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Infroduction to the Invited Panel Discussion

Deep Learning in Al and Information Fusion

In the early days of artificial inteligence (Al) starting, say in the 1970s and 1980s, the
predominant reasoning methods were logical and symbolic, using, e.g., Lisp/Prolog languages.
Later in the 1980s, Al tools were used such as Knowledge Environment Engineering (KEE) and
Automated Reasoning Tool (ART) expert systems, and early heuristic reasoning methods. Also,
the concept and mathematical representation of “context” logic was defined. The concept
and apps of both “knowledge based” and “context” are currently used in several apps in
information fusion (IF) along with several methods to apply and learn contextual information.

In the early 1980's, Al was viewed as the solution to information fusion problems. In fact, many
contributors to the first distributed sensor networks program were Al researchers. However,
inadequate computing and Al approaches such as expert systems and heuristic uncertainty
reasoning could not address the challenges of information fusion. Thus, important advances in
information fusion, and in particular, multi-target tracking, were made with little contribution from
Al.

During the long Al winter, researchers addressed the deficiencies of early Al, developing rigorous
representation and reasoning techniques for uncertainty, and machine learning approaches.
Recently, data science was established as a popular area to exploit the large volumes of data
(a.k.a. Big Data) collected by physical sensors and online activities using machine learning and
other analytic tools.

Artificial intelligence and data science pose both challenges and opportunities to IF. They are
challenges because they appear to address the same problems as information fusion, but with
more powerful techniques, thus siphoning away both research funding and research talent.
However, these challenges can also be opportunities because Al and data science provide
new research directions for information fusion. Examples include: IF with big data, hard and soft
data fusion, learning about context, graph techniques for tracking and fusion, dynamic network
analysis, apps fo cyber and imagery processing.

The objective of this panel was to bring to the attention of the fusion community the importance
of the application of deep learning in Al and IF, highlighting issues, illustrating approaches and
addressing challenges. A number of invited experts discussed challenges in processing and
research, and addressed these challenges with IF. The panelists illustrated parts of the above-
mentioned areas over different applications and association with IF. The panel highlighted
impending issues and challenges using conceptual and real-world related examples associated
with the applications of above.

Chee-Yee Chong
Ivan Kadar

xiii
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“Challenges of Using Deep Learning for Trusted Sensor
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Professor Lynne Grewe and Garrett Stevenson, California State
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Challenges of Using Deep Learning for
Trusted Information Fusion

Chee-Yee Chong
Independent Researcher
Los Altos, USA

cychong@ieee.org

Presented at Panel on Deep Learning in Al and Information Fusion

SPIE Signal Processing, Sensor/Information Fusion, and Target Recognition XXVII
Orlando, Florida

April 16, 2018

Outline

* History of Al for information fusion
* Deep learning benefits and issues

* Framework for trusted information
fusion

XVii
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xviii

Artificial Intelligence (Al) Is Everywhere

* Al has recent spectacular successes defeating humans
 Deep Blue beat world champion in chess (1997)
» Watson won US Jeopardy quiz show (2011)
» AlphaGo beat world’s top player (Ke Jie) in go (2017)

« Al is in everyday applications
» Smart phones — speech recognition, machine translation
* Homes — smart thermostat, robotic vacuum
* Cars — driver assistance

* In particular, Al/deep learning is used in sensor, data and information
fusion, e.qg.,
* BBC news, 4/13/2018: Chinese police have used facial recognition
technology to locate and arrest a man who was among a crowd of
60,000 concert goers.

Al Poses Challenges to Information Fusion

« Al is viewed as the solution for all fusion problems
» Low-level processing and object recognition
* Video surveillance
« Activity detection and behavioral analysis
» Network and patterns of life analysis
* Al/deep learning is more visible due to
» Beating humans in many applications
» Widely available hardware, software, and training data for development
« Successful use in many systems
* Results
» Sponsors turn to Al to solve information fusion problems
« Al attracts more students, researchers, and funding
* Virtuous cycle (funding -> research -> success -> more funding)

Proc. of SPIE Vol. 10646 1064601-18




Information Fusion is a Natural Application for Al

* Humans solve information fusion problems all the time
* Low level perception — environment, objects
« High level understanding — situation, prediction

Problem Human Problem
knowledge - knowledge -
Algorithm Algorithm
/data /data
Development Development
(off-line) (off-line)
Algorithm Algorithm
Data Fusion Results Data Fusion Results
Processing > Processing >
(on-line) (on-line)
Computer Computer

Traditional approach relies on

Al automates algorithm

humans to develop algorithm development

Al Approaches for Information Fusion Are Evolving

* Expert systems (mimic human experts) —
» Medical diagnosis
« Signal understanding
* Probabilistic reasoning (with models)
» Object recognition
« Situation understanding —
* Neural networks / deep learning
* Feature extraction
» Speech understanding
 Object recognition
* Video tracking —

First wave of Al -
Handcrafted knowledge

Second wave of Al -
—— Statistical learning
from data

Third wave of Al -
Contextual Adaptation

J. Launchbury, “A DARPA perspective on artificial intelligence,”2017
http://www.darpa.mil/attachments/AlFull.pdf
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XX

Expert Systems for Fusion — MYCIN (~1975)

» Medical diagnosis

* Inputs: test results

* Outputs: infectious disease
* Rule-based system

» Knowledge base of few hundred IF_THEN

rules: IF symptom A THEN disease B
* Inference engine by backward chaining
» Certainty factors to represent uncertainty
* Heuristic combination of evidence
 Performs better than many doctors

« Stimulated research on uncertainty reasoning

Use
Interface

Inference
Engine

Knowledge
Base

B. G. Buchanan and E. H. Shortlife, Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project, Addison Wesley, 1984

Expert Systems for Fusion — HASP/SIAP (1970’s)

+ Signal understanding system

* Inputs: acoustic signals from
hydrophones

* Outputs: detection, location
and type of vessel

* Rule-based system

* Hierarchy of rules for signal to
symbol transformation

* Inference by knowledge
sources responsible for
different levels of processing

H. P.Nii, E. A. Feigenbaum, J. J. Anton,

Situation
Board

Vessels

Sources

Harmonics

Lines

o |
Ratio
Finder

Source
Classifier

Harmonic
Set Former

INPUT DATA
 Line segment with

feature parameters
* Reports

”Signal-to-symbol transformation: HASP/SIAP

case study,” Al Magazine, 1982

KNOWLEDGE STRUCTURE
* Knowledge Sources

* Production rules

# Facts about ships

* Facts about signals

and their sources

PROGRAM STRUCTURE
# Control rules

* Knowledge—based events
* Time—based events

* Verification events

* Problem list

* Process history

* Explanation Generator

1
Cms?Arrav Source
Associator Finder

J

A
Line
Finder

.

DATA STRUCTURE

* Current Best
Hypothesis

« Inference sequence
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Issues with Expert Systems for Information Fusion

» Knowledge acquisition

* Finding experts that can articulate their reasoning;
experts with good intuition are not suitable Use
« Extracting knowledge from experts lzres
* Knowledge representation
+ Consistency and completeness of rules
‘R tati f rtaint Inference
epresentation of uncertainty e
» Inference engine
* Control of inference
* Reasoning with uncertainty Knowledge
* Processing speed Base

Al in 1980’s

* 1981 — Japan started “Fifth Generation Computer”
project to build intelligent computers
* United States responded with “Strategic Computing
Initiative” with Al as main objective, including
Autonomous Land Vehicle (ALV)
» ALV followed road in 1985 demo but vision system
was very sensitive to
« Light and shadow — detect road edge at noon,
but not with shadow at dusk
» Environmental change (like mud left along road
by another vehicle)
» Booming Al industry (software, hardware) became a
bust with Al winter in late 1980’s

J. E. Franklin, C. L. Carmody, K. Kellter, T. S. Levitt, B. L. Buteau, "Expert system
technology for the military: selected samples,” IEEE Proceedings, Oct. 1988.

XXi
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XXii

Neural Networks (1980’s)

» Motivated by physiology and function
of neurons in brain

* Long history
* McCulloh, Pitts — 1940’s
» Widrow — 1960’s

» Hopfield, Rumelhart, Hinton —
1980’s

* Weights learned from training data
» Excellent for low level recognition task
* Implementation issues

* Black box approach cannot explain
results

 Performance sensitive to training
data > >

7. o, Target

Uncertainty Reasoning in Al

* Information fusion has deal with uncertainty in evidence (input) and
knowledge or data

» Drawback of neural network approach

* Recognized very early by expert system developers
» Uncertainty reasoning approaches

* Rule-based methods

* Probabilistic reasoning

« Evidence theory

» Dempster Shafer
» Dezert-Smarandache Theory (DSmT)

* Fuzzy sets
* Probabilistic reasoning became very popular in 1980’s

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.
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Probabilistic Reasoning/Graphical Models

* Probability model expressed graphically as =
networks (Cloudy ) ATEED
* Nodes are random variables I
. . g T "'ﬁ\l /"' — ---,,\
Weights on edges represent conditional QspNnmf ) = )

probabilities o .
" i S \‘ \( X
* Inference computes conditional probabilities ( ® R 4 men

given evidence — LEHE B )
« Node elimination @
« Junction tree '

+ MCMC
* Very natural for researchers with .
background in estimation theory

» Considered Al because of separation into  (»v)
knowledge and automatic inference :

Military Unit Detection from Synthetic Aperture
Radar (SAR) Imagery

Joint probability of all IES/BTI random variables =
p(T,U H G FV,df,rN35,CIn,uv)=product of the terms:

Terrain Vehicle
hospitability classification
(H) (4]

Probability Processing

semantics ‘component
pIT|U.FV) [fioree type Inference
¥} fvehicle classification Vehicle classification
PIH|T,G) [errain hospitability Terrain hospitability
pIG [digital terrain data Terrain database constructor
plF| L) fformation Formation maiching
plU|d, f.r, N} Junit existence, location Inference
pld|5) [ormation depth Formation matching
pif|5) flormation frontage Formation maiching
plr|5) fsub-unit spacing Formation matching
pIN|5) J/number sub-units Formation matching
pls|€) Jsub-units’ existence, location Inference
plC|Ltnm) feluster existence Detection clustering
pll|w) fmean likelihood Detection clustering
pit|vn) fdetection spacing Detection clustering
pin|v) J/number detections Detection clustering
plv) Ivehicle existence Vehicle detection

T.S. Levitt, C. L. Winter, C. J.Turner, R. A.
Chestek, G. J. Ettinger, and S.M.Sayre, “Bayesian
inference-based fusion of radar imagery, military
forces and tactical terrain models in the image
exploitation system/balanced technology initiative,”
Int. J. Human Computer Studies, 1995
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Model-Based Object Recognition

Image

Context &
Collated

Sensor, Image Formation,
and Acquisition Parameters

Information \

ﬂlodel Driven ATR
Atteftlon Image &

Hypothesis Space

Reduction
Index

\

On-Line

6@ & Test
Models 7 o

Predict Match Extract
\ Features Features Features /

Hypothesize

Target
Reports

Moving and Stationary Target Acquisition and
Recognition (MSTAR)

* Program
manager
said “neural
network is
not allowed”

Target & Scene
Model Database
(created off line)

Statistical
Model

CAD |,

5N
205

Traceback

Feature-to-Model

GRASS

Index Database
(created off-line)

ROAD Search Tree
Regions of Segmented Jﬁz\}!

