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ABSTRACT 

Over the years, U-Net has become a predominant model in the domain of retinal vessel image segmentation. However, 

its constrained receptive field and the inherent biases associated with convolutional operations present significant 

challenges in effectively capturing long-range dependencies. In recent years, although Transformer-based techniques 

have been integrated into the U-Net architecture to overcome this limitation, the self-attention mechanism inherent in 

Transformers demands substantial computational resources, thereby increasing computational complexity and the risk of 

overfitting. To address these challenges, we propose a model that integrates lightweight Transformer and CNN networks, 

namely MobileViTv2-ResUNet, for precise retinal vessel segmentation. We chose U-Net as the framework for the 

automated retinal vessel segmentation model. Firstly, in the encoding phase, we introduced MobileViTv2 blocks to 

replace traditional convolutional modules for feature extraction. Subsequently, inverted residuals are employed within 

the encoding phase to perform downsampling operations, thereby reducing computational complexity while enhancing 

the network’s representation and generalization capabilities. Additionally, an ASPP module is incorporated between the 

encoder and decoder to effectively fuse feature information from different scales. Finally, in the decoding phase, we 

integrate our designed LeakyRes module to prevent the occurrence of the “neuron death” phenomenon, thereby 

improving the accuracy of retinal vessel segmentation. We validated our MobileViTv2-ResUNet on the public datasets 

HRF and STARE. Experimental results demonstrate that our MobileViTv2-ResUNet outperforms most existing state-of-

the-art algorithms, significantly enhancing vessel segmentation methods, particularly for images with anomalies, 

bifurcations, and microvessel segmentation challenges. 
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1. INTRODUCTION

Retinal vascular images contain rich geometric structures, such as vessel diameters, branching angles, and lengths, which 

ophthalmologists can use to prevent and diagnose diseases such as hypertension, diabetes, and atherosclerosis1. However, 

the intricate topology of retinal vessels makes manual segmentation not only labor-intensive and time-consuming but 

also susceptible to subjective factors. Therefore, automatic retinal vessel segmentation technology has become a research 

hotspot in the field of medical imaging to meet the practical diagnostic needs. 

Early medical image segmentation methods were primarily based on contours and traditional machine learning 

algorithms2,3. With the development of deep Convolutional Neural Networks (CNNs), U-Net4 was introduced for 

medical image segmentation. Due to its simple U-shaped structure and superior performance, various U-Net-like 

methods have emerged, such as Res-UNet5, Dense-U-Net6, U-Net++7, U-Net3+8, 3D U-Net9, and V-Net10. These CNN-

based methods have shown excellent performance in retinal vessel segmentation, demonstrating the strong feature 

learning capabilities of CNNs. 

Although CNN-based methods have achieved outstanding results in medical image segmentation, they still cannot fully 

meet the strict requirements for segmentation accuracy in medical applications. Due to the inherent locality of 

convolutional operations, CNN-based methods often struggle to learn explicit global and long-range semantic 

information interaction11. In recent years, researchers have discovered that Transformers can address the inductive bias 

of locality in CNN networks, enabling them to establish non-local relationships more effectively. The combination of 

both can provide abundant local information representation for global modeling. Consequently, efforts are underway to 

integrate CNNs with Transformers to address the shortcomings of CNNs in medical image segmentation. Chen et al. 

fuyq@hqu.edu.cn 

International Conference on Optics, Electronics, and Communication Engineering (OECE 2024), 
edited by Yang Yue, Proc. of SPIE Vol. 13395, 133951I · © 2024 SPIE · 0277-786X · Published 

under a Creative Commons Attribution CC-BY 3.0 License · doi: 10.1117/12.3048337

Proc. of SPIE Vol. 13395  133951I-1



pioneered TransU-Net11, a model that combines Transformers with CNNs, demonstrating the effectiveness of 

Transformers as medical image segmentation encoders. Subsequently, numerous researchers have leveraged the 

complementarity of Transformers and CNNs to enhance model segmentation capabilities, such as Medical Transformer12, 

TransFuse13, TransBTS14, U-NETR15, and CoTr16. 

Currently, most models combining CNNs and Transformers use Transformer modules centered on self-attention 

mechanisms. This results in a significant increase in computational complexity and a high risk of overfitting. 

Additionally, these models have relatively simple structures, making them insufficient for handling complex vascular 

distributions and achieving precise vascular segmentation. Moreover, retinal datasets are more scarce compared to other 

medical datasets, failing to meet the extensive training data requirements of Transformer models. 

