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Introduction to the Invited Panel Discussion 
 
 
Deep Learning in AI and Information Fusion 
 
In the early days of artificial intelligence (AI) starting, say in the 1970s and 1980s, the 
predominant reasoning methods were logical and symbolic, using, e.g., Lisp/Prolog languages. 
Later in the 1980s, AI tools were used such as Knowledge Environment Engineering (KEE) and 
Automated Reasoning Tool (ART) expert systems, and early heuristic reasoning methods. Also, 
the concept and mathematical representation of “context” logic was defined. The concept 
and apps of both “knowledge based” and “context” are currently used in several apps in 
information fusion (IF) along with several methods to apply and learn contextual information. 
 
In the early 1980’s, AI was viewed as the solution to information fusion problems. In fact, many 
contributors to the first distributed sensor networks program were AI researchers. However, 
inadequate computing and AI approaches such as expert systems and heuristic uncertainty 
reasoning could not address the challenges of information fusion. Thus, important advances in 
information fusion, and in particular, multi-target tracking, were made with little contribution from 
AI. 
 
During the long AI winter, researchers addressed the deficiencies of early AI, developing rigorous 
representation and reasoning techniques for uncertainty, and machine learning approaches. 
Recently, data science was established as a popular area to exploit the large volumes of data 
(a.k.a. Big Data) collected by physical sensors and online activities using machine learning and 
other analytic tools. 
 
Artificial intelligence and data science pose both challenges and opportunities to IF. They are 
challenges because they appear to address the same problems as information fusion, but with 
more powerful techniques, thus siphoning away both research funding and research talent. 
However, these challenges can also be opportunities because AI and data science provide 
new research directions for information fusion. Examples include: IF with big data, hard and soft 
data fusion, learning about context, graph techniques for tracking and fusion, dynamic network 
analysis, apps to cyber and imagery processing. 
 
The objective of this panel was to bring to the attention of the fusion community the importance 
of the application of deep learning in AI and IF, highlighting issues, illustrating approaches and 
addressing challenges. A number of invited experts discussed challenges in processing and 
research, and addressed these challenges with IF. The panelists illustrated parts of the above-
mentioned areas over different applications and association with IF. The panel highlighted 
impending issues and challenges using conceptual and real-world related examples associated 
with the applications of above.  
 
 

Chee-Yee Chong 
Ivan Kadar 
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1

Invited Panel Discussion
Deep Learning in AI and Information Fusion : 

Deep Learning in AI and Information Fusion
Organizers

Chee-Yee Chong, Independent Consultant 
Ivan Kadar, Interlink Systems Sciences, Inc.

Erik Blasch, Air Force Research Lab

Moderators
Ivan Kadar, Interlink Systems Sciences, Inc.
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April  16, 2018
SPIE Conference 10646

“Signal Processing, Sensor Fusion and Target Recognition XXVII”
Orlando, ,FL 16-19  April 2018

Invited Panel Discussion

Panel Participants: 
Dr. Erik Blasch, Air Force Research Lab., U.S.A.
Dr. Chee-Yee Chong, Independent Consultant, U.S.A.
Professor George Cybenko, Dartmouth College, NH, U.S.A
(unable to attend
Professor Lynne Grewe, California State Univ, East Bay, U.S.A
Dr. Ivan Kadar, Interlink Systems Sciences, Inc., U.S.A.
Dr. Uttam K. Majumber, Air Force Research Lab., U.S.A

xv

Proc. of SPIE Vol. 10646  1064601-15



6/7/2018

2

Invited Panel Discussion
Presentation Topics

“Challenges of Using Deep Learning for Trusted Sensor 
Fusion”
Dr. Chee-Yee Chong, Independent Consultant

“Deep Learning and Computer Vision: Guidelines and Special 
Issues”
Professor Lynne Grewe and Garrett Stevenson, California State 
Univ, East Bay, CA

“ Deep Learning for Object Recognition from High Volume 
Radio Frequency Data”
Dr. Uttam K. Majumber,  Air Force Research Lab.

“Retrospectives on the Application of AI & Deep Learning in 
Information Fusion” (addendum to presentations)
Dr. Ivan Kadar, Interlink Systems Sciences, Inc.

xvi

Proc. of SPIE Vol. 10646  1064601-16



Challenges of Using Deep Learning for  
Trusted Information Fusion

1

Chee-Yee Chong  
Independent Researcher  
Los Altos, USA

cychong@ieee.org

Presented at Panel on Deep Learning in AI and Information Fusion
SPIE Signal Processing, Sensor/Information Fusion, and Target Recognition XXVII  
Orlando, Florida
April 16, 2018

Outline

2

• History of AI for information fusion

• Deep learning benefits and issues

• Framework for trusted information  
fusion

xvii
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Artificial Intelligence (AI) Is Everywhere

3

• AI has recent spectacular successes defeating humans

• Deep Blue beat world champion in chess (1997)

• Watson won US Jeopardy quiz show (2011)

• AlphaGo beat world’s top player (Ke Jie) in go (2017)

• AI is in everyday applications

• Smart phones – speech recognition, machine translation

• Homes – smart thermostat, robotic vacuum

• Cars – driver assistance

• In particular, AI/deep learning is used in sensor, data and information  
fusion, e.g.,

• BBC news, 4/13/2018: Chinese police have used facial recognition  
technology to locate and arrest a man who was among a crowd of  
60,000 concert goers.

AI Poses Challenges to Information Fusion

4

• AI is viewed as the solution for all fusion problems

• Low-level processing and object recognition

• Video surveillance

• Activity detection and behavioral analysis

• Network and patterns of life analysis

• AI/deep learning is more visible due to

• Beating humans in many applications

• Widely available hardware, software, and training data for development

• Successful use in many systems

• Results

• Sponsors turn to AI to solve information fusion problems

• AI attracts more students, researchers, and funding

• Virtuous cycle (funding -> research -> success -> more funding)

xviii
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Information Fusion is a Natural Application for AI

• Humans solve information fusion problems all the time

• Low level perception – environment, objects

• High level understanding – situation, prediction

Fusion  
Processing  

(on-line)

Algorithm  
Development  

(off-line)

Problem  
knowledge

/data

Data Results

Algorithm

Computer

Fusion  
Processing  

(on-line)

Algorithm  
Development  

(off-line)

Problem  
knowledge

/data

5

Data Results

Algorithm

Computer

Traditional approach relies on  
humans to develop algorithm

AI automates algorithm  
development

Human

AI Approaches for Information Fusion Are Evolving

• Expert systems (mimic human experts)

• Medical diagnosis

• Signal understanding

• Probabilistic reasoning (with models)

• Object recognition

• Situation understanding

• Neural networks / deep learning

• Feature extraction

• Speech understanding

• Object recognition

• Video tracking

Second wave of AI -
Statistical learning  
from data

First wave of AI -
Handcrafted knowledge

J. Launchbury, “A DARPA perspective on artificial intelligence,” 2017 
http://www.darpa.mil/attachments/AIFull.pdf

6

Third wave of AI -
Contextual Adaptation

xix
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Expert Systems for Fusion – MYCIN (~1975)

• Medical diagnosis

• Inputs: test results

• Outputs: infectious disease

• Rule-based system

• Knowledge base of few hundred IF_THEN  
rules: IF symptom A THEN disease B

• Inference engine by backward chaining

• Certainty factors to represent uncertainty

• Heuristic combination of evidence

• Performs better than many doctors

• Stimulated research on uncertainty reasoning

Use  
Interface

Inference  
Engine

Knowledge  
Base

B. G. Buchanan and E. H. Shortlife, Rule-Based Expert Systems: The MYCIN  
Experiments of the Stanford Heuristic Programming Project, Addison Wesley, 1984

7

Expert Systems for Fusion – HASP/SIAP (1970’s)

• Signal understanding system

• Inputs: acoustic signals from  
hydrophones

• Outputs: detection, location  
and type of vessel

• Rule-based system

• Hierarchy of rules for signal to  
symbol transformation

• Inference by knowledge  
sources responsible for  
different levels of processing

H. P. Nii, E. A. Feigenbaum, J. J. Anton,  
”Signal-to-symbol transformation: HASP/SIAP  
case study,” AI Magazine, 1982

8

xx
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Issues with Expert Systems for Information Fusion

• Knowledge acquisition

• Finding experts that can articulate their reasoning;  
experts with good intuition are not suitable

• Extracting knowledge from experts

• Knowledge representation

• Consistency and completeness of rules

• Representation of uncertainty

• Inference engine

• Control of inference

• Reasoning with uncertainty

• Processing speed

Use  
Interface

Inference  
Engine

Knowledge  
Base

9

AI in 1980’s

• 1981 – Japan started “Fifth Generation Computer”  
project to build intelligent computers

• United States responded with “Strategic Computing  
Initiative” with AI as main objective, including  
Autonomous Land Vehicle (ALV)

• ALV followed road in 1985 demo but vision system  
was very sensitive to

• Light and shadow – detect road edge at noon,  
but not with shadow at dusk

• Environmental change (like mud left along road  
by another vehicle)

• Booming AI industry (software, hardware) became a  
bust with AI winter in late 1980’s

J. E. Franklin, C. L. Carmody, K. Kellter, T. S. Levitt, B. L. Buteau, ”Expert system  
technology for the military: selected samples,” IEEE Proceedings, Oct. 1988.

10
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Neural Networks (1980’s)

• Motivated by physiology and function  
of neurons in brain

• Long history

• McCulloh, Pitts – 1940’s

• Widrow – 1960’s

• Hopfield, Rumelhart, Hinton –
1980’s

• Weights learned from training data

• Excellent for low level recognition task

• Implementation issues

• Black box approach cannot explain  
results

• Performance sensitive to training  
data

11

Uncertainty Reasoning in AI

12

• Information fusion has deal with uncertainty in evidence (input) and  
knowledge or data

• Drawback of neural network approach

• Recognized very early by expert system developers

• Uncertainty reasoning approaches

• Rule-based methods

• Probabilistic reasoning

• Evidence theory
• Dempster Shafer

• Dezert-Smarandache Theory (DSmT)

• Fuzzy sets

• Probabilistic reasoning became very popular in 1980’s

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible  
Inference. Morgan Kaufmann, 1988.

xxii
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Probabilistic Reasoning/Graphical Models

• Probability model expressed graphically as  
networks

• Nodes are random variables

• Weights on edges represent conditional  
probabilities

• Inference computes conditional probabilities  
given evidence

• Node elimination

• Junction tree

• MCMC

• Very natural for researchers with  
background in estimation theory

• Considered AI because of separation into  
knowledge and automatic inference

x

S

y1(t1)

xD(t1)

y1(t2)

xD(t2)

y1(tk)

xD(tk)

y2(t1) y2(t2) y2(tk)

x

T

13

Military Unit Detection from Synthetic Aperture  
Radar (SAR) Imagery

T. S. Levitt, C. L. Winter, C. J.Turner, R. A.  
Chestek, G. J. Ettinger, and S.M.Sayre, “Bayesian  
inference-based fusion of radar imagery, military  
forces and tactical terrain models in the image  
exploitation system/balanced technology initiative,”  
Int. J. Human Computer Studies, 1995

14
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15

Image &  
Hypothesis Space  

Reduction

Hypothesize  
& Test

Moving and Stationary Target Acquisition and  
Recognition (MSTAR)

• Program  
manager  
said “neural  
network is  
not allowed”

16
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AI for Information Fusion from 1990’s to 2010

17

• Probabilistic graphical models become main AI approach for fusion

• Rigorous treatment of uncertainty

• Model-based approach is explainable

• Many Inference techniques

• Models can be learned from data

• Can be extended to handle evidence theory, e.g., valuation networks

• Mathematic framework is similar to that of tracking

• Predict features from model

• Match extracted features with prediction (association problem)

• Update

• Meanwhile, neural networks are used for many low level functions where  
modeling is difficult and training is easy

• Then computers become more powerful and massive amounts of data are  
available

Shift from Knowledge-Based AI to Learning-Based AI

• Explicit problem knowledge

• Manual knowledge acquisition  
and representation

• Transparent fusion processing

Fusion  
Processing  

(on-line)

Algorithm  
Development  

(off-line)

Problem  
knowledge

Data Results

Algorithm

Computer

Fusion  
Processing  

(on-line)

Algorithm  
Development  

(off-line)

Problem  
data

18

Data Results

Algorithm

Computer

• Problem knowledge captured by data

• Training data acquisition without  
knowledge representation

• Black box fusion processing

xxv
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Deep Learning

• Deep neural network uses multiple hidden layers between input and output  
layers to model complex nonlinear relationships

• Input layers can be images or audio signals instead of features

19

What Makes Deep Learning Possible

• Deep learning is possible due to advances in computing power and  
available data