SAR Image & Interest (ROT) Terrain Map b

Collateral Data i

_DTED, DFAD d5do d8 oy

- Site Models

TREES

ROI Hypothesis
-EOSAT imagery =
o |y —a=
¢ /B
- 4

Local
Scene Map

Task Predict l Task Extract

ITE

Match Results

Form Assaciations | Refine Pose & Score | Analyze Mismatch|

%

Shadow

J:%bscmaﬁun ? &

—
4—— | Clutter
Database|

Tree
Clutter

Ground
Clutter

XXiv
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Al for Information Fusion from 1990’s to 2010

* Probabilistic graphical models become main Al approach for fusion
* Rigorous treatment of uncertainty
» Model-based approach is explainable
* Many Inference techniques
* Models can be learned from data
» Can be extended to handle evidence theory, e.g., valuation networks
* Mathematic framework is similar to that of tracking
* Predict features from model
» Match extracted features with prediction (association problem)
» Update
» Meanwhile, neural networks are used for many low level functions where
modeling is difficult and training is easy
» Then computers become more powerful and massive amounts of data are
available

Shift from Knowledge-Based Al to Learning-Based Al

Problem Problem
knowledge Algorithm data Algorithm
Development Development
(off-line) (off-line)
Algorithm Algorithm
Data Fusion Results Data Fusion Results
Processing — Processing —
(on-line) (on-line)
Computer Computer

* Explicit problem knowledge

» Manual knowledge acquisition
and representation

* Transparent fusion processing

* Problem knowledge captured by data
* Training data acquisition without

knowledge representation
* Black box fusion processing
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Deep Learning

DEEP LEARNING APPROACH

Errors

» Deep neural network uses multiple hidden layers between input and output
layers to model complex nonlinear relationships

* Input layers can be images or audio signals instead of features

What Makes Deep Learning Possible

WHAT MAKES DEEP LEARNING DEEP?

Largest networks

10 layers
1B parameters
10M images
30 Exaflops
30 GPU days

: OE).O Result
oo

* Deep learning is possible due to advances in computing power and
available data
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Deep Learning is Drawing Attention Away From
Traditional Information Fusion

» Almost anyone can apply deep learning for his/her problems
* Open source software, e.g., TensorFlow, Theano
* Public domain data, e.g., ImageNet, Open Images Dataset
* Inexpensive powerful hardware, e.g., Nvidia, Intel, Google
» Deep learning has been successfully used in
* Video surveillance
» Object and threat detection
* Driverless vehicles
» Cyber security (where modeling is very difficult and data is plentiful)

21

Challenges of Using Deep Learning for Trusted
Information Fusion

. Machine Learning System
» Performance is only s

t o~ ] @— Cat
as good as data ° e o
e /:\._\ e/ o
» Large amounts of o o o
o 2 9 o
data are needed W e\ 2t
* Training data for
This is a cat:
rare events are « It has fur, whiskers, and claws.
* It has this feature:
sparse This is a cat. < -
2l W]
Current Explanation XAl Explanation

. DARPA Explaniable Al (XAl) Problem
« Results are hard to explain > (XA

* Black box provides no visibility
* Research on explainable Al is still ongoing

» Thus few machine learning systems are used in critical missions or
making life death decisions

22
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DARPA Explainable Al Program Objective

h 2 - L
EEET.E Why did you do !hat?
CEEDEE : - - = = Why not something else?
Tml VB Learning e ;‘eﬁi ) This is a cat + When do you succeed?
EEQE-. Process | |—% ?«? ) (p=.93) + When do you fail?
EmE~Ey e f g - When can | trust you?
R Y A A
CEEEREE L ey « How do | correct an error?
Training Learned Output User with
Data Function a Task
X —_ « | understand why
P, Je. This is a cat: - | understand why not
NEVY ."l Lo . i 'g:{filia"":'s“’h":‘kers‘ = | know when you'll succeed
lﬁ’eammg Pl Ll lE | -t has this feature | know when you'll fail
rocess b dh db o 1 = | know when to trust you
g (kb B mu « | know why you erred
Training Explainable Explanation User with
Data Model Interface a Task

From DARPA XAl briefing

23

Framework for Developing Trusted Fusion Systems

* Integrated knowledge and learning approach*
* Inference based on problem knowledge
» Explicit knowledge representation
» Explainable results
* Model parameters from machine learning
 Learning when model knowledge is weak and data are available
* Testable parameter estimation

* ONR solicitation (N00014-18-R-SNO05) on integration of domain knowledge and
machine learning to address shortcomings of deep learning (large training sets,
brittleness, explainability, rare and complex events, etc.)

24
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Direct Learning of Sensor Input to Object Tracks

Robot sensor

—Od—

True world state y, What the robot sees x,

©
© @
Cr .. ]

5 qap O

A S

Recurrent neural network
* Related to PHD
* Training and performance issues

Recurrent Filtered

sensor input  neural network  output

Raw occluded

P.Ondruska and |. Posner, “Deep tracking: Seeing beyond seeing using recurrent neural
networks,” 30th AAAI Conference, 2016

25

Association Graph for Tracking

 Association graph provides efficient
representation for possible associations

* Nodes: measurements or tracklets
» Edges: possible associations
* Paths: tracks
+ Path cover: association hypothesis
* Track likelihood is sum of pairwise
association likelihoods under Markov
assumptions  P(Yi; [ Vpseees i) = P(Yiy [ V1)
» Best association hypothesis can be
computed in polynomial time as Bipartite
* Bipartite matching graph
* Minimum cost network flow

C. Y.Chong, “Graph approaches for data association,” Fusion 2012.

26
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Learning Association Costs in Association Graph

solve LP (1)

_— T~

{ec,x} x*
o o Ob 2L
70 Oc . =

gradients via (10)

* Pairwise association costs can be computed
* Attributes of detections
* Measurement models
« Alternatively, they can be learned from data using back propagation

S. Schulter, P. Vernaza, W. Choi, and M. Chandraker, “Deep network flow for multi-object
tracking,” CVPR 2017.

27

Integrated Knowledge/Learning for Multitarget Tracking

Training Problem
data NN mapping knowledge Association
data to tracks Training graph
data
NN Graph
Sensor Sensor -
data NN mapping Tracks data Association Tracks
data to tracks graph
solution
Computer Computer
* Direct learning * Integrated knowledge/learning
* Questionable performance * Higher performance
» Hard to explain » Explainable

28
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Conclusions

* Information fusion researchers have love hate relationship with computers
* Love to develop algorithms for computers
» Hate when computers become too smart to take over their job

» Users do not care about specific approach as long as it provides solution

» Al and deep learning still cannot solve all fusion problems, especially in
trusted or mission critical systems
* Trusted fusion system should exploit
» Knowledge when it is available and can be represented for inference
» Machine learning when knowledge is weak and data are available

29
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"Deep Learning and Computer Vision: Guidelines and
Special Issues "

Lynne Grewe?, and Garrett Stevenson?

aComputer Science, California State University East Bay,
25800 Carlos Bee Boulevard, Hayward, CA USA, 94542

Computer Vision Today & Deep
Learning

Computer Vision is becoming pervasive in today’s
society and has a presence in self-driving cars,

cities of the future, drones, medicine and more.
Central to its use and popularity is the combination

of Deep Learning and Computer Vision to tackle the
important tasks of object classification and localization.

Recent developments of Computer Vision with Deep
Learning will be discussed with guidelines & special issue

XXXii
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overview

* Trends: Vision and Deep Learning architectures

* Running on mobile platforms/embedded devices
* Multi-Modal issues for Vision- a case study

* Temporal Networks - LSTM

* General Adversarial Networks

* Varying data size

* Transfer Learning

* Guidelines

* Resources —datasets, frameworks & computation
* iLab (my) Deep Learning Research Projects

VISION CNN ARCHITECTURES TRENDS

XXXiii
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CNN-basics

(]
%

filtering RelLU
& downsampling

CNN - has multiple layers that can end
with fully connected and softmax layer

* Deeper networks typically can distinguish greater number of
objects/classes and/or handle harder discrimination tasks

input convl peoll conv2 pool2  hiddend output

|j |:| — BicYeL

//
~
/ INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN FULLY SOFTMAX
COMNNECTED
EEATURE IEARNING CIASSIEICATION

XXXiV
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Shallow CNN for simpler
problem of Digit recognition

* 4 convolutional layers + 1 fully connected layer

C 8 C; S, my n;

mput fean.ut!mapa feature maps featu:e'mps &-amzc-'maps output
. - %

\ | . 1 el

:::{;ﬂ:" —
N

5x5 2x2 5x5 (o)

convolution \ subsampling convolution x2 \\ ] fully \

subsampling \\ connected
feature extraction classification

Going Deeper ResNet 152 -- has 152 layers 11111111

: Image input
plexhet : Convolutional layer
Pool . - Max-pooling layer

nduj
AUOD
AUOD
AUO)
GloAeT 1004 .
24
24

FC : Fully-connected layer
b b b b b b
S S S5 S - Softmax  : Softmax layer
2 ¢ & .o 2 .9
— n w £ [=2] -~
VGGNet

AUO)
AUO)
AUOY
AUO)
AUOY
AUOD
AUO)
AUO)
jood
| o4
4
24
XEWOS

Liake
Zlake
glafe
glafe
quafe] |
Liehe |
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Problem -Deeper Network
generally slower

* Resnet -152 is 5 times slower than Alexnet

800 -
700 -
600
500 -
400 -
300 -
200
100 =

speed (images/s on Titan X)

T O A0 ® 2O 4

P I Pl ¥
QRN A0V D

SO 8 @

@7 @ @

No Fully Connected Layers

There is ALL kinds of research going on in architectures for Deep Learning Networks —
sometimes you may have different architectures suited for different problems

* Fully Convolutional Networks for Semantic Segmentation
(no fully connected layers)

forward/inference

)

_ backward/learning

Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
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When want to run on device

LOW COMPUTATION - MOBILE AND
EMBEDDED DEVICES

MobileNet — uses Depthwise Separable
parameters to reduce number of parameters

* Convolution = depthwise + pointwise

perform a spatial convolution while keeping the channels separate
and then follow with a depthwise convolution.

P Br

Depthwise pointwise

Why???? Saves on parameters ---LESS to learn, yet still effective

XXXVii

Proc. of SPIE Vol. 10646 1064601-37



XXXViii

MobileNet -less parameters

* For a depthwise separable convolution on the same example,
we traverse the 16 channels with 1 3x3 kernel each, giving us
16 feature maps (called DepthWise Convolution). Now, before
merging anything, we traverse these 16 feature maps with 32
1x1 convolutions each (called Pointwise convolution) and only
then start to them add together. (this 1x1 is called a depthwise
multiplier of 1)

Comparison of number of parameters --> SEPARATED IS LESS!!!

* This results in 656 (16x3x3 + 16x32x1x1) parameters opposed
to the 4608 (16x32x3x3) parameters from above.

SO its faster

MobileNet

* You can choose number of layers ...example here with 9

A

O G e . N e e (R el A ) G
a ~ ~ = —~ =
Lo} Loy}
SlliEBelag B Lz falg Bg 2
200 a8 g 0 ~0o| |8—© (=} g 0 o g o ) =}
S SO |EY |BY (g9 |8 |70 |8 Eaal [EEe) (o
gum Oﬂ)UﬂJ o u Od.) o UﬂJ o w o u tj
U @© @ U @ [ v o @ v @w 0 @ o .e
'—g' ool [© F |a E'm; U; _mE a E o
- SE 2 E[ZE 2E |EE |2 |E 2 2 |2 E |2
8 |55 [£ 5 (58 8 55 (£458 (58 €5 588
Ul B8 & 8 (AT =) Brg gl |a. © 2 B gl | ©
e s e (8a 88 58 EA8 |88 848 a8
e 2 = = I8 — el A= [ A= B [Bm] | =
W M |2 e | [ e ¥ o P g
300 IR = Tei Mo B = Rl B LR I o i oo | I = e = R [
£ = m
AR BN P N BN B
r:‘l“ N ~ 32} o N
- D T D D D e D o

After each layer (except FC and softmax) followed by Batch Normalization and ReLU
s2 = stride of 2
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TensorFlow Model

“t" TensorFlowl ite i

* Framework = Target mobile and
embedded devices

* enables on-device machine learning
inference with low latency and a small
binary size.

optimizing the kernels for mobile apps

pre-fused activations '

quantized kernels that allow smaller
and faster (fixed-point math) models.
new FlatBuffers-based model file
format

* smaller than 300KB when all supported
operators are linked and less than
200KB when using only the operators
needed for supporting InceptionV3 and
Mobilenet.

© Java and C++ APl support

---handling different kinds of data

MULTTI MODAL

(multi sensor)

XXXiX
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Multi Modal (multi sensor)

* Have multiple different data from different sensors.

* CASE 1: Data Aligns spatially

* CASE 2: Data does not align spatially

speech frames  Cropped mouth images

CASE 1: data “aligns” spatially

Questions:
Do you process both in the CNN
Do you have multiple CNNs? How do you merge results?
How will this effect Region Proposal (if doing localization)?
How will this effect speed?

= ' ! Radar
P §2

Options: .

OPTION 1: Driven by one modality (e.g. 2D rgb processed first)
OPTION 2: Process in parallel with separate networks
OPTION 3: Process together with 1 network
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OPTION 1: single data driven—>use other
data later in process

* From B. Chen, R. Sahdey, J. Tsotsos, “Integrating stereo vision with a CNN tracker for a
person-following Robot”, International Conference on Computer Vision Systems, 2017

z
B q4 9
LI Lo 1 &
Wy e " 2 2
" ey & £
Mgy T = ~ 9 E
‘1 2 o g =
N re w1

i - | d P
: - =1

Merge later = Rulebase, SVM, Another FC Network, Algorithmic

OPTION 2: separate CNN run in parallel

for each sensor data
[Model 2 (CNN_v2) RGB + 5D
Must combine results of separate CNNs: " " o
* Fully connected layer lﬁ-.\l ] ' { il _
* Rule-based / algorithmic combination ‘ gy ke
[(&] ™

Depth CNN
Features Extraction
L)

RGB CNN Features
Extraction
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OPTION 1/2 hybrid: rgb 15 for region proposal
then both rgb+depth run in parallel

* have RGB + Depth info
* FIRST: Get Region Proposal ONLY from RGB image

* 2CNNs -
1 for depth,
1 for RGB.

*  Gupta et al., “Learning Rich Features from RGB-D Images for Object Detection ad S%Em%ntatlon ECCV 2014.

Geocentric Encoding SVM
of Depth Classifier Ob]ect Detection

mhE | !ﬁsi

Disparity Height Angle Depth CNN
L Ly|Features Extraction

a

i »| RGB CNN Features
] Extraction
RGB

Instance Segm  Semantic Segm

Continued...

* Results Gupta et al., “Learning Rich Features from RGB-D
Images fo_r Object Detection and Segmentation”, ECCV 2014.
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ccted]
Sigmoid

]
v L omm

&

Full

[T78

Option 3: another example

* Here is a NON visual (but, temporal data) sensor example

From L. Jing, T. Wang, M. Zhao, P. Wang, “An Adaptive Multi-Sensor Data fusion Method Based on Deep Convolutional Neural
Networks for Fault Diagnosis of Planetary Gearbox”, Sensors 2017.

] ] ]
Optlon 3: combine data into 1
(]
*  From B. Chen, R. Sahdev, J. Tsotsos, “Integrating stereo vision with a CNN tracker for a person-following Robot”,
International Conference on Computer Vision Systems, 2017
LT [ A
"'-:J % 4-,...‘% 2 },. iy, -2 _
“-j el e oy : £
3 b ; -)- o ‘] S, 1 1 - 2
% a LT R - B
' Iy I8 e ™ Ty
<K 14
ly l'.*" '.‘L
'._,_I 1 a2 ‘HI i o
3, Tl . ) v
P ok o r
o ) L. -
4D =r,g,b,depth
Camem Track
]
m CNN Tracker
Left Image ! ' > Trai Wpdate
¥ & CNN Classifier
Steren
e
Right Image

. . . Deep convolutional neural networks . .
Multi-: D; L Data level fi . . D L I
ulti-sensor |+ Data preprocessing = Data level fusion = based feature learning and data fusion | Diagnosis result

Accelerometer Divide signals into segments Combine four segments

into one data sample  put data Convolutional and Fully connected
M - samples pooling layer layer
il . simviins i
I § | = I

| | |
I =

I A
|

|

Microphone
R

|
|

D
@
Héﬂ*»a
»
@

-
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I
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Lo
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=
| f—|
———a L1

ﬁw" 2 i
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#1= OPTION 3: 1 CNN for all data
#2= OPTION 2: 2 CNN in parallel
#3=

WHICH option is best?
From B. Chen, R. Sahdev, J. Tsotsos, “Integrating stereo vision with a CNN tracker for a person-
following Robot”, International Conference on Computer Vision Systems, 2017
* Compared options 1, 2, 3 —
for Person Detection & Tracking with RGB + Depth

option 3 option 2 option 1

CASE 2: data does not “align” spatially

Enhanced speech frames Reconstructed mouth images

* Example speech (not
spatial, temporal only)
and vision

* Process in parallel
with separate CNNs

- this works because
there is temporal
alignment

Noisy speech frames Cropped mouth images

J. Hou, S. Wnag, Y. Lai, Y. Tsao, “Audio-Visual Speech Enh Based on Multimodal Deep Convolutional Neural Networks”, 2017
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----taking in time

TEMPORAL NETWORKS

2014 - Two steam networks

From K. Sii and A. Zis 1, “Th t! Ce

Systems Conference, 2014

* “Separate” Visual and temporal

* 2 CNNs: 1) for single RGB image 2) for optical flow between

current and previous frame(s).

for Action Recognition in Videos”, Neural Information Processing

Spatial stream ConvNet

eonvi || conv2 || conv3 || conv4 || convs || fulle full?
TuTx06 || 5xSx256 || 3x3x512 || 2c3x512 | [ 3x3x512 || 4006 2048
siride 2 (| stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
nomm.. MOrm. poal 22
pool 2x2 || pool 2x2
Temporal stream ConvNet
convi || conv2 | conv3 || convd || convs || fullé full?
TuTx06 || 5xSx256 || 3x3x512 || 3c3x512 | 3x3x512 || 4006 2048
stride 2 (| siride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
nom. || pool 2x2 pool 2x2
pool 2x2
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CNN - RNN (Recurrent Neural Networks)

* Used in Speech other naturally temporal data (no spatial

components)

RNNs in comparison to a traditional CNN do not
capture rich spatial information as well.

* One Idea = Combine RNN and CNN in Sequence

Example from
“Show and Tell Me” system

From O. Vinyals, A. Toshev, S. Bengio, D. Erhan,
“Show and Tell: A Neural Image Caption Generator”,
CVPR, 2015.

Image Captioning

Vision Language
Deep CNN  Generating)
RN

A group of people
shopping at an
outdoor market.

There are many

=55

g at the
fruit stand.

CNN for Vision process =2 RNN for language generation

Problems with RNN

* “Long Term” Issue = Difficult to backpropogate an error over a

long-range temporal span becomes difficult.

* “Short-term” Issue = Basic RNN does not allow network to

“forget” previous hidden states.
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SULUTIUN =2 Long Short

Term (memory) Networks =
LSTM

* Have cells that allow for both “long-term” and “short-term”
memory

* Can propagate without modification using a simple learned gating function
and this is a kind of “long range learning”.

* nodes in a LSTM network allow the network to learn when to “forget”
previous hidden states and when to update hidden states given new
information. This is a kind of “short-term” memory, basically having an
expiration to previous information.

a Input Wisual Sequence  Output
C N N LSTM Features Leamning

Image Captioning,
Video Description

' '
L] 1
1 1 . 1
CNFrom]. Donahue, L. Hendricks, M. Rohrbach, S. Venugopalan, H ¥ y 1)
S Guadarrama, K Saenko, T Darrell,“Long-Term Recurrent I‘ : : :
Convolutional Networlsfor Visual Recognition and Description’, CVPR, 2017. ' [ '
N+LSTM 1 H i :
] 1 y !
‘ |
' i
' i
' 1
. .« . g . .

GOAL: Activity Recognition, : ; i
' |
' i
L] 1
' !
-

1

1

Activity Recognition Image Captioning Video Description

Sequences in the Input Sequences in the Output Sequences in the Input and Output
m : = ! m

2 2 /—E

= =z

[ HighJump ] (=] a2 ) (man | [oms ] [E0&] [Bos ][ a ][
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OTHER IDEAS= PRE PROCESSING of Temporal

Information:
input “temporal segments” = “using 2Stream convolutional system’

as input feature vectors into a CNN for recognition
* C. Ma, M. Chen, Z. Kira, G. AlRegib, “TS_LSTM and Temporal-Inception:Exploiting Spatiotemporal
Dynamics for Activity Recognition”, 2017

o

ial-s Temporal
Sampled RGB Spatial-steam Network mp

concatenation
28

Sampled Stacked

Optical Flow F B
Temporal-stream Network

"

ResNet-101

)

Deep
Learning
Network
like LSTM

continued...the Temporal-Inception CNN

* C. Ma, M. Chen, Z. Kira, G. AlRegib, “TS_LSTM and Temporal-Inception:Exploiting Spatiotemporal
Dynamics for Activity Recognition”, 2017

PAelorTTIe] Multi-flow module

5 | W)

£ 000 o el b i ¥
00 @ 3 ! =
2% QD eeeD E : H S|

* e e Temporal-ConvNet Conv Fusion

XNOO.MO Layer (TCL)
g
EEEM EEE

nodouq
+Z0T-D4
N8
nay
nodoug
10T-24

-4

Xlviii
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Compare Temporal Segment LSTM and Temporal ConvNet as

COMPARING: LSTM versus Temporal CNN(inception style)

described in ¢ Ma, M. chen, z. Kira, G. AlRegib, “TS_LSTM and Temporal-
Inception:Exploiting Spatiotemporal Dynamics for Activity Recognition”, 2017

Performed almost at the SAME level 94.1 versus 93.9 on

UCF101 dataset for

S—
Video Sampled RGB
b \ &
B e,
L8

i Sampled Stacked

- Optical Flow
-

concatenation

e { 1

s Temporal Segment

282 L Prediction

vee

8« s

St PlayingSitar ==

@ ) PlayingDhol =

$i0. 8

oo

.

Temporal

Generative Adversarial

Real
Samples

C

Latent

Network

Space
L 1s D
b D —*%._ Comect?
- ~ 0 Discriminato
&+ 6 L ——
| | | Generated
ﬁ | Gemerator | “UEE
———— Samples
j | Fine Tune Training
Mgise

-- network to teach the network

GENERATIVE ADVERSARIAL

NETWORKS
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GAN: generative @6@1 .
adversarial network ... ” @a—?j;‘e
b5
_@ @

ke image

Generator

* 2Networks:

15t network (“discriminator”) =

takes the image as input and output is the determination of whether the input is
a true representation or fake representation of some class.

2" network (“generator”) is trained to generate input to train the first network. The

“adversarial” component of this concept is the second network (“generator”) tries to
progressively create hard input to “fool” the first network.

= zero-sum or minimax two player game

By doing so, ultimately the first network will achieve better discriminating
capabilities, meaning higher accuracy

GAN -parking example training

Negative examples Positive example

Real or fake pair?

Real or fake pair?

fFrom X. Li, M. Chuah, S. Bhattachaya, “UAV Assisted

Smart Parking Solution”, International Conference on
Unmanned Aircraft Systems, 2017.

Discriminator network D = learns to classify
between real and
synthesized pairs

D: Discriminator
G: Generator

Generator network G=  learns to fool the
discriminator by
generating good
“fakes”

During the training process, these two networks
are trained simultaneously, and the generator is
RESULT - use the Discriminator network D learning to generate better synthesized pair while

for empty parking space detection the discriminator is learning to telling the
difference between the real and synthesized pairs
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GAN -parking example training
Generator Architecture = Encoder-Decoder Model

fFrom X. Li, M. Chuah, S. Bhattachaya, “UAV Assisted

Smart Parking Solution”, International Conference on
Unmanned Aircraft Systems, 2017.

Encoder-Decoder often used for information translation problems, image segmentation,
image synthesis

Convolutional Encoder-Decoder

Input

x:
T

Output

Pogling Indices

RGB Image [N Conv + Batcn Nommatsation + Rely

Segmentation
‘__- Pocling I Upsampling Softmax

Convolutional Encoder + Decoder

Generator network G = learns to fool the " ) =
Idea: decoder = “upconvolutional” layers

discriminator by
generating good
“fakes”

GAN- parking example results

Cameras mounted aerially —to be

"

Input Image Ground Truth

Our Result Input Image Ground Truth Our Result
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GAN - applications

APPLICATIONS:
1. may be more suited to future predictive problems such as future video frame predictions
2. discriminator network could be used as a “feature extractor” stage in a more complex CNN.
3. Generator network could be used for synthesis
4. GANs used to produce photorealistic images for modeling scenes, to reconstruct 3D
models of objects from images and for texture synthesis [9-11]. They have also been
used for various object detection techniques like detection of open spaces for parking [12].

original bicubic 5 Vi SROGAN
(20, 34dBAL6562)

(21 594R/0.6423)

Application:

Resolution
Enhancement

https://www.cs.toronto.edu/~duvenaud/courses/csc2541/slides/gan-applications.pdf

® The current CNN require a fixed input image size
(e.g., 224 x 224 )

Contentloss

Convolutional
Neural Network
(CNN)

e : "
s Recognition accuracy is degraded! KAIST

From http://slideplayer.com/slide/5277459/

--- to resize or modify network

SPECIAL ISSUE OF DIFFERENT DATA
SIZE
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Option 1 -resize data

* problem of variable sized input propagates down to the first

fully connected/inner product layer which requires a vector
of fixed size.

* Resize data to expected input size for Network

* SPECIAL NOTE: if there are NO Fully connected layers, you do
not need to do this. The output layer will be larger but, it
does not represent classes but, feature vectors and can
potentially be used in same way as before. One example
Encoder-Decoder

Convelutional Encoder-Deceder

Input & Qutput
|‘|I JI- ‘il . Pooling indices. “

RGB Image c onv + Batch Normalisation + Rell Segmentatlon
Pﬂnm-q B Upsampiing Seftmax

Option 2 - “Spatial Pyramid Pooling”

« "Spatial Pyramid Pooling in Deep Convolutional Networks
for Visual Recognition" by He et al. proposes a Spatial
Pyramid Pooling layer.

* propose to add the Spatial Pyramid Pooling Layer just before
the first fully-connected layer (details in the paper).

fully-cannected layers (e fer)

fived-length representation

— — —
+ 16+256-d 4 4= 256-d + 256-d

satial pyruwid pooling layer

feature maps of convs
{arbitrary size)

* convolutional layers
input fmage

hierarchically partitions the feature maps of the last convolutional
layer (or the subsequent pooling or response normalization layer)
into a fixed number of bins.

Within these bins, responses are pooled as usually, creating a fixed-
sized output
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GUIDELINES

features

Guideline 1

* Decrease size of data slowly

* Bottom - Top

The spatial resolution H X W decreases
The number of channels C increases

image

liv
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Guideline 2 - Filters

* Receptive field must be large enough
to capture objects of interest

* The image region influencing a neuron
* Anything happening outside is invisible to

the neuron

* HOW TO INCREASE RECEPTIVE FIELD

Large filters

“neuron”

Chains of small filters
=2 2

neuron’s
receptive field

Guideline 3- Filters

 User chain of smaller filters rather than large filter
Reduces number of parameters - faster
Get same receptive field as the larger filters
Get more nonlinearities introduced (example 2 nonlinearities)

One big filter bank

Two smaller filter banks

P | 2| | s
AT ) o N I e 8 I
' (BT

5 x 5 filters
+ RelU

3 x 3filters 3 x 3 filters
+ RelLU + RelLU
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Ivi

Guideline 4- number of filters
in layer (= # output channels)

* Be conservative, don’t have too many filters (# filters K below)

Num. of operations

HxWxC — ¥ = H><.Hf WX_W'{XCXK
T stride stride —
F 99999
Hix Wix Cx K
RE—— Num. of parameters

C = num. input channels —T ‘ He x We x Cx K
K = num. output channels

Guideline 5 - when computation
issue consider separable filters

¢ Like MobileNet consider separable filters to reduce number of
parameters and hence computations.
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Recommendation -
transfer learning ...

* Don’t have enough data
* Don’t have time/resources

to do full training + The Pretrained Modelis  * If yourdata is similar to
. - trained on ImageNet the ImageNet data
Repla?ce f‘mal layer(s) and dataset Fix all CNN Layers
retrain with your own Train EC layer
data
oo e Co ey |
ﬂ ﬁ
"Ynur
ImageNet data
data

* Improvement of learning in a new task through the
transfer of knowledge from a related task that has
already been learned.

* Weight initialization for CNN

Source task I Source task labels

Training images I

Comolutional layers  Fully-connected layers . A ten

ri, Wall clock
= C1-C2-C3-CA-C5 v - B
A e “I}r—wm—
v

1 -mm‘.ﬂ“
1 tesmew Transfer
o parameters
— .(m
j B agromsnd
’:"':_“"' . l“ —of C1-C2-CH-CACS 0 e oy m
! L .W
W Ve A0 v
: - b o~
1 = sl Mora a g et
Lf L
e e, 1 Target task ] Iervased | Yyrpt task labels

Learning and Transferring Mid-Level Image Representations using
Convolutional Neural Networks [Oguab et al. CVPR 2014]
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Iviii

Recommendation Summary
[ISSUE_____ [RECOMMENDATON |

More Complex Problems e Increase depth of network
O e e dEsES ] e Current trend — use larger number of layers of small sized filters
e Large data set
e Greater confusion

between classes
Mobile and Low For on device computation (otherwise consider cloud)
Computational Devices (loT)

e Shallow Networks, minimize number of filters at each convolutional
layer.

e Depthwise Separable Filters (reduce #parameters in mode) —
MobileNet architecture [4]
Optimize networks (elimination of low contribution nodes, etc.)
Consider special purpose frameworks like TensorFlow Lite. [12]

e CNN + Long Term Short Term (LSTM) Networks

Synthesis or Prediction e Consider Generative Adversarial Networks

Overall Recommendations
[ISSUE__ [RECOMMENDATION |

Multi-Modal Data e Tradeoff consideration: potentially higher accuracy for increased
computation of combined modality processing versus faster (and
potentially lower accuracy) of having separate networks for each
modality processing in parallel.

Data Size Variability e Pyramid approach [13]

e When size is different than trained network but, is fixed. Use
only front (not FC layers) for feature extraction and then create
new FC layers for your new size.

e Otherwise necessitates rescaling of data to input size of existing

W E e S Perform Transfer Learning
Minimal time for e by finding a pre-trained network that has ideally similarity
training with your problem and replay the last layer(s)
Minimal resources e and retrain with your set of classes.
(computation, budget) e Essentially use the pre-trained network’s beginning feature

and potentially fully connected layers (minimally replace

the end layer)
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Overall Recommendations

e [aacowwenostion

Lack of Training Data e Numerous data sets mostly for 2D rgb images such as ImageNet
Minimal data or none at all. [23], COCO [24]

LnnbLEicER g Nod ¢ Emerging data sets in 3D [25-31]

data to size e Specialized datasets -example: Person datasets: [32-35]

Sl e o Sgise e e Also, may consider use of pre-trained network if you research is
data to match focusing on other issues

Resources

Beyond frameworks

lix
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CNN Frameworks

* Personal preference : TensorFlow = new TensorFlow lite for mobile
devices using hardware acceleration on Android (android neural
network api)

i Paddle
This year ... sty
Caffe ,. Caffe2
(UC Berkeley) (Facebook) CNTK
(Microsoft)
Torch PyTorch

(NYU / Facebook) (Facebook

MXNet

(Aquon)l .

N L

Theano
(U Montreal)

TensorFlow
(Google)

Newer: Caffe2 and PyTorch , Paddle, CNTK, MXNet
Suggestion: use TensorFlow or PyTorch

Computational Resources

* Cloud general

* New Google AutoML — As a service (in alpha) -
https://cloud.google.com/automl/

Get up and running fast
—  Cloud AutoML provides a simple graphical user interface (GUI) far you to train, evaluste, improve,

and deploy models based on your own data. You're only & few minutes away from your own custom

maching lsaming model

* Cloud Services: Google Machine Learning, Microsoft Cognitive
Services
https://cloud.google.com/ml-engine/
https://azure.microsoft.com/en-us/services/cognitive-services/

* Intel Movidius Neural Computing Stick
--has VPU, speed up Ubuntu laptop w/ USB3

-- supports Caffe Framework and uses Intel’s SDK
https://movidius.github.io/ncsdk/
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Datsets that have segmentation
ground truth

* http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

* http://cocodataset.org/#home
Example from COCO

Dataset examples

RGB-D datasets

* Image Net — 14 Million images, 21,841 sub-categories

Statistics of high level categories

http://image-net.org

apphance

device

* COCO - 100 objects, images= 200K labeled, 330K total
http://cocodataset.org

1] el 4] A E12][01[E] 10 (k6= (62 w6 @) (02

i@@EE@Hh&@D\]@-E@ l e

HERIEE [ EIANR ElS

= L@z S /]
Nz
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Ixii

SPECIAL PURPOSE:
RGB-D People Dataset

e http://www?2.informatik.uni-freiburg.de/~spinello/RGBD-dataset.html
* 3000 images from 3 Vertically mounted Kinect

SLR Human attributes dataset

- Person -rgb +depth (kinect) - 100 people, 100,000
images http://srl.informatik.uni-
freiburg.de/human_attributes dataset
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ILAB EFFORTS

iSight Goals

* Helping low vision with Mobility by better understanding of
their visual world

(i)Vasi_ 4

tell iVest
that Chair is
'detected —

I ®
o " 2
Q)

Ixiii
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Object - —
Identification & [ Visualization &
Localization

CARTOON

Seeing Eye Drone

* Replace seeing eye dog
* Computer vision -3D, deep learning
* Obstacle detection and report

* Using Multiple CNN for W—

User Detection and Heading (o]
and Obstacle Detection ﬂ

and Selection for
Avoidance

ollow, detect,report

Ixiv
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Conclusions

* Follow Guidelines

* “areas to explore”
temporal learning
Gamming the system - GANs
Multi-modal considerations

Varying data size

Ixv
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Deep Learning and Computer Vision: Guidelines and Special Issues

Lynne Grewe? and Garrett Stevenson?
aComputer Science, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward,
CA USA, 94542

ABSTRACT

The catapult of Computer Vision into recent societal prominence is represented by advancements in self-driving cars,
drone autonomy, and cities of the future. Central to these advancements are the developments of Deep Learning with
Computer Vision to tackle the important tasks of object classification and localization. This paper surveys some of the
current research and presents current guidelines for working in computer vision with deep learning. Additionally,
special topics are highlighted including Multi-Modal Vision with Deep Learning and Temporal Networks.

Keywords: Deep Learning, Computer Vision, Multi-Modal Deep Learning, Temporal Networks

1. RESARCH TRENDS

One Deep Learning research trend is “going deeper”, creating CNNs with a greater number of layers. In [1], VGG Net
is a CNN with 19 layers (2014). In 2015, GoogLeNet [2], a 22 layer network, was able to achieve a top 5 error rate of
6.7% and was different than previous CNNs in that is was not a sequentially layered network and instead had parallelly
processed layers. At the same time Microsoft ResNet [3] is a 152 layer network that produced an incredibly low error
rate of 3.6% for the ILSVRC 2015 challenge. Generally, more complex problems (larger number of classes) can require
having deeper networks to yield higher accuracy.

At the same time that some researchers have gone deeper, there is a strong interest in mobile vision and using CNN/deep
learning on the mobile devices which are comparatively low computational devices compared to the machines running
ResNet.  So, going deep (or as deep) will not work on these devices. MobileNet [4] is an example of recent work that
creates a CNN architecture that optimizes the network to run more efficiently on mobile devices by using depth wise
separable convolution. Following the MobileNet architecture a general guideline for low computational devices is to
stick with shallower networks. In [5], use of MobileNet architecture is shown for the iSight system that uses Deep
Learning and Visualization to assist people with Low Vision.

Another recent emerging trend is that of Generative Adversarial Networks [6,7].  With GANs there are two networks,
the first network (“discriminator”) takes the image as input and output is the determination of whether the input is a true
representation or fake representation of some class. At the same time a second network (“generator”) is trained that
generates input to train the first network. The “adversarial” component of this concept is the second network
(“generator™) tries to progressively create hard input to “fool” the first network. By doing so, ultimately the first
network will achieve better discriminating capabilities, meaning higher accuracy. This can be thought of as a zero-sum
or minimax two player game This form of Deep Learning Networks may be more suited to future predictive problems
such as future video frame predictions [8] over non-GAN CNNs. Additionally, a GAN discriminator network could be
used as a “feature extractor” stage in a more complex CNN. GANSs have been used to produce photorealistic images for
modeling scenes, to reconstruct 3D models of objects from images and for texture synthesis [9-11]. They have also
been used for various object detection techniques like the detection of open spaces for parking [12].

2. MULTI-MODAL VISION AND DEEP LEARNING

Multi-modal vision is the idea that more than one kind of data is being presented to the system. This data may come
from multiple sensors and may even be different in nature. Multi-modal data processing with a Deep Learning

Ixvi
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framework has not been fully explored but some examples can be found at [13-17]. One technique is to create a CNN
only with one sensor data and use the other sensors’ data for additional information. For example, in [17] a system is
discussed that performs object detection using a CNN with only 2D image data. Subsequently, two depth sensors (one
stereo and the other based on IR technology) have collected depth information of the scene and using the detected
location in the 2D image of the object, the 3D location of the object can be estimated. The advantages of such a
technique is more simplicity and faster processing than using multi-modal data in the CNN.

In [15, 16], 2D image data and 3D depth information is used directly in the CNN. In [16], an exploration of different
ways to incorporate it are compared for performance. Having separate CNNs that run in parallel for 2D and 3D is one
case. The second case is presenting 2D and 3D as a 4 D image input (r,g,b, depth) into a single CNN. These two multi-
modal systems are compared to a 2D only (single sensor data) system. The best results were achieved for the 4D image
input. At the same time, this fused data network will be the largest and hence will potentially run slower than the
separate CNN case which could potentially run the 2 separate CNNs in parallel. This indicates that presenting all the
data at once to a single CNN may yield superior results. Certainly this approach will let the Network learn how to
combine the data at different layers (and scales) to best achieve features to yield higher accuracies.

3. TEMPORAL NETWORKS

In addition to looking at different kinds of sensor data, gathering data over time and processing it in a temporal fashion
can yield superior results and allow for different applications like activity recognition (“man eating”, “woman walking™)
and video captioning (“2 persons walking a dog”). Architectures to incorporate temporal processing in include
Recurrent Neural Networks (RNN) and Long Short Term (memory) Networks (LSTM). Recurrent Neural Networks
(RNNs) have been successfully applied to processing both speech and video analysis [18] but, are primarily used for
speech as they do not inherently capture spatial data as CNNs do. One work looks at integrating CNN and RNN directly
in [19]. However, the use of CNNs for temporal processing is best represented in Long Short Term Memory Networks
(LSTM) [20-22].

One problem with neural network models using state information is the ability to backpropogate anderro over a long-
range temporal span becomes difficult. The LSTM networks have nodes which allow them to propogate without
modification using a simple learned gating function and this is a kind of “long term effect” called “long range learning”.
Additionally, the nodes in a LSTM network allow the network to learn when to “forget” previous hidden states and when
to update hidden states given new information. This is a kind of “short-term” memory, basically having an expiration to
previous information. In [20], a CNN is used to perform object identification which is fed into an RNN (textual input) to
come up with a image caption. More recently in [22], a CNN is used to process the image frames of a video sequence
that is then fed into a LSTM to perform activity recognition, and both image and video captioning.

4. GUIDELINES

Every vision application has different demands. Some systems will have access to good computational resources and
others may need to run on mobile and embedded systems. Some systems will have single sensor data and others multi-
sensor/ multi-modal data and so on. Table 1 shows some guidelines for different operating scenarios.