To address these issues, we propose a retinal vessel segmentation model that combines a lightweight Transformer with a 

CNN (MobileViTv2-ResUNet). Firstly, considering that U-Net can achieve good segmentation performance even with 

limited medical datasets, we chose U-Net as the CNN framework for the retinal vessel segmentation model. We then 

replaced the convolutional modules of the U-Net encoder with lightweight Transformer modules (MobileViTv2 blocks) 

for feature extraction. Simultaneously, we incorporated Inverted Residuals into the encoder for downsampling. This not 

only deepens the network structure but also prevents the “vanishing gradient” problem, thereby enhancing the model’s 

ability to handle complex vascular distributions and achieve precise vascular segmentation. Next, we integrated Atrous 

Spatial Pyramid Pooling (ASPP) between the encoder and decoder as a bridge, expanding the effective receptive field to 

encompass a broader context. In the decoder part, we designed the LeakyRes module for feature reconstruction, preventing 

the “neuron death” phenomenon and further improving the precision of retinal vessel segmentation. Additionally, we added 

auxiliary heads in the decoder, providing extra loss functions and introducing gradients earlier in the network, thereby 

aiding the primary task learning and further enhancing model performance. Extensive experiments demonstrate that this 

method exhibits good segmentation accuracy and robust generalization capabilities on retinal vessel datasets. 

2. METHOD

2.1 Architecture overview 

The overall architecture of our proposed MobileViTv2-ResUNet is depicted in Figure 1. MobileViTv2-ResUNet 

comprises an encoder, ASPP (Atrous Spatial Pyramid Pooling), decoder, skip connections, and auxiliary head. Below, 

we will delve into the details of each block. 

Figure 1. Architecture of MobileViTv2-ResUNet. 

2.2 Encoder 

In the encoder, we first input the retinal fundus image with a resolution of (H, W, 3) into a 3×3 convolutional layer, 

projecting the feature dimension to an arbitrary dimension (denoted as C), and generate a feature map with a resolution 

of (H, W, C). Next, we apply an Inverted Residual Block (stride=2) (denoted as MV2(↓2)) to achieve 2x downsampling 
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and increase the feature dimension to twice the original dimension, resulting in a feature map of (H/2, W/2, 2C). Then, 
we use two Inverted Residual Blocks (stride=1) (denoted as MV2) to increase the network depth, thereby enhancing the 
feature representation capability, which helps in solving complex tasks. Finally, we apply a combination of Inverted 
Residual Blocks (stride=2) and MobileViTv2 Blocks three times, effectively extracting both local and global features 
while downsampling, enhancing the feature representation capability, and improving the model’s performance in retinal 

image segmentation.   

Inverted Residual (stride=2) structure: This structure executes downsampling to reduce the resolution of the feature 

map while increasing the receptive field to better capture global features and contextual information in the image. 

Inverted Residual (stride=1) structure: This structure maintains the size of the feature map while still introducing 

nonlinear transformations and feature extraction, thereby enhancing the model’s expressive power. 

2.3 ASPP 

In the proposed architecture, we not only use ASPP as a bridge between the encoder and decoder but also employ it as 

the decoding head of this model, as shown in Figure 1. We will detail the ASPP structure serving as the bridge in this 

section, while the ASPP decoding head will be discussed in Section 3.4. 

The ASPP module in this section receives input feature maps of size (H/16, W/16, 16C), and through convolution blocks 

with dilation rates of 1, 6, 12, and 18, respectively, it captures features at different scales. Then, these features are 

element-wise summed to obtain a feature map fused with multiscale feature information. Finally, the fused features 

undergo additional convolutional layers to maintain the output feature map size as (H/16, W/16, 16C). 

2.4 Decoder 

The decoder consists of four repeated decoding layers and the ASPP decoding head. Each decoding layer first performs 

interpolation convolution upsampling (InterpConv) to restore the image’s resolution, then the fused feature map, passed 

through the skip connection, is inputted into our designed LeakyRes module for information propagation. The design of 

the LeakyRes module aims to prevent gradient vanishing, thus facilitating better information propagation, as illustrated 

in Figure 2. We chose LeakyReLU17 as the activation function. The functionality of LeakyReLU is very similar to ReLU, 

with the only difference being that when the input is less than zero, the output of the ReLU activation function is zero, 

whereas in LeakyReLU, the part of the input less than zero is not zero but is multiplied by a small slope (usually referred 

to as the leak parameter) to allow small negative gradients to pass through. The mathematical expression of LeakyReLU 

is shown in equation (1). 

Figure 2. LeakyRes module. 
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where 𝛼 is a small slope, typically taken as a very small positive number, such as 0.01. 

Compared to ReLU, the main advantage of LeakyReLU is that it can avoid the problem of dead neurons, where some 

neurons have gradients that are always zero during training, causing those neurons to have zero response to the input. 

Therefore, we use LeakyReLU as the activation function for the intermediate layers to circumvent this issue. 
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2.5 Skip connection 

We use skip connections to merge the multi-scale features from the encoder part with the upsampled features from the 

decoder part, and feed the fused features into the LeakyRes module. Skip connections help the network better capture 

features from different levels, thereby improving segmentation accuracy and preserving details. 

2.6 Auxiliary head 

In the third decoder layer, an FCN auxiliary head is added, which takes the feature map output from the third layer of the 

decoder as input and converts it into a segmentation mask used only for computing the auxiliary loss. By this point, with 

the fusion and upsampling through multiple decoder layers, the input feature map already contains rich semantic 

information. The FCN auxiliary head generates additional segmentation predictions, which are compared with the output 

of the ASPP decoding head and used to calculate additional CrossEntropyLoss loss functions. These additional loss 

functions provide extra supervision signals, helping to improve the model’s performance and robustness. 

3. EXPERIMENTS 

To evaluate the MobileViTv2-ResUNet architecture, we used two publicly available retinal vessel segmentation datasets 

to train, validate, and test the model. We compared the performance of our MobileViTv2-ResUNet model with the 

current state-of-the-art methods. 

3.1 Dataset and preprocessing 

The HRF dataset consists of 45 high-resolution fundus images with a resolution of 2336×3504 pixels, divided into 15 

subsets. Each subset contains one healthy fundus image, one image of a patient with diabetic retinopathy, and one image 

of glaucoma. Since no segmentation for training and testing sets is provided, we used the first 5 subsets as the training 

set and the remaining 10 subsets for evaluation. The STARE dataset comprises 20 fundus images with a resolution of 

700x605 pixels, including 10 healthy fundus images and 10 images with pathological features. We manually divided the 

STARE dataset into training and testing images in a 10/10 ratio. 

We performed image preprocessing using PhotoMetric Distortion to simulate various lighting conditions and camera 

settings that may occur during fundus image acquisition, thereby improving the model’s adaptability and robustness to 

real-world situations. Considering the limited annotated training samples on HRF and STARE and the absence of 

available pretrained weights, we adopted rotation and flipping data augmentation methods to prevent overfitting and 

enhance segmentation accuracy. 

3.2 Evaluation metrics 

This paper uses five metrics, including Intersection over Union (IoU), Accuracy, F1-score, Precision, and Recall, to 

evaluate the effectiveness of the algorithm in segmenting retinal images.  

3.3 Implementation details 

MobileViTv2-ResUNet is implemented based on Python 3.8 and PyTorch 1.13.1. For the HRF dataset, we set the 

crop_size of input images to 256×256 and the stride to 170. For the STARE dataset, we set the crop_size of input images 

to 128×128 and the stride to 85. We train our model on an NVIDIA GeForce RTX 3070 Ti Laptop GPU with 16GB of 

memory. We use the SGD optimizer with a learning rate of 0.01, momentum of 0.9, and weight decay of 0.0005 to 

optimize our model. In terms of learning strategy, we adopt a polynomial learning rate scheduler, which gradually 

decreases the learning rate from the initial value to the minimum value of 1×10-4 in a polynomial manner. During 

training, we use an iteration-based training loop, with a maximum of 20000 iterations, and perform validation every 2000 

iterations to monitor the model’s performance during training. 

3.4 Experiment results on HRF dataset 

We trained the proposed MobileViTv2-ResUNet model on the HRF dataset and compared it with the current state-of-

the-art methods. The comparison results of the metrics are shown in Table 1. 
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Table 1. Comparison of different methods on HRF. 

Model IoU Accuracy F1-score Recall Precision 

U-Net 65.26 73.9 78.98 73.9 84.81 

MobileNetV2+FCN 64.08 73.47 78.11 73.47 83.37 

Res-UNet 65.23 75.1 78.22 75.1 84.92 

CCNet 64.62 72.99 78.51 72.99 84.93 

ANN 65.64 74.41 79.26 74.41 84.79 

Ours 66.99 77.2 80.23 77.2 84.05 

The experimental results indicate that our MobileViTv2-ResUNet consistently achieves the highest IoU, F1-score, 

Accuracy, and Recall across all benchmark tests. The compared methods include U-Net4, MobileNetV218+FCN (using 

MobileNetV2 network as backbone with FCNHead as decoding head), Res-UNet5, CCNet19, and ANN20. The 

segmentation results of different methods on the HRF dataset are illustrated in Figure 3. From Figure 3, it can be 

observed that CNN-based methods are prone to over-segmentation issues, which may be attributed to the locality of 

convolutional operations. In contrast, our proposed model obtains segmentation results most similar to the Ground truth, 

demonstrating the superior generalization ability and robustness of our approach. 

 

Figure 3. Segmentation results of different methods on HRF dataset. 

 

Figure 4. Segmentation detail comparison of U-Net, ANN, and MobileViTv2-ResUNet. 
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Figure 4 provides a visual comparison of U-Net, ANN, and MobileViTv2-ResUNet on HRF images. From Figure 4, we 

observe that the segmentation results of U-Net and ANN exhibit fewer clear edges of retinal vessels, with some noise 

and discontinuities present. These noises may arise from the instability of the models when dealing with small vessels. In 

contrast, the segmentation results of MobileViTv2-ResUNet demonstrate clearer and finer edges of retinal vessels, 

indicating its capability to better capture the shape and structure of vessels. 

1.1 3.5 Experiment results on STARE dataset 

The training results of MobileViTv2-ResUNet on the STARE dataset are presented in Table 2. We observed that 

although CCNet and ANN performed well on the high-resolution HRF dataset, their segmentation results significantly 

degraded on the low-resolution STARE dataset. This is attributed to the rich details in high-resolution images, enabling 

context-aware networks to effectively learn complex structures, whereas the lack of details and reduced pixels in low-

resolution images allow U-Net-based networks to more accurately recover and maintain local image features. Despite the 

attention mechanism introduced by CCNet and ANN, they are still less effective than the U-shaped architecture in 

handling subtle local features and small-scale details. Additionally, MobileViTv2-ResUNet continues to perform 

excellently on low-resolution images, achieving an accuracy of 77.2%, further demonstrating the superior generalization 

ability and robustness of our approach. 

Table 2. Comparison of different methods on STARE. 

Model IoU Accuracy F1-score Recall Precision 

U-Net 68.14 77.82 81.5 77.82 84.57 

MobileNetV2+FCN 45.82 59.93 62.84 59.93 66.06 

Res-U-Net 69.02 78.19 81.67 78.19 85.48 

CCNet 46.48 60.01 63.46 60.01 67.34 

ANN 46.62 59.95 63.59 59.95 67.70 

Ours 69.57 79.67 82.06 79.67 84.59 

The segmentation results of different methods on the STARE dataset are shown in Figure 5. From Figure 5, it can be 

observed that although U-shaped CNN-based architectures are less effective in handling details compared to our 

MobileViTv2-ResUNet when processing low-resolution images, they outperform non-U-shaped architectures like 

MobileNetV2+FCN in terms of segmentation performance. This further confirms the correctness of our choice to use U-

Net as the framework for our retinal vessel segmentation model. 

 

Figure 5. Segmentation results of different methods on STARE dataset. 
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4. CONCLUSION AND OUTLOOK 

This paper proposes a novel Transformer-based U-shaped encoder-decoder for retinal vessel segmentation. We 

incorporate the MobileViTv2 block to the U-shaped encoder-decoder structure, leveraging the powerful capabilities of 

Transformers to model global dependencies, thereby better capturing long-range semantic correlations in the retinal 

vessel segmentation task. To enhance the network’s performance in segmenting complex and fine vessels, we utilize 

Inverted Residuals and the LeakyRes module designed within this model, effectively addressing the “vanishing gradient” 

problem when deepening the network. Inverted Residuals (with a stride of 2) also replace the downsampling layers in U-

Net, reducing model parameters. Unlike U-Net, we introduce auxiliary heads in the decoder, which provide additional 

loss functions and introduce backpropagated gradients earlier in the network, thereby assisting the primary task learning 

and further enhancing model performance. 

We validate the effectiveness of MobileViTv2-ResUNet on two public datasets, HRF and STARE. Compared to some 

state-of-the-art methods, MobileViTv2-ResUNet not only achieves the highest F1-score, IoU, Accuracy, and Recall, but 

also performs excellently in segmenting fine vascular structures. MobileViTv2-ResUNet provides more accurate and 

detailed information on retinal vessel distribution, which is expected to assist ophthalmologists in diagnosing and 

planning treatment for eye diseases. 

Currently, the segmentation accuracy of MobileViTv2-ResUNet in densely vascularized areas requires further 

improvement. In future research, we plan to optimize the network structure further. Additionally, we will explore the use 

of medical image datasets from different modalities for cross-modal learning, such as combining fundus images with 

optical coherence tomography (OCT) images, to enhance the model’s adaptability and generalization capabilities. 
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