 2 a: Modal-dispersion function X as defined by Chilwell and Hodgkinson!

b: Mode function M defined here, relative to B.
Both graphs are calculated for TE polarization in the waveguide given by Table II.
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An example of this function is shown in Fig. 2, graph a, for TE polarized modes in the lossles
waveguide given in Table II. Here, the vertical lines with encircled numbers denote the four possible
waveguide modes. In order to calculate the mode index of order m, all lower order modes have to be

determined first starting from zero order for the zero with the highest B, see Chilwell and Hodgkinsonl.
For lossy modes, B and X(B) are complex. Zero determination here requires a time consuming search in

the complex plane, unless an approximation can be computed more rapidly. This appears to be possible
by introduction of the mode function as defined in the sequel.

Table II. Data of a four-layer waveguide as given by Chilwell and Hodgkinson1-

] 0 1 ) 3 7 5
n 1.000 1.660 1.530 1.600 1.660 1.500
d(nm) 500 500 500 500

vacuum wavelength: Ay = 632.8 nm

3. REAL MODE FUNCTION

As long as each n; is real and no leaky waves are considered in a planar waveguide, { is real, as well as
U and V (apart from a constant factor) inside the waveguide. For these situations, a modal-dispersion

relation has been derived? that can provide a method for fast calculation of a waveguide mode of a
specific order. A summary of the derivation is given here, which will be extended to complex values of

B in the next section.
A phase angle y of the field U inside layer j, apart from an integer multiple of = is defined by

cosy
P =lv s 7
simy D_J
in which the factor p> 0 and
v, = | a, [ (8
thus,
__V
tany = 50 9)

The x-dependence of y inside this layer can be found after dividing Vj and Vj.1 in Eq. (2) by @;. This
yields

518 / SPIE Vol. 1603 Education in Optics (1991)



j cos CIJJ. -sin (Dj j-1

Vi l=| . Vi1 (10)
a sin <I>j cos d>j aj
The behaviour of y inside a medium depends on nj. For nj > B, the matrix in Eq. (10) is a rotation
matrix, hence

Vi =Vt @ (> ), an
where ;. is the phase at xj - 0 and y;j-1 + is the phase at xj.1 + 0, etc. Further pj,- = pj-1,+. Hence, U(x)
is purely cosine shaped, which is a well-known fact.

For nj < B, the second term in each column matrix in Eq. (10) is multiplied by i. After substitution of
Egs. (7) and (8), this yields:

o D
cos y; cosh T’ - sinh TJ COS Wi 1+
Pi.| . = ) o | . Pit+
SIn ;. -sinh TJ cosh TJ SIn Y
(n, <B). (12)
The effect of this layer on y is a phase difference Aj, defined by
V=Vt Aj (nj <B); (13)
Aj comprises hyperbolical functions of | D; |, and is limited by
T T
- <A <
ALES; (14)

Inside this medium, p remains positive, but is strongly dependent on x.
As y depends on nj, via vj (see Eq. (7)), a jump §; in y occurs at each interface:

Sj = Wj,.,. - \Vj’_' (15)
Herein, j,+ follows from Eq. (9) with
L,
tany, , = D_’ tan (16)
j+1
while
- I
5 < Sj <5 - (17)

Because the tangents of yj,- and j + have equal signs, these angles are in the same quadrant.
Starting from the boundary condition expressed in g . which follows from Egs. (5a), (9) and (8),
where ng < B, we arrive at
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Vo, = % (18)

Alternatively, yj+ can be calculated from y;j . with Eq. (16) and yj41 - from y;j ;. with Egs. (11) or
(12), using (14), resulting in yj 4. If this satisfies the boundary condition that follows from Eqs. (5b),
(9) and (8):

v, =%+ mn (m=0,1,2,..), (19)

the chosen B equals the mode index of a waveguide mode. The mode order equals m as is proven
elsewhere.2
Here, we introduce the real mode function M(), formally expressed in ®;, 3j and Aj as

M®) = (v, - in =

=(FHG O D+ A 8T (0)

In general, this is a monotonically decreasing function of B, because it is dominated by Z®;. In Fig. 2,
graph b, this function is depicted for the same example as in X- Thus, the mode index of the waveguide
mode of order m is the root of

M(B) - m =0. 21

Hence, there is no need to calculate the modes of lower order in case of m > 0. For m >> 0, this yields a
substantial reduction of computing time.

4. COMPLEX MODE FUNCTION

Waveguide modes with complex 3 can originate in waveguides with one or more lossy media or
metals, or with a high index medium above a thin cover with low refractive index (prism coupling).
The thin-film matrix method is also applicable in this case. Hence, Eqs. (1) - (6) are appropriate to lossy
and leaky waveguide modes.

The definition of the mode function, M(B), can be extended to these situations.

Again, y is defined by Egs. (7) - (9); however, ¥ and p are now complex. The parameter vj is now
defined in a more general way than in Eq. (8):

&  (Re(m)>Re(p))
V=9 & , (G=12.D, (22)
< (Re() < Re(B")
and, in view of the boundary conditions in Eq. (5)
a.
v, = —I-J- (=0, J+1). (23)

Here, care has to be taken in calculating a. In media with Re (njz) < Re(B2), the root with positive
imaginary part has to be taken. In other layers, the root with positive real part must be taken. With these
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definitions, Egs. (10) - (21) are applicable, provided that conditions like nj < B are interpreted as Rc(njz)
< Re(B?) and so on, and A;jin Eq.(14) is taken as Aj (= Re(4))) and §; in Eq. (17) as ;.

Now, M(B) can provide a means for calculation of an approximate value of the mode index of order
m.

5. FAST CALCULATION OF MODE INDEX

For large areas of the argument, the complex function X(P) is a smooth, analytical function, which is
well suited for zero determinations. However, for multi mode waveguides its oscillatory character
requires a two-dimensional search method in the complex plane that is very time consuming. Besides

that, in order to find the zero of the order m, Bm, first all the lower order zeros have to be computed.

Here, the complex mode function M(B) can be of help to reduce the computing time, by the following
observations.

1. M(B) is much less smooth than X(B) and it exhibits singularities, especially for leaky waveguides.
However, for Bim = 0, Mr(B) roughly decreases with Bre. This allows of using a simple one-

re .
dimensional root finding algorithm to compute the zero Bm.appr of Mr¢(B) - m for im = Q.

re
2. For the most optical waveguides calculated until now, Bmappr is a good approximation of pre: | Bifx -

re
Bm. appr | is at the highest in the order of 104, both for lossy and leaky modes.

3. The highest possible mode order, mpax, can practically always be found in one step as

Trunc{Mre(B)}, calculated for Bim = 0 and for Br® equal to the maximum of n'® in cover and

substrate. With mpax calculated, a computerprogram can guard against calculating non-existent
modes.

With two initial values, B1 and B2 which are close enough to the root, a simple and fast root finding

algorithm? can be used for computing the precise value of the root of X(B) = 0. Good values for B and
B2 appeared to be 3,

Bl = B::l,appr - ere/(mmax +1)

B, = B:ﬁ’appr +€°%/(m,,, + 1) +ie™, 24
with €lM = 5.10-2 and e dependent on the maximum of the (real parts of the) refractive indices in the

e ) re
films, nf max, and in cover and substrate, n¢g max:

) (] (3
€€ =0.02 (nf, max ) n::s, max) . (25)
Finally, M(B) in this root can be computed to verify the mode order.
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Using the effective index method, the mode index at a channel waveguide can be approximated very
well by repeated application of the algorithm for planar waveguides. For research and educational
purposes, the algorithm described here, is implemented in Turbo Pascal 5.5 on MS-DOS personal
computers. On an AT computer with 10 MHz clock frequency, supplied with a mathematical co-
processor, the mode index of an absorbing, four layer channel waveguide with three different lateral
regions, can be computed within 4 seconds. After that, in several additional seconds, the field
distributions can be displayed on the screen.

6. CONCLUSION

For multilayer waveguides with lossy and leaky modes, a new function is introduced, the "mode
function". This function assumes the value of the mode order of each waveguide mode, provided that its
argument equals the mode index (= effective index of refraction). By combining the good properties of
this mode function with those of the modal-dispersion function, introduced by Chilwell and
Hodgkinsonl, an algorithm is developed for fast calculation of the mode index of the order of interest.
Its high calculation speed makes it feasible to implement it on a personal computer. Even the
calculation time for a mode index of an absorbing channel waveguide, applying the effective index
method, only is in the order of seconds on a PC.
The small response time between changing waveguide data and the computed results on a PC, makes
this also a very usefull educational tool for courses on integrated optics etc.
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