ISSUE

RECOMMENDATION

More Complex Problems

Large number of classes

Large data set

Greater confusion between classes

e Increase depth of network

Current trend — use larger number of small sized
filters

Future Looking
Beyond classification of current state, looking to
predict future

e Consider Generative Adversarial Networks
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Mobile and Low Computational Devices (10T)

For on device computation (otherwise consider cloud0

Shallow Networks

Depthwise Separable Filters (reduce #parameters
in mode) — MobileNet architecture [4]

Optimize networks (elimination of low
contribution nodes, etc.)

Consider special purpose frameworks like
TensorFlow Lite. [13]

Multi-Modal Data

Tradeoff: potentially higher accuracy for
increased computation of combined modality
processing versus faster (and potentially lower
accuracy) of having separate networks for each
modality processing in parallel.

Data Size Variability

Pyramid approach [14]

When size is different than trained network but, is
fixed. Use only front (not FC layers) for feature
extraction and then create new FC layers for your
new size.

Otherwise necessitates rescaling of data to input
size of existing

Minimal Time and Resources
e  Minimal time for training
e Minimal resources (computation, budget)

Perform Transfer Learning -by finding a pre-
trained network that has ideally similarity with
your problem and replay the last layer(s) and
retrain with your set of classes. Essentially use
the pre-trained network’s beginning feature and
potentially fully connected layers (minimally
replace the end layer)

Temporal Processing Needed
e Video applications, time sequence data

Use Long Short Term (memory) Network
(LSTM) (or CNN+RNN)

Lack of Training Data
e Minimal data or none at all.
e Accommodate your sensor data to size
e Scale training data or sensor data to match

Numerous data sets mostly for 2D rgb images
such as ImageNet [23], COCO [24]

Emerging data sets in 3D [25-31]

Specialized datasets -example: Person datasets:
[32-35]

Table 1: Current Deep Learning Recommended Guidelines based on Research Trends.
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Machine Learning for Object
Recognition from High
Volume Radio Frequency
Data

April 16, 2018

Uttam K. Majumder, MBA, PhD
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Invited Panel Discussion, “Deep Learning in Al and Information Fusion”

SPIE Conference 10646. “Signal Processing, Sensor/Information Fusion and Target
Recognition XXVII”, 16-19, 2018, Orlando, FL
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\,’/ Outline
&

= Artificial Intelligence

" Radio Frequency Data

= Big Data

" Research on Big Data

®* High Performance Computing (HPC)

® GPU Enabled Target Classification from SAR
Imagery

® Summary
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\\"/) Introduction to Al

* Al — Machines to think/behave/react - ANN
* ML — Data for (Machines) to learn - RL, BN, ILP
* DL - Brain-Inspired NN for robust methods — CNN, RNN

" (mostly supervised from labeled data)

Explain

Categorize

Describe

Al: Artificial Intelligence

ANN: Artificial Neural Networks
RL: Reinforcement Learning Waves of Artificial Intelligence
BN: Bayesian Networks

ILP: Inductive Logic Programming

CNN: Convolutional Neural )
Networks Reference: Andrew Fogg, A history of Deep

RNN: Recurrent Neural Networks Learning, (import.io)

A
\/ Three Waves of Artificial Intelligence

P
3

1% Wave 2™ Wave 3 Wave:
Handcrafted Knowledge Machine Learning Contextual Adaptation
Humans program systems Systems learn statistical Rich collaboration between
with explicit rules or logic in models of specific problems humans and machines enabled
limited domains using big data by shared perceptions of the
real world

/ fe
ASSIGN-TAX-REFUN

IF: TAXABLE INCOME IS GREATER THAN 6,000
AND TAKABLE INCOME IS LESS Triah 35,000
AND FILING STATUS IS SINGLE

ELETION £ |5 CLA

Reference:
DARPA Public Release: RF Machine Learning Systems (RFMLS) Industry Day

https://www.darpa.mil/attachments/RFMLSIndustryDaypublicreleaseapproved.
pdf
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A 2
\',’/ Research On Big Data
b

® Operational deployment considerations, computation efficiency
(SWaP-C)

— The need for HPC for real-time computing

* Model fidelity complimented with data collections for synthetic-
measured data analysis

* Transfer Learning over operating spaces (range, resolution,
target settings)

* Big data (volume, velocity, veracity, variety) collaboration
policies — what data are accessible for analytics

* Robust evaluation: Validation, Verification, for reproducible
results

s 2
\"’/ The Need for Real-time Computing

— In 90’s, Machine Learning such as Neural Networks was
less popular due to various Tech Barriers and Needs
P Computational Resources were Scarce and Expensive
P Limited Sensors or Digitized Business Data to be Analyzed

\/Today, computational resources are not as expensive as
in the past; however, abundant of Sensors and Business

data needs to be analyzed in Real-time

v'HPC Enables ML algorithm based decision making in
real-time or near real-time
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A 2
Nz The Advent of HPC

* Since Late 90’s, Computing Technology Has Advanced in an
Astounding Pace (The Moore’s Law)

* We are Living in the Age of HPC

» Faster memory, CPU, /0O communication, and storage as well as
compact/smaller size

» Multi-core Computers

» Graphics Processing Units

» Energy-efficient/low-power computing devices (IBM’s TrueNorth)
* More to come

» Memristor Devices

» Specialized Chip/cores for Sparse Graph Processing

s 2
Recent HPC Hardware Used for
A4 ML Algorithms

CPU
Few, fast cores (1 - 16)
Good at sequential processing

GPU

Many, slower cores (thousands)
Originally for graphics

Good at parallel computation

IBM’s TrueNorth
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A 2 .gs .
GPU Enabled Target Classification
\.,,/ Measured SAR Data

® Training, validation, and testing data come from the
MSTAR* program sponsored by DARPA and the AFRL in
the 1990s

= 10 target classes with images taken at various angles

— 15 Degree Elevation Angle dataset for training, 17
Degree dataset for testing

— Roughly 250 images per target class, per angle

— Generally considered an incredibly small dataset for a
deep learning application

= Using a single GPU at AFRL/RI HPC

* MSTAR: Moving and Stationary Target Acquisition and Recognition

s 2
\‘Q,/ Target types

Table 1. The number of images of each object at different depression angles.

Targets BMF2Z BTR70 T72 BTR60 251 BRDM2 D7 Te2 ZIL131 ZS5U234

172 233 233 232 256 29 298 299 29 299 299
15% 587 196 582 195 274 274 4 273 74 74

Ixxv
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A 2
\,"/ SAR Imagery

... -I..‘ I
¥
. ¥

BMP2 BTR70 T72 BRDM2

T62 ZSU234 251 D7

BTR60

ZIL131
s 2
\"/ Software Tools
&

* Python - Data augmentation methods

and command line

Cafte
A

python’

<ANVIDIA.

* Caffe — Deep learning framework employed via DIGITS

Ixxvi
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A 2
A\ Y4 Caffe
gy

* Deep Learning framework developed by the
Berkeley Vision and Learning Center (BVLC)

* Written in highly optimized C++/CUDA code

* Easily define network architectures

* Modify DL models as needed for an application

A )
N  Caffe ML Algorithm Flow
@'

Caffe

Gather and label data labels to LMDB*
format

Train model in
Save learned weights I Caffe using training
dataset

Test model in Caffe [

Evaluate Performance

using test dataset ’

* LMDB: Lightning Memory-Mapped Database Manager
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A 2 .
\_/ Clean training run U

Neural Net reaches over 99% accuracy on validation set

- r 100
244
90
80

70

Loss.

Accuracy (%)

r T T T T T T T T
Q 100 200 300 400 500 600 700 800 900 1000

M loss (train) accuracy (val) W loss (val)
& 2 . .
NS Classification results on
14
3 Measured Data

~99% accuracy on 10-target classification using Caffe
State-of-the-art results

uttam@uttam-Lenovo-Edge-2-1580:~ /build/tools/caffe test -model train_val.prototxt
000.caffemodel -gpu=0 -iterations:seﬂl
.780280 ; - Batch 996, accuracy = 1
. 780316 . : Batch 996, loss = 0.0115048
.810564 . - Batch 997, accuracy = 1
.810609 ¢ : Batch 997, loss = 0.0182748
.840967 . : Batch 998, accuracy = 0.953125

.841004 ¢ - Batch 998, loss = 0.154708
.871201 . : Batch 999, accuracy = 1
871237 . : Batch 999, loss = 0.000220068
.871246 . . Loss: 0.115863

.871261 . : accuracy = 0.989016
.871305 . : loss = 0.115863 (* 1 = 0.115863 loss)

Key network parameters

Learning rate 0.001 5 Convolution layers Dropout regularization
Batch size 64 3 InnerProduct (FC) layers
1000 training epochs 2x2 stride 1 max pool filters
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g Synthetic SAR Data

\/Target Classification Using DNN on 9

" Training, validation, and testing data used from Synthetic
Radar Data

= 30 target classes with images taken at various elevation
angles and a single azimuth angle

" |nstead of Backprojection Image formation, we used
Range-Doppler Map of the Targets

= We found about 99% accuracy on Target classification

j arget Classification Using DNN on

Sznthetlc and Measured SAR Data

//)

0

® The objective of this research is to evaluate performance
of target classification using Synthetic vs. Measured SAR
data ( or vice versa) and identifying the “Gap/Tech
Challenges” to generate High Fidelity Synthetic SAR data

® We implemented Training on measured SAR data for three
targets and Tested on Synthetic SAR data (of the same
targets)

"= We found very low accuracy on Target classification

®" This is due to the fact that quality (i.e. NIIRS) of synthetic
data must be very close to measured data

® This will require huge HPC resources and expertise in
Computational Electro-magnetic

» TRANSFER LEARNING
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s 7
\';( Summary

* Research on applying DL techniques to multi-sensor
information fusion is evolving

* Followings are key research that needs to be
addressed:
— Filling the Gap/mismatch between measured and synthetic data

— Transfer Learning over operating spaces (range, resolution, target
settings)

— Robust evaluation of the algorithms

— Operational deployment considerations, computation efficiency
(SwaP-C)

X 7
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Deep Learning for Object Recognition from High Volume Radio
Frequency Data

Uttam K. Majumder®*, Erik P. Blasch®

®Air Force Research Laboratory, Information Directorate, 525 Brooks Road, Rome, NY13441.
®Air Force Office of Scientific Research, Wright-Patterson AFB, OH 45433

ABSTRACT

Much research efforts have been devoted to applying deep learning (DL) algorithms in video
imagery for object recognition. However, very limited publications can be found on technical
challenges and approaches to execute DL algorithms in radio frequency (RF) data. This talks
highlights recent advancements of DL on synthetic aperture radar (SAR) imagery for object
recognition. Radar enables imaging ground objects at far greater standoff distances than an electro-
optic sensor. Further, radar enables imaging a scene and obtaining salient features of objects in all
weather/day-night conditions. One example is that future self-driving/autonomous vehicles/cars
could integrate radar among other sensors for decision making while sharing the roads and avoiding
collisions/accidents. Existing non-DL based object recognition algorithms are less accurate and
require impractically large computing resources. DL enables more accurate, realtime/non-realtime,
and low-power object recognition system development. An examples is presented on Convolution
Neural Network (CNN) based SAR object recognition for GPU and energy efficient computing
systems. Results demonstrate acceptable classification accuracy on relevant SAR data.

Keywords: Deep Neural Network (DNN), Artificial Intelligence (Al), Synthetic Aperture Radar
(SAR), Radio Frequency (RF), Big Data

RF BIG DATA

According to IBM[1, 2], big data has several characteristics. Among these are volume, velocity,
variety, and veracity. A big volume of data could be processing terabytes to exabytes or more data
in a milliseconds or seconds. In some applications, RF data could be collected from petabytes to
exabytes and these data need to be processed (e.g., object recognition) in real-time or near real-time.
Radar images are difficult for humans to analyze. It requires significant efforts for accurate
interpretation; however a DL system is very capable to interpret these images. The benefits of
utilizing radar technology are evident given its advantages over electro-optical imaging.
Specifically, radar is able to operate in a variety of operating conditions—including poor visibility,
inclement weather, and night-time settings. Given the disparity between the technical capabilities of
radar and its difficulty of interpretation, it is a goal to develop accurate methods for automatically
recognizing objects in radar images without the need for expensive expert analysis. The benefits of
object recognition for radar imagery include developing self-driving cars to autonomous systems.

! Correspondence: ukmccny@gmail.com
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Though most recent work in applying artificial neural networks (ANN) to computer vision has
focused on electro-optical images, the application to radar imagery is of particular interest for our
research. Previously, achieving RF object classification using DL methods was the absence of
necessary computational power. A radar imagery data collection project—called Moving and
Stationary Target Acquisition and Recognition (MSTAR) program—was funded by DARPA and
the AFRL in the 1990s to fill the void in available radar data for object classification research[3, 4].
Additionally, the recent introduction of affordable GPU computing resources[5] has made the
efficient processing of datasets for deep learning (DL) applications a reality for RF object
classification research efforts.

CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNN) are a special case of neural networks, as they make the
explicit assumption that the input data are of constant size. This enables certain features to be
encoded in them. In particular, the computational units, or “neurons,” share parameters with their
neighbors. The connections conceptually result in an intuitive visualization of the network as a series
of filters that “slide” or “pool” over regions they are connected to—producing mathematical output
based on the parameters, or “weights,” of each filter. The output produced by these filters is then fed
to other filters connected to them, and so on, concluding with a fully connected dens network shown
in Figure 1.

1 A‘_‘\
" . =
Max T " " ” "
B e —
s N Mas
okeg pooimg
55°9%6 27°27° 256 13°13% 38 13°13%384 13°13°256 4096  a0%

Figure 1: Hlustration of Convolution Neural Networks [6]

Through training, these filters learn to respond to complex features in image data. Filters closer to
the data input layer learn to recognize simple features, such as edges. Mid-level filters might learn
compositions of edges, like simple shapes. High-level filters then learn complex abstractions of the
data, such as compositions of shapes forming full objects of interest. Thus, CNNs are a natural fit
for working with the conceptual hierarchy of features present within image data.

EXPERIMENTS ON RF OBJECT CLASSIFICATIONS

Software tools used for this research are: Caffe, DIGITS, Python, and LMDB. Caffe is a deep-
learning framework maintained by the Berkeley Vision and Learning Center (BVLC)[7]. Caffe
provides full end-to-end capability for deep learning tasks, and is the deep learning framework of
choice for many in the machine learning community.

Experimental data were extracted from the MSTAR public dataset [3]. The MSTAR public dataset
contains several hundred SAR images of a variety of targets collected in varying conditions. Sandia

Ixxxii
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National Laboratory used an X-band radar sensor at 1-foot resolution in spotlight mode to collect
target data at 15, 17, 30, and 45-degree depression angles. Images taken at varying azimuth angles
provide a 360-degree view of each given target. The images are 128x128 pixel chips containing a
target roughly centered within its background. Bulldozers, trucks tanks, and anti-aircraft vehicles
are among the targets included in the dataset as shown in Figure 2 with the SAR images in Figure 3.

T62 ZSU234 281 ' ‘ ZIL131
Figure 2: Electro-optic Images of Objects

... :

BMP2 BTR70 T72

T62 ZSU234 281 D7 ZIL131

Figure 3: SAR Images of Objects

RESULTS

On MSTAR public release data [3], 99% classification accuracy was achieved using the model
specifications described in Chen, et al. [8]. Most DL architectures tested reached an accuracy limit
of 98.3%-98.7%, depending on testing batch size and number of testing iterations ran. This held true
for models employing small convolution filters, models with additional convolution layers before
pooling, and models with fully connected layers at the end of the network architecture. Dropout
regularization provided an accuracy improvement of roughly 0.5% over models not employing a DL
technique. Though a relatively modest improvement, it is nonetheless indicative of the benefits of
using dropout to ensure a model’s ability to generalize to new data.
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CONCLUSION AND FUTURE RESEARCH

Research on applying DL techniques to multi-sensor information fusion is evolving, such as for
image fusion [9]. Integrating RF sesnsor for Artifical Intelligence (Al) and information fusion has
lots of technical challenges. Followings are key research that needs to be addressed:

[1]
[2]

[3]
(4]

[5]

(6]
(7]
(8]
[9]

RF Synthetic Data Research: DL algorithms require lots of training data. Hence, research
needs to be conducted to develop high fidelity synthetic RF data to augment measured RF
data. This is important as measured RF data are expensive to collect.

Transfer Learning Algorithms Development: Develop transfer learning techniques over
operating spaces (e.g., range, resolution, target settings)

Robust Evaluation of DL Algorithms: Results (classification accuracy) of DL algorithms are
meaningless unless they are validated with representative operating environments (e.g.,
environment) [10]. Hence, validation and verification for reproducible object classification
results in extensive operating conditions are very important.

Computational Efficiency: Developing a real-time training algorithms and size, weight, and
power-constrained (SWaP) computing systems will be required for future DL-based Al
systems.
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Retrospectives on the Applications AI and Deep Learning in
Information Fusion

Ivan Kadar
Interlink Systems Sciences, Inc.
1979 Marcus Avenue, Lake Success, NY 11042

BACKGROUND-PERSPECTIVES

In this position paper concrete examples of the use of Neural Networks (NNs) and Artificial Intelligence (AI)
components in Information Fusion (IF), are presented, based on work performed in the 1980s and 1990s-on at Grumman
Aerospace Corporation, Advanced Technology Development Department, in Bethpage NY.

While the application of AI was prominent before NNs became popular, this paper starts with a description of my short
verbal introduction to the subject at the panel, viz., NNs; and subsequently expands on the subject to depict the
application of Al and NN for IF applications.

As further detailed below, as part of the work at the Advanced Technology Development Department, of the
Knowledge-Based Processing Systems Group and associated Knowledge-Based Al Technology development laboratory
(1984-1990), founded and managed by the author starting in 1983, we used: tracking, association and fusion algorithms,
and developed: e.g., Common-LISP-based algorithms/programs/systems, including an interactive digital LISP-based
image processing facility for both low-level vision processing and for an initial capability of high-level image
understanding towards target recognition; used Expert Systems Tools [1], NNs [2], Dempster-Shafer theory (DST)-
based algorithms for evidence representation and combination/fusion [3] and Fuzzy-Sets [4]; the latter three were also
considered part of Al and not IF during that time frame. Given the available tool sets, we also developed the architecture,
designed and implemented the simulation of a Tactical Assessment Expert System (TAES) [5]; all delineated in the
sections below.

1. NEURAL NETWORKS

During my short introduction at the panel discussion the subject being addressed and the participants, only highlighted
one aspect of the subject: “Deep Learning” [6, 7], viz., the use of Neural Networks (NNs) for significant feature(s)
recognition back in the 1987-1990’s-on.

During that time frame we used a three hidden layer abductive polynomial NN [8] as the feature selection component
of a ground-based-emitter discrimination algorithm in mid 1990s, resulting in a US Patent in 1999 [9]. Other
components of the algorithm included Fuzzy Sets [4], and a related classifier.

An example abductive polynomial NN is shown below [8]:

First Second Third
Layer Laver Unitizers
INPUT A O Single |
| Double
INPUT B C\ I < ¥
Triple H )— OUTPUT

INPUT C _O—I_
INPUT D —O—r_

where, in the equations shown in the algebraic forms below, the w’s are the weights learned by regression, and the x’s
are the input variables.

Double
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Singles, doubles, and triples are elements whose names are based on the number of input variables. The
algebraic form of each of these elements is shown in the following equations:

Single = W0 + (W1*X1) + (W2*X12) + (W3*X13)

Double = WO + (W1*X1) + (W2*X2) + (W3*X12)+ (W4*X22) + (W5*X1*X2) + (W6*X13)
+ (W7*X23)

Triple = WO + (W1*X1) + (W2*X2) + (W3*X3) + (W4*X12) + (W5*X22) + (W6*X32) + (W7*X1*X2)
+ (W8*X1*X3) + (W9*X2*X3) + (W10*X1*X2*X3) + (W11*X13) + (W12*X23) + (W13*X33)

Figure 1. An abductive polynomial NN example [8]

Given the CPU clock speeds of the mid 1990s, the training alone took two days. That is, computers were very slow
(100-300 MHz clock speeds), memory was scarce and very expensive, and even the three hidden layers network took a
day to converge to the solution.

The term “Deep Learning™ [6, 7] (referring to hidden layers in NNs) was not introduced at that time although the
network had three hidden layers, and indeed it “deep” learned.

Of course, today’s Deep Learning NNs [7, 10] have multitudes of hidden layers for features recognition, but even the
fastest special-chip-based networks do not always converge in real-time use quickly enough, (as mentioned in articles
published in the Technology Related Business Sections in the New York Times during the Spring 2018).

2. ARTIFICIAL INTELIGENCE (INCLUDES NNs)

Sections below, illustrate the complementary interactions and harmonious use of Al and NNs components in IF
applications. Part of the material is adapted in part from the author’s position paper within: “Results from Levels 2/3
Fusion Implementations: Issues, Challenges, Retrospectives and Perspectives for the Future — An Annotated
Perspective” presented at the SPIE Signal Processing, Sensor Fusion and Target Recognition XVII conference, Proc.
SPIE Vol. 6968, Orlando Fl., April 2008.

It is well known that the concept of Situation Awareness (SA), (Level 2), and Threat Assessment (TA), (Level 3);
SA/TA existed before the Joint Director of Laboratories Fusion Model (JDL) [11, 12, 13], viz., JDL established the
numerical representation and “at-that-time” definition of Fusion “Levels” [9]. This is illustrated in a “circa 1984-1986
vintage” simulated “Tactical Assessment Expert System architecture,” [14] depicted in Figure 2.

The TAES system utilized knowledge-based Expert Systems tools combined with numerical algorithms with the
primary objective to reduce pilot workload so the pilot becomes the systems manager not just the operator.

Static
Simulation External Knowledge
Drivers Environment Base iErares
Engine
System
Status
Procedural
T Meta-Level
KnonIedge Control
ase
R SR
—+{ On-Board : Flazitsn I Threat Tactical et
1
Sensors T(Kinematic_r Data | | Manager HKn%V:::ge
1 | and ID) 1
1
i1 rj -,
1
H Identification I Anticipatior{ |
'|  Expert T Expert T
Off-Board + | 1
Syst
Sensors il System | ystem !
- [ 1
Off-Line
Knowledge]
Base

Figure 2. Tactical Assessment Expert System Functional Architecture
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That is, the TEAS system could inform the pilot: targets detections/IDs, environmental data and system status reports,
and suggested tactical decisions for pilot’s override. This was accomplished by modeling and encoding pilot’s thought
processes (via interviews) to form of an “experienced-software-copilot” during the SA/TA knowledge acquisition stage.
The fundamental construct/design guidance for this system was based on an early fusion model (before JDL), called the
“Perceptual Reasoning Machine (PRM) paradigm” [15], shown as an internal governing component of the Generic
Information Fusion Process Model System (PMS) [14,15,16,17] shown in Figure 3. The dotted and yellow-highlighted
blocks shown in Figure 2, correspond to the PRM functions shown in Figure 3. Figure 4 depicts the information flow

among the PRM elements.
¢ Issues addressed:

- Use of Knowledge cePriori and Current

World > Information N olJse of PROCESS ceanticipate and gather facts
State Collection Preprocessing | adJser queries and Fusion System presents Beliefs
—> rovides feedbacl to gather info to satisfy
MOM:s.
Systems o Py e
Resource Perceptual Reasoning Mac

Manager

Current
Information (Knowledge)

Sources Interface to

Decision

il - Maker

Learning Algorithms .
& Memory Accumulation and T

[ -] Control Algorithms ‘_©
| [Anticipate/Predict (AP) H=p| Model L3pf Gather/Assess (GA) &v_clgl;;'i;;?es

B T— Systems

Reinforcemerit - (Perceptual Reasoniing Cycle)

-] Process

Figure 3. Genetic Information Fusion Process Model System (PMS)

Likely Likely Plans of
Current Future Actions
Situations Situations & Goals Prioritize Info
New requirements
. *Evaluate utility
Information of resources

*Assign/Schedule
Assessments_|
& Actions

look ahead
*Associate
*Compile info

Assess Anticipate Predict

Identify .
“Interpret ' requirements X
intent Perceptual -----4----- Reasoning
Situation Process Tactical
Knowledge Knowledge Knowledge

The “assess/(Gather)” module responding  The “assess” module provides likely current situations
to “dynamically managed” received multisource information to the “predict”/(preplan/act) module, which

information uses adc‘J‘ltlon_aI_ |nfor‘[natl0n from along with its KB and likely future situations information from
its KB and from the “anticipate” module to the “anticipate” module, issues assessments, identifies

form a database of likely current situations  potential threats, provides plans of actions and goals, and as
which include potential detected threats. needed, request actions for additional information to confirm or

negate conflicting hypotheses thus “closing the loop”.

The “anticipate” module provides information on expected likely
future situations” for short and long-duration planning based on likely
current situations from the “assess” module; prior, learned, process
and tactical knowledge, and associated likely hypotheses.

Figure 4. Information Flow among PRM Elements [Note: KB=Knowledge Base]
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The PRM construct, depicted in Figures 3 and 4, can be viewed as a “meta-level information management system”, in
general, and specifically when used within PMS, which is, a set of procedures and algorithms that capture the functional
(temporal and/or spatial) dependency relationships of the task or processes being modeled [14-17]. PRM consists of a
feedback planning/resource control system whose interacting elements are: “gather/assess”, “anticipate” and “predict”
[15-17], which are detailed, along with the required knowledge-bases, in Figure 4. Note: the “gather” part of the
“gather/assess” module (shown in Figures 3 and 4) fuses optimally weighted information from multiple sensors/sources,

and “assess” part functions are depicted in Figure 4.
2.1 Evolving tools for Levels 2/3

The TEAS software architecture, shown in Figure 2, was built on Common LISP and using the Automated Reasoning
Tool (ART) [18] an expert system building tool. There were several knowledge bases (KBs) as shown in Figure 2, (1)
Declarative KB (functional - not shown) consisting of: Static KB- relations via semantic network using inheritance
wherein the system exploits the inheritance structure of the KB to interpret incomplete data and a Pop-up menu driven
on-Line KB to keep track of targets encountered, and to support interpretation of incomplete data; and, (2)
Procedural/Operational KB consisting of: Production rules, interacting with a Dynamic KB using mathematical
constructs - associated with the Control KB which are coupled with the interacting feedback structure of the PRM
components of: Dempster-Shafer evidential reasoning (part of ID fusion expert system), Data Fusion/Tracking and
Anticipation Expert Systems providing the reasoning mechanism for TEAS to arrive at a comprehensive interpretation of
uncertain situations. The TEAS system was totally data Driven, i.e., LIFO - rules groups fired independently based on
available data, allowing all modules to access to information during any stage of the program. Simulation results
illustrated the interaction between a hypothetical scenario pilot thought process model (database derived from Jane’s
Book in all the Worlds Aircrafts) and the system, using simulated sensor reports to handle uncertainty. The TEAS
system ran on the Symbolics 3675 LISP machine. The question arises how would one implement the software
architecture of TAES today and what has changed since it was built.

As evident from the TAES construct, early approaches to higher-level fusion evolved from the mainstream use of early
expert system tools (e.g., Knowledge Engineering Environment, “KEE” [19], Automatic Reasoning Tool, “ART” [18]
built in Common-Lisp, both rule-based providing forward and backwards chaining, while ART provided hypotheses
generation capability and prediction), other tools were based on: strings oriented symbolic (objects-oriented) language
(SNOBOL-4) for pattern matching, common-LISP, logic (PROLOG), logical templates, procedural-LISP-based, such as
Procedural Reasoning System “PRS”, case-based languages, Blackboard (BB) system [20] representations, associative
memory [21], schema-based languages and neural networks (NN) for knowledge elicitation/learning/acquisition (viz.,
background NN learning the pilot’s functions), evidential reasoning and ID declarations fusion using Dempster-Shafer
calculi, tracking and related association algorithms, along with some of the basic methodologies remaining a part of
current approaches. It should be noted: the “anticipate/predict” module of PRM (see Figure 4) was initially implemented
using a KB of prior domain knowledge (which is automatically updated with current/latest knowledge), an inference
engine and ART. Subsequently it was modified and used an associative memory [21] NN provided at that time by DEC
corporation. The associative memory provided the “perceptual reasoning associative recall” function [22] in the PRM.

Current, and potential future trends, are primarily based on agent-based models [23] of interactions, including
Blackboard (BB) systems [20], NN behavioral learning systems for knowledge acquisition, ontology representations
(extending schemas), probability (Bayes-nets and Dempster-Shafer calculi and its extension [24, 25. 26] and possibility
(fuzzy-sets)-based methods [27], graph theory oriented relational representations, game theoretic methods of
optimization, some coupled with influence diagram formulations [28], but not excluding rule-based expert system tools,
such as CLIPS built using C and JAVA [29], with the above representing a non-exhaustive representative list. The
author is not aware of any comprehensive studies to compare the efficacy of the “historical main stream” and “current-
main stream” trends in order to learn from experience.

2.2 Knowledge representation and reasoning (KKR) approaches/issues, when AI and NNs are available
Related to section 2.1, methods of knowledge elicitation/acquisition, learning, representation and reasoning (KRR) have
not appeared to have made significant strides over the past several years in spite of several conferences devoted to KRR

[30], illustrating the difficulty associated with this topical area. The following list highlights potential KRR issues and
challenges [30, 31]:
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Adequacy of KRR
— Using logic, semantics, ontology, probabilistic methods, neural networks, associative memory,
blackboard, simulations, rules and computation - how to quantify and measure?
Expressiveness of models vs. tractability of inference
—  Measures of richness of model vs. knowledge that inference is decidable and will produce and answer
efficiently; and why correct and how arrived at that answer? [31]
Managing Complexity
—  Limits about tractability - how to bound the problem with incomplete knowledge
Data Information
—  How to manage heterogeneous and uncertain Knowledge Sources, and detect duplicate or incomplete
concepts
— Knowledge Acquisition/Elicitation Issues
*  Expert’s difficulty in verbalizing knowledge
* Reliability and uncertainty of knowledge, and how to calibrate (ground truth)
—  Methods for reasoning and discovery under uncertainty
* Indirect learning of knowledge - “on-line background” learning of “selected” features
Presentation of knowledge to different users/experts with different levels of expertise. i.e., what is
pragmatic?

3. CONCLUSIONS

The purpose of this position paper is to illustrate the 1987-1990’s use of NNs “Deep Learning” and Al algorithms, and
subsequently highlight the 1984-1987-on retrospectives and perspectives on issues and challenges of Levels 2/3
information fusion using Al and NNs methods as components of the implementations, by presenting an independent
point of view. There are many other possible additional implementation issues and challenges remaining, for example,
in: model refinement, computational and processing methods, optimization, automation and decision making under
uncertainty, human-machine interface and integration, distributed systems, knowledge elicitation, deep learning and
representation, and potentially many more issues and challenges that hopefully will be addressed as part of future
research in this area using new approaches.
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