Largest networks

10 layers
1B parameters  
10M images  
30 Exaflops
30 GPU days

xxvi

Proc. of SPIE Vol. 10646  1064601-26



Machine Learning System
a G--, Cat

(11 \--.__- - --a

This is a cat.

ca---
o--
v---

O v CI--v-
This is a cat:

It has fur, whiskers, and claws.
It has this feature:

111,4) rwl
Current Explanation XAI Explanation

Deep Learning is Drawing Attention Away From  
Traditional Information Fusion

21

• Almost anyone can apply deep learning for his/her problems

• Open source software, e.g., TensorFlow, Theano

• Public domain data, e.g., ImageNet, Open Images Dataset

• Inexpensive powerful hardware, e.g., Nvidia, Intel, Google

• Deep learning has been successfully used in

• Video surveillance

• Object and threat detection

• Driverless vehicles

• Cyber security (where modeling is very difficult and data is plentiful)

Challenges of Using Deep Learning for Trusted  
Information Fusion

• Performance is only  
as good as data

• Large amounts of  
data are needed

• Training data for  
rare events are  
sparse

• Results are hard to explain

• Black box provides no visibility

22

• Research on explainable AI is still ongoing

• Thus few machine learning systems are used in critical missions or  
making life death decisions

DARPA Explaniable AI (XAI) Problem

xxvii
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Why did you do that?
Why not something else?
When do you succeed?
When do you fall?
When can I trust you?
How do I correct an error?

Tomorrow

Training
Data

New
Learning
Process

This is a cat:
It has fur. whiskers.

and claws.
a has this feature:

Explainable Explanation
Model Interface

User with
a Task

I understand why
i understand why not
I know when you'll succeed
I know when you'll fall
I know when to trust you
I know why you erred

DARPA Explainable AI Program Objective

23

From DARPA XAI briefing

Framework for Developing Trusted Fusion Systems

24

• Integrated knowledge and learning approach*

• Inference based on problem knowledge

• Explicit knowledge representation

• Explainable results

• Model parameters from machine learning

• Learning when model knowledge is weak and data are available

• Testable parameter estimation

* ONR solicitation (N00014-18-R-SN05) on integration of domain knowledge and  
machine learning to address shortcomings of deep learning (large training sets,  
brittleness, explainability, rare and complex events, etc.)

xxviii
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Robot sensor

True world state y, What the robot sees z,

Recurrent neural network

Related to PHD

Training and performance issues

0 0 0 0
O 0 0
O 0 0

0
o
0

t=2

00
0 o

Direct Learning of Sensor Input to Object Tracks

• Evaluation show problems: training time,

• Appears to be PHD

• Related to PHD

• Training and performance issues

P. Ondruska and I. Posner, “Deep tracking: Seeing beyond seeing using recurrent neural  
networks,” 30th AAAI Conference, 2016

25

Association Graph for Tracking

• Association graph provides efficient  
representation for possible associations

• Nodes: measurements or tracklets

• Edges: possible associations

• Paths: tracks

• Path cover: association hypothesis

• Track likelihood is sum of pairwise  
association likelihoods under Markov
assumptions

• Best association hypothesis can be  
computed in polynomial time as

• Bipartite matching

• Minimum cost network flow

C. Y. Chong, “Graph approaches for data association,” Fusion 2012.

i1 1 i i1 iP( y | y ,...., y )  P( y | y )

1y

y2

3y

y4

5y

y6

v1 v2 v3 v4 v5 v6

26

u1 u2 u3 u4 u5 u6

Track  
graph

Bipartite
graph

xxix
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Learning Association Costs in Association Graph

• Pairwise association costs can be computed

• Attributes of detections

• Measurement models

• Alternatively, they can be learned from data using back propagation

S. Schulter, P. Vernaza, W. Choi, and M. Chandraker, “Deep network flow for multi-object  
tracking,” CVPR 2017.

27

Integrated Knowledge/Learning for Multitarget Tracking

• Integrated knowledge/learning

• Higher performance

• Explainable

NN mapping  
data to tracks

NN mapping  
data to tracks

Training  
data

Sensor  
data Tracks

NN

Computer

Association  
graph  

solution

Association  
graph

Sensor  
data Tracks

Graph

Computer

Problem  
knowledge

Training  
data

28

• Direct learning

• Questionable performance

• Hard to explain

xxx
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Conclusions

29

• Information fusion researchers have love hate relationship with computers

• Love to develop algorithms for computers

• Hate when computers become too smart to take over their job

• Users do not care about specific approach as long as it provides solution

• AI and deep learning still cannot solve all fusion problems, especially in  
trusted or mission critical systems

• Trusted fusion system should exploit

• Knowledge when it is available and can be represented for inference

• Machine learning when knowledge is weak and data are available

xxxi
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"Deep Learning and Computer Vision: Guidelines and 
Special Issues "

Lynne Grewea, and Garrett Stevensona

aComputer Science, California State University East Bay, 
25800 Carlos Bee Boulevard, Hayward, CA USA, 94542

Deep Learning in AI and Information Fusion  Panel 

Computer	Vision	Today	&	Deep	
Learning
Computer Vision is becoming pervasive in today’s 
society and has a presence in self-driving cars,
cities of the future, drones, medicine and more.
Central to its use and popularity is the combination 
of Deep Learning and Computer Vision to tackle the 
important tasks of object classification and localization.

Recent developments of Computer Vision with Deep 
Learning will be discussed with guidelines & special issues

xxxii
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overview
• Trends: Vision and Deep Learning architectures

• Running on mobile platforms/embedded devices

• Multi‐Modal issues for Vision‐ a case study

• Temporal Networks ‐ LSTM

• General Adversarial Networks

• Varying data size

• Transfer Learning

• Guidelines

• Resources –datasets, frameworks & computation

• iLab (my) Deep Learning Research Projects

VISION	CNN	ARCHITECTURES	TRENDS

xxxiii
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filtering ReLU filtering ReLU
& downsampling

input convl poo11 conv2 pool2 hidden4 output

C onvolutiai

INPUT CONVOLUTION . RFLU POOLING CONVOLUTION . RFLU POOLING

FEATURE LEARNING

i

- CAR
- TRUCK
- VAN

Q - BICYCLE

FLATTEN FUMY SOT TMAU
CONNECTED

CLASSIFICATION

CNN‐basics

CNN	– has	multiple	layers	that	can	end	
with	fully	connected	and	softmax layer
• Deeper networks typically can distinguish greater number of 
objects/classes and/or handle harder discrimination tasks

xxxiv
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Shallow	CNN	for	simpler	
problem	of	Digit	recognition
• 4 convolutional layers + 1 fully connected layer 

Going	Deeper ResNet 152   ‐‐ has 152 layers !!!!!!!!
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Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per -pixel tasks like semantic segmen-

Problem	–Deeper	Network	
generally	slower
• Resnet ‐152   is 5 times slower than Alexnet

No	Fully	Connected	Layers

• Fully Convolutional Networks for Semantic Segmentation
(no fully connected layers)

Jonathan Long, Evan Shelhamer, Trevor Darrell,   CVPR 2015

There is ALL kinds of research going on in architectures for Deep Learning Networks –
sometimes you may have different architectures suited for different problems

xxxvi
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LOW	COMPUTATION	–MOBILE	AND	
EMBEDDED	DEVICES

When want to run on device

MobileNet – uses	Depthwise Separable	
parameters	to	reduce	number	of	parameters	
• Convolution = depthwise + pointwise

• perform a spatial convolution while keeping the channels separate 
and then follow with a depthwise convolution. 

Depthwise  pointwise

Why????   Saves on parameters ‐‐‐LESS to learn, yet still effective

xxxvii
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MobileNet –less	parameters
• For a depthwise separable convolution on the same example, 
we traverse the 16 channels with 1 3x3 kernel each, giving us 
16 feature maps (called DepthWise Convolution). Now, before 
merging anything, we traverse these 16 feature maps with 32 
1x1 convolutions each (called Pointwise convolution) and only 
then start to them add together. (this 1x1 is called a depthwise
multiplier of 1)

Comparison of number of parameters ‐‐> SEPARATED IS LESS!!!

• This results in 656 (16x3x3 + 16x32x1x1) parameters opposed 
to the 4608 (16x32x3x3) parameters from above.

SO its faster

MobileNet
• You can choose number of layers …example here with 9

xxxviii
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Ker°a's

Radar IR PMMW

• Framework = Target mobile and 
embedded devices

• enables on‐device machine learning 
inference with low latency and a small 
binary size.

• optimizing the kernels for mobile apps

• pre‐fused activations

• quantized kernels that allow smaller 
and faster (fixed‐point math) models.

• new FlatBuffers‐based model file 
format

• smaller than 300KB when all supported 
operators are linked and less than 
200KB when using only the operators 
needed for supporting InceptionV3 and 
Mobilenet.

• Java and C++ API support

Near future will add SSD –localization And 
hopefully soon with NN API hardware acceleration

Train using
TensorFlow
framework
then convert

MULTI	MODAL	
(multi	sensor)

‐‐‐handling different kinds of data

xxxix
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I
speech frames

I
Cropped mouth images

Multi	Modal	(multi	sensor)
• Have multiple different data from different sensors.

• CASE 1: Data Aligns spatially   

• CASE 2: Data does not align spatially 

CASE	1:		data	“aligns”	spatially
Questions:

• Do you process both in the CNN

• Do you have multiple CNNs?  How do you merge results?

• How will this effect Region Proposal (if doing localization)?

• How will this effect speed?

Options:

OPTION 1: Driven by one modality (e.g. 2D rgb processed first)

OPTION 2: Process in parallel with separate networks

OPTION 3: Process together with 1 network

xl
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Decision

11

SVM

Classifier

i
Depth CNN

Features Extraction

RGB CNN Features
&vection

OPTION	1:	single	data	drivenuse other	
data	later	in	process

• From B. Chen, R. Sahdev, J. Tsotsos, “Integrating stereo vision with a CNN tracker for a 
person‐following Robot”, International Conference on Computer Vision Systems, 2017

Merge later = Rulebase, SVM, Another FC Network, Algorithmic

“Merge”

OPTION	2:		separate	CNN	run	in	parallel	
for	each	sensor	data

Must combine results of separate CNNs:

• Fully connected layer

• SVM

• Rule‐based / algorithmic combination

xli
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Geocentric Encoding
of Depth

Disparity Height Angle

SVM

Classifier

i
Depth CNN

Features Extraction

RGB CNN Features
Extraction

Output
Object Detection

Instance

"MA
likg.

OPTION	1/2	hybrid:		rgb1st for	region	proposal	
then	both	rgb+depth run	in	parallel
• have RGB + Depth info

• FIRST: Get Region Proposal ONLY from RGB image

• 2 CNNs –
1 for depth, 
1 for RGB.   

• Gupta et al., “Learning Rich Features from RGB‐D Images for Object Detection and Segmentation”, ECCV 2014.

Continued…
• Results  Gupta et al., “Learning Rich Features from RGB‐D 
Images for Object Detection and Segmentation”, ECCV 2014.
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Option	3:	combine	data	into	1	
CNN

• From B. Chen, R. Sahdev, J. Tsotsos, “Integrating stereo vision with a CNN tracker for a person‐following Robot”, 
International Conference on Computer Vision Systems, 2017

4D =r,g,b,depth

Option	3:	another	example
• Here is a NON visual (but, temporal data) sensor example
From L. Jing, T. Wang, M. Zhao, P. Wang, “An Adaptive Multi‐Sensor Data fusion Method Based on Deep Convolutional Neural 
Networks for Fault Diagnosis of Planetary Gearbox”,  Sensors 2017.
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WHICH	option	is	best?
From B. Chen, R. Sahdev, J. Tsotsos, “Integrating stereo vision with a CNN tracker for a person‐
following Robot”, International Conference on Computer Vision Systems, 2017

• Compared options 1, 2, 3 –
for Person Detection & Tracking with RGB + Depth

#1=OPTION 3:  1 CNN for all data
#2= OPTION 2: 2 CNN in parallel
#3= OPTION 1: use only 1 sensor

CASE	2:	data	does	not	“align”	spatially

• Example speech (not 
spatial, temporal only) 
and vision 

• Process in parallel 
with separate CNNs

 this works because
there is temporal 
alignment

J. Hou, S. Wnag, Y. Lai, Y. Tsao, “Audio‐Visual Speech Enhancement Based on Multimodal Deep Convolutional Neural Networks”, 2017

xliv

Proc. of SPIE Vol. 10646  1064601-44



input
video

Spatial stream ConvNet
conv2 conv9 eonv4 convó falló fug'?
5,64256 3434512 3[4612 3.31612 4006 2048
strale 2 strida 1 abide 1 aktlal

pool 23¢
*Wat doPOla

pool 2142

I

ril class
Score

fusionTemporal stream ConvNet
coni conv2 conv3 conta convS 1ull6 1u07 softmax
747196 5164256 3x3x512 3x3x512 3x3x512 4096 2049
stride 2
norm

stride 2
pool 2x2

stride 1 siede 1 stride 1
pool 242

dropout dropout

pool 2x2

TEMPORAL	NETWORKS
‐‐‐‐taking in time

2014	– Two	steam	networks
From K. Simonyan and A. Zisserman, “Two‐Stream Convolutional Networks for Action Recognition in Videos”, Neural Information Processing 
Systems Conference, 2014

• “Separate” Visual and temporal

• 2 CNNs:  1) for single RGB image  2) for optical flow between 
current and previous frame(s).

xlv
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A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

CNN	RNN(Recurrent	Neural	Networks)

• Used in Speech other naturally temporal data (no spatial 
components)

• One Idea = Combine RNN and CNN in Sequence

Example from 
“Show and Tell Me” system
From O. Vinyals, A. Toshev, S. Bengio, D. Erhan,
“Show and Tell: A Neural Image Caption Generator”, 
CVPR, 2015. 

Image Captioning

CNN for Vision process  RNN for language generation

RNNs in comparison to a traditional CNN do not 
capture rich spatial information as well.

Problems	with	RNN
• “Long Term” Issue = Difficult to backpropogate an error  over a 
long‐range temporal span becomes difficult. 

• “Short‐term” Issue = Basic RNN does not allow network to 
“forget” previous hidden states.

xlvi
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Input Visual Sequence Output
Features Learning

i i

Activity Recognition
Sequences in the Input

Image Captioning
Sequences in the Output

Video Description
Sequences in the Input and Output

SOLUTION	 Long		Short	
Term	(memory)	Networks	=	
LSTM
• Have cells that allow for both “long‐term” and “short‐term” 
memory

• Can propagate without modification using a simple learned gating function 
and this is a kind of “long range learning”.  

• nodes in a LSTM network allow the network to learn when to “forget” 
previous hidden states and when to update hidden states given new 
information.   This is a kind of “short‐term” memory, basically having an 
expiration to previous information.  

CNFromJ.	Donahue,	L.	Hendricks,	M.	Rohrbach,	S.	Venugopalan,	
S.	Guadarrama,	K.	Saenko,	T.	Darrell,	“Long‐Term	Recurrent	
Convolutional	Networks	for	Visual	Recognition	and	Description”,	CVPR,	2017.
N	+	LSTM

GOAL:	Activity	Recognition,	
Image	Captioning,
Video	Description

CNN	 LSTM

xlvii
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OTHER	IDEAS=	PRE	PROCESSING	of	Temporal	
Information:
input	“temporal	segments”	 “using	2Stream	convolutional	system”
as	input	feature	vectors	into	a	CNN	for	recognition

• C. Ma, M. Chen, Z. Kira, G. AlRegib, “TS_LSTM and Temporal‐Inception:Exploiting Spatiotemporal 
Dynamics for Activity Recognition”, 2017

F

FIRST, extract “temporal segments” used
as input to the 2 Network models comparing

a 2D matrix composed of 
feature vectors across 
different time steps

Deep 
Learning 
Network 
like LSTM

continued…the	Temporal‐Inception	CNN	
• C. Ma, M. Chen, Z. Kira, G. AlRegib, “TS_LSTM and Temporal‐Inception:Exploiting Spatiotemporal 

Dynamics for Activity Recognition”, 2017

a 2D matrix composed of 
feature vectors across 
different time steps

• TWO TCLs at each layer
each different 
convolutional filters

• Each layer reduces 
temporal dimension
by half 

Fully
connected layers
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COMPARING:	LSTM	versus	Temporal	CNN(inception	style)

• Compare Temporal Segment LSTM and Temporal ConvNet as 
described in  C. Ma, M. Chen, Z. Kira, G. AlRegib, “TS_LSTM and Temporal‐

Inception:Exploiting Spatiotemporal Dynamics for Activity Recognition”, 2017

• Performed almost at the SAME level 94.1 versus 93.9 on 
UCF101 dataset for 

COMPARING

TS‐LSTM  and
Temporal ConvNet

GENERATIVE	ADVERSARIAL	
NETWORKS

‐‐ network to teach the network
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- Fake

Ake Image

Negative examples Positive examples

Real or fake pair? Real or fake pair?

I t 1

I ; I G

I I I D: Discriminator` ' G: Generator

GAN:	generative	
adversarial	network

• 2Networks:

• 1st network (“discriminator”) =
takes the image as input and output is the determination of whether the input is 
a true representation or fake representation of some class.  

• 2nd network (“generator”) is trained to generate input to train the first network.  The 
“adversarial” component of this concept is the second network (“generator”) tries to 
progressively create hard input to “fool” the first network.  

By doing so, ultimately the first network will achieve better discriminating 
capabilities, meaning higher accuracy

= zero‐sum or minimax two player game  

GAN	–parking	example	training

From X. Li, M. Chuah, S. Bhattachaya, “UAV Assisted 

Smart Parking Solution”, International Conference on 
Unmanned Aircraft Systems, 2017.

Discriminator network D = learns to classify
between real and
synthesized pairs

Generator network G =      learns to fool the
discriminator by
generating good
“fakes”

RESULT  use the Discriminator network D
for empty parking space detection

During the training process, these two networks 
are trained simultaneously, and the generator is 
learning to generate better synthesized pair while 
the discriminator is learning to telling the 
difference between the real and synthesized pairs. 

l
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RGB Image Segmentation
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GAN	–parking	example	training

From X. Li, M. Chuah, S. Bhattachaya, “UAV Assisted 

Smart Parking Solution”, International Conference on 
Unmanned Aircraft Systems, 2017.

Encoder‐Decoder often used for information translation problems, image segmentation, 
image synthesis

Generator network G =      learns to fool the
discriminator by
generating good
“fakes”

Generator Architecture =  Encoder‐Decoder Model

Convolutional Encoder + Decoder
Idea: decoder =  ”upconvolutional” layers

GAN‐ parking	example	results
Cameras mounted aerially –to be 
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The current CNN require a fixed input image size
(e.g., 224 x 224 )

Content loss

Crop

Distortion 224x224

Recognition accuracy is degraded!
4

Convolutional
Neural Network

(CNN)

KAIST

GAN	‐ applications
APPLICATIONS: 
1. may be more suited to future predictive problems such as future video frame predictions 
2. discriminator network could be used as a “feature extractor” stage in a more complex CNN.
3. Generator network could be used for synthesis    
4. GANs used to produce photorealistic images for modeling scenes, to reconstruct 3D 

models of objects from images and for texture synthesis [9‐11].   They have also been 
used for various object detection techniques like detection of open spaces for parking [12]. 

Application:

Resolution 
Enhancement

https://www.cs.toronto.edu/~duvenaud/courses/csc2541/slides/gan‐applications.pdf

SPECIAL	ISSUE	OF	DIFFERENT	DATA	
SIZE

‐‐‐ to resize or modify network

From http://slideplayer.com/slide/5277459/
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Inputa
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Option	1	–resize	data
• problem of variable sized input propagates down to the first 
fully connected/inner product layer which requires a vector 
of fixed size. 

• Resize data to expected input size for Network 

• SPECIAL NOTE: if there are NO Fully connected layers, you do 
not need to do this.   The output layer will be larger but, it 
does not represent classes but, feature vectors and can 
potentially be used in same way as before.   One example 
Encoder‐Decoder

Option	2	– “Spatial	Pyramid	Pooling”
• "Spatial Pyramid Pooling in Deep Convolutional Networks 
for Visual Recognition" by He et al. proposes a Spatial 
Pyramid Pooling layer.

• propose to add the Spatial Pyramid Pooling Layer just before 
the first fully‐connected layer (details in the paper). 

• hierarchically partitions the feature maps of the last convolutional 
layer (or the subsequent pooling or response normalization layer) 
into a fixed number of bins. 

• Within these bins, responses are pooled as usually, creating a fixed‐
sized output 

liii
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features

image

GUIDELINES

Guideline	1
• Decrease size of data slowly

• Bottom  Top

• The spatial resolution H ⨉W decreases 

• The number of channels C increases

liv
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"neuron"

neuron's
receptive field

One big filter bank

5 x 5 filters
+ ReLU

Two smaller filter banks

3 x 3 filters 3 x 3 filters
+ ReLU + ReLU

• Receptive field must be large enough
to capture objects of interest

• The image region influencing a neuron 

• Anything happening outside is invisible to 
the neuron

• HOW TO INCREASE RECEPTIVE FIELD

1. Large filters

2. Chains of small filters

Guideline	2	– Filters

Guideline	3‐ Filters
• User chain of smaller filters rather than  large filter

• Reduces number of parameters  faster

• Get same receptive field as the larger filters

• Get more nonlinearities introduced  (example 2 nonlinearities)

lv
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Hx Wx C

HI Wix Cx K

C= num. input channels

K = num. output channels

Num. of operations

HxHfxWxWf xCxK
stride stride

Num. of parameters

HfxWfxCxK

Guideline	4‐ number	of	filters	
in	layer	(=	#	output	channels)
• Be conservative, don’t have too many filters  (# filters K below)

Guideline	5	– when	computation	
issue	consider	separable	filters
• Like MobileNet consider separable filters to reduce number of 
parameters and hence computations.
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Proc. of SPIE Vol. 10646  1064601-56



The Pretrained Model is If your data is similar to
trained on ImageNet the ImageNet data
dataset Fix all CNN Layers

Train FC layer

FC layer

I Convlayer
L 4111
lah

Cony layer

FC layer

1 Cony layer

Cony layer

Your

data

Improvement of learning in a new task through the
transfer of knowledge from a related task that has
already been learned.

Weight initialization for CNN
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Learning and Transferring Mid -Level Image Representations using
Convolutional Neural Networks (Oquab el al. CVPR 20141

Ill Mot

1.-
1111 Puma

Mower

Target task 1.1011

Recommendation	–
transfer	learning	…
• Don’t have enough data

• Don’t have time/resources
to do full training

• Replace final layer(s) and 
retrain with your own 
data

Transfer	learning
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Recommendation	Summary
ISSUE RECOMMENDATION
More Complex Problems
 Large number of classes
 Large data set
 Greater confusion 

between classes

 Increase depth of network
 Current trend – use larger number of layers of small sized filters

Mobile and Low 
Computational Devices (IoT) 

For on device computation (otherwise consider cloud)

 Shallow Networks, minimize number of filters at each convolutional 
layer.

 Depthwise Separable Filters (reduce #parameters in mode) –
MobileNet architecture [4]

 Optimize networks (elimination of low contribution nodes, etc.)  
 Consider special purpose frameworks like TensorFlow Lite. [12]

Temporal  CNN + Long Term Short Term (LSTM) Networks 

Synthesis or Prediction  Consider Generative Adversarial Networks

Overall	Recommendations
ISSUE RECOMMENDATION

Multi‐Modal Data  Tradeoff consideration: potentially higher accuracy for increased 
computation of combined modality processing versus faster (and 
potentially lower accuracy) of having separate networks for each 
modality processing in parallel.

Data Size Variability  Pyramid approach [13]

 When size is different than trained network but, is fixed.  Use 
only front (not FC layers) for feature extraction and then create 
new FC layers for your new size.

 Otherwise necessitates rescaling of data to input size of existing 

Minimal Time and Resources
 Minimal time for 

training
 Minimal resources 

(computation, budget)

Perform Transfer Learning
 by finding a pre‐trained network that has ideally similarity

with your problem and replay the last layer(s)
 and retrain with your set of classes.
 Essentially use the pre‐trained network’s beginning feature

and potentially fully connected layers (minimally replace
the end layer)

lviii

Proc. of SPIE Vol. 10646  1064601-58



Overall	Recommendations

ISSUE RECOMMENDATION

Lack of Training Data
 Minimal data or none at all.
 Accommodate your sensor

data to size
 Scale training data or sensor

data to match

 Numerous data sets mostly for 2D rgb images such as ImageNet
[23], COCO [24]

 Emerging data sets in 3D [25-31]
 Specialized datasets -example: Person datasets: [32-35]
 Also, may consider use of pre-trained network if you research is

focusing on other issues

Resources
Beyond frameworks

lix
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This year ... Paddle
(Baidu)

Caffe -. Caffe2
(UC Berkeley) (Facebook) CNTK

(Microsoft)

Torch PyTorch
(NYU / Facebook) ( Facebook) MXNet

(Amazon)

Theano ,. TensorFlow
(U Montreal) (Google)

. ^.(I an WA.,lemma

Get up and running fast- Cloud AutoMl provides a simple graphical user interlace (GUI) for you to tram eraluate, approve,

and deploy models based on your own data You're only a levy minutes away from your own Custom

machine leamao model.

CNN	Frameworks
• Personal preference : TensorFlow  new TensorFlow lite for mobile 
devices using hardware acceleration on Android (android neural 
network api) 

Newer: Caffe2 and PyTorch , Paddle, CNTK, MXNet
Suggestion: use TensorFlow or PyTorch

Computational	Resources
• Cloud general
• New Google AutoML – As a service (in alpha) ‐

https://cloud.google.com/automl/

• Cloud Services: Google Machine Learning, Microsoft Cognitive 
Services

• https://cloud.google.com/ml‐engine/
• https://azure.microsoft.com/en‐us/services/cognitive‐services/

• Intel Movidius Neural Computing Stick
‐‐has VPU,  speed up Ubuntu laptop  w/ USB3
‐‐ supports Caffe Framework and uses Intel’s SDK
https://movidius.github.io/ncsdk/
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Datsets that	have	segmentation	
ground	truth
• http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

• http://cocodataset.org/#home

• Example from COCO

RGB‐D	datasets
• Image Net – 14 Million images, 21,841 sub‐categories

http://image‐net.org

• COCO – 100 objects, images= 200K labeled, 330K total
http://cocodataset.org
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SPECIAL	PURPOSE:	
RGB‐D	People	Dataset

• http://www2.informatik.uni‐freiburg.de/~spinello/RGBD‐dataset.html

• 3000 images from 3 Vertically mounted Kinect 

SLR	Human	attributes	dataset

• Person -rgb +depth (kinect) - 100 people, 100,000 
images http://srl.informatik.uni-
freiburg.de/human_attributes_dataset
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ILAB EFFORTS

iSight Goals
• Helping low vision with Mobility by better understanding of 
their visual world
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1
Me

efollow, detect,report

Mobile Device 

Object 
Identification & 
Localization

Visualization & 
TTS

SSD based 
MobileNet

Seeing	Eye	Drone
• Replace seeing eye dog

• Computer vision ‐3D, deep learning

• Obstacle detection and report

• Using Multiple CNN for
User Detection and Heading
and Obstacle Detection
and Selection for
Avoidance
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Conclusions
• Follow Guidelines

• “areas to explore”

• temporal learning

• Gamming the system ‐ GANs

• Multi‐modal considerations

• Varying data size

lxv
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Deep Learning and Computer Vision: Guidelines and Special Issues 
 

Lynne Grewea and Garrett Stevensona 
aComputer Science, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward, 

CA USA, 94542 
 

ABSTRACT 
 

The catapult of Computer Vision into recent societal prominence is represented by advancements in self-driving cars, 
drone autonomy, and cities of the future.  Central to these advancements are the developments of Deep Learning with 
Computer Vision to tackle the important tasks of object classification and localization.  This paper surveys some of the 
current research and presents current guidelines for working in computer vision with deep learning.  Additionally, 
special topics are highlighted including Multi-Modal Vision with Deep Learning and Temporal Networks. 
 
 
Keywords: Deep Learning, Computer Vision, Multi-Modal Deep Learning, Temporal Networks 
 

 
1. RESARCH TRENDS 

 
One Deep Learning research trend is “going deeper”, creating CNNs with a greater number of layers.   In [1], VGG Net 
is a CNN with 19 layers (2014).  In 2015, GoogLeNet [2], a 22 layer network, was able to achieve a top 5 error rate of 
6.7% and was different than previous CNNs in that is was not a sequentially layered network and instead had parallelly 
processed layers.  At the same time Microsoft ResNet [3] is a 152 layer network that produced an incredibly low error 
rate of 3.6% for the ILSVRC 2015 challenge.  Generally, more complex problems (larger number of classes) can require 
having deeper networks to yield higher accuracy. 
 
At the same time that some researchers have gone deeper, there is a strong interest in mobile vision and using CNN/deep 
learning on the mobile devices which are comparatively low computational devices compared to the machines running 
ResNet.    So, going deep (or as deep) will not work on these devices.  MobileNet [4] is an example of recent work that 
creates a CNN architecture that optimizes the network to run more efficiently on mobile devices by using depth wise 
separable convolution.  Following the MobileNet architecture a general guideline for low computational devices is to 
stick with shallower networks.   In [5], use of MobileNet architecture is shown for the iSight system that uses Deep 
Learning and Visualization to assist people with Low Vision.   
 
Another recent emerging trend is that of Generative Adversarial Networks [6,7].    With GANs there are two networks, 
the first network (“discriminator”) takes the image as input and output is the determination of whether the input is a true 
representation or fake representation of some class.  At the same time a second network (“generator”) is trained that 
generates input to train the first network.  The “adversarial” component of this concept is the second network 
(“generator”) tries to progressively create hard input to “fool” the first network.   By doing so, ultimately the first 
network will achieve better discriminating capabilities, meaning higher accuracy.  This can be thought of as a zero-sum 
or minimax two player game   This form of Deep Learning Networks may be more suited to future predictive problems 
such as future video frame predictions [8] over non-GAN CNNs.   Additionally, a GAN discriminator network could be 
used as a “feature extractor” stage in a more complex CNN.   GANs have been used to produce photorealistic images for 
modeling scenes, to reconstruct 3D models of objects from images and for texture synthesis [9-11].   They have also 
been used for various object detection techniques like the detection of open spaces for parking [12].  
 

2. MULTI-MODAL VISION AND DEEP LEARNING 
 

Multi-modal vision is the idea that more than one kind of data is being presented to the system.  This data may come 
from multiple sensors and may even be different in nature.  Multi-modal data processing with a Deep Learning 
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framework has not been fully explored but some examples can be found at [13-17].  One technique is to create a CNN 
only with one sensor data and use the other sensors’ data for additional information.  For example, in [17] a system is 
discussed that performs object detection using a CNN with only 2D image data.   Subsequently, two depth sensors (one 
stereo and the other based on IR technology) have collected depth information of the scene and using the detected 
location in the 2D image of the object, the 3D location of the object can be estimated.   The advantages of such a 
technique is more simplicity and faster processing than using multi-modal data in the CNN. 
 
In [15, 16], 2D image data and 3D depth information is used directly in the CNN.   In [16], an exploration of different 
ways to incorporate it are compared for performance.   Having separate CNNs that run in parallel for 2D and 3D is one 
case.  The second case is presenting 2D and 3D as a 4 D image input (r,g,b, depth) into a single CNN.   These two multi-
modal systems are compared to a 2D only (single sensor data) system.    The best results were achieved for the 4D image 
input. At the same time, this fused data network will be the largest and hence will potentially run slower than the 
separate CNN case which could potentially run the 2 separate CNNs in parallel.   This indicates that presenting all the 
data at once to a single CNN may yield superior results.  Certainly this approach will let the Network learn how to 
combine the data at different layers (and scales) to best achieve features to yield higher accuracies. 
 
 

 3. TEMPORAL NETWORKS 
 
In addition to looking at different kinds of sensor data, gathering data over time and processing it in a temporal fashion 
can yield superior results and allow for different applications like activity recognition (“man eating”, “woman walking”) 
and video captioning (“2 persons walking a dog”).    Architectures to incorporate temporal processing in include 
Recurrent Neural Networks (RNN) and Long Short Term (memory) Networks (LSTM).   Recurrent Neural Networks 
(RNNs) have been successfully applied to processing both speech and video analysis [18] but, are primarily used for 
speech as they do not inherently capture spatial data as CNNs do. One work looks at integrating CNN and RNN directly 
in [19].  However, the use of CNNs for temporal processing is best represented in Long Short Term Memory Networks 
(LSTM) [20-22]. 
 
One problem with neural network models using state information is the ability to backpropogate anderro  over a long-
range temporal span becomes difficult.   The LSTM networks have nodes which allow them to propogate without 
modification using a simple learned gating function and this is a kind of “long term effect” called “long range learning”.   
Additionally, the nodes in a LSTM network allow the network to learn when to “forget” previous hidden states and when 
to update hidden states given new information.   This is a kind of “short-term” memory, basically having an expiration to 
previous information.  In [20], a CNN is used to perform object identification which is fed into an RNN (textual input) to 
come up with a image caption.  More recently in [22], a CNN is used to process the image frames of a video sequence 
that is then fed into a LSTM to perform activity recognition, and both image and video captioning. 
 
 

 4. GUIDELINES 
 
Every vision application has different demands.   Some systems will have access to good computational resources and 
others may need to run on mobile and embedded systems.  Some systems will have single sensor data and others multi-
sensor/ multi-modal data and so on.   Table 1 shows some guidelines for different operating scenarios. 
 
ISSUE RECOMMENDATION 
More Complex Problems 

• Large number of classes 
• Large data set 
• Greater confusion between classes 

• Increase depth of network 
• Current trend – use larger number of small sized 

filters 

Future Looking 
• Beyond classification of current state, looking to 

predict future 

• Consider Generative Adversarial Networks 
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Mobile and Low Computational Devices (IoT) For on device computation (otherwise consider cloud0 
• Shallow Networks 
• Depthwise Separable Filters (reduce #parameters 

in mode) – MobileNet architecture [4] 
• Optimize networks (elimination of low 

contribution nodes, etc.)   
• Consider special purpose frameworks like 

TensorFlow Lite. [13] 
Multi-Modal Data • Tradeoff: potentially higher accuracy for 

increased computation of combined modality 
processing versus faster (and potentially lower 
accuracy) of having separate networks for each 
modality processing in parallel. 

Data Size Variability • Pyramid approach [14] 
• When size is different than trained network but, is 

fixed.  Use only front (not FC layers) for feature 
extraction and then create new FC layers for your 
new size. 

• Otherwise necessitates rescaling of data to input 
size of existing  

Minimal Time and Resources 
• Minimal time for training 
• Minimal resources (computation, budget) 

• Perform Transfer Learning -by finding a pre-
trained network that has ideally similarity with 
your problem and replay the last layer(s) and 
retrain with your set of classes.   Essentially use 
the pre-trained network’s beginning feature and 
potentially fully connected layers (minimally 
replace the end layer) 

Temporal Processing Needed 
• Video applications, time sequence data 

• Use Long Short Term (memory) Network 
(LSTM)  (or CNN+RNN) 

Lack of Training Data 
• Minimal data or none at all. 
• Accommodate your sensor data to size 
• Scale training data or sensor data to match 

• Numerous data sets mostly for 2D rgb images 
such as ImageNet [23], COCO [24] 

• Emerging data sets in 3D [25-31] 
• Specialized datasets -example: Person datasets: 

[32-35] 
Table 1:   Current Deep Learning Recommended Guidelines based on Research Trends. 
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Explain
Categorize

Describe

*

1st Wave

Handcrafted Knowledge

Humans program systems
with explicit rules or logic in

limited domains

/ 2 "d Wave

Machine Learning

Systems learn statistical
models of specific problems

using big data

Con

3`d Wave:

textual Adaptation

Rich collaboration between
humans and machines enabled
by shared perceptions of the

real world

Introduction to AI

• AI – Machines to think/behave/react - ANN

• ML – Data for (Machines) to learn - RL, BN, ILP

• DL – Brain-Inspired NN for robust methods – CNN, RNN
 (mostly supervised from labeled data)

AI: Artificial Intelligence

ANN: Artificial Neural Networks

RL: Reinforcement Learning

BN: Bayesian Networks

ILP: Inductive Logic Programming

CNN: Convolutional Neural 
Networks

RNN: Recurrent Neural Networks

Reference: Andrew Fogg, A history of Deep 
Learning, (import.io)

Reference:

DARPA Public Release: RF Machine Learning Systems (RFMLS) Industry Day

https://www.darpa.mil/attachments/RFMLSIndustryDaypublicreleaseapproved.
pdf

Three Waves of Artificial Intelligence 
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Big Data

https://www.slideshare.net/EdurekaIN/introduction-to-big-data-hadoop-i
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Research On Big Data

• Operational deployment considerations, computation efficiency 
(SWaP-C) 

– The need for HPC for real-time computing

• Model fidelity complimented with data collections for synthetic-
measured data analysis

• Transfer Learning over operating spaces (range, resolution, 
target settings)

• Big data (volume, velocity, veracity, variety) collaboration 
policies – what data are accessible for analytics

• Robust evaluation: Validation, Verification, for reproducible 
results

The Need for Real-time Computing

→ In 90’s, Machine Learning such as Neural Networks was 
less popular due to various Tech Barriers and Needs
► Computational Resources were Scarce and Expensive

► Limited Sensors or Digitized Business Data to be Analyzed

Today, computational resources are not as expensive as 
in the past; however, abundant of Sensors and Business 

data needs to be analyzed in Real-time

HPC Enables ML algorithm based decision making in 
real-time or near real-time
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CPU
Few, fast cores (1 - 16)
Good at sequential processing

GPU
Many, slower cores (thousands)
Originally for graphics
Good at parallel computation

The Advent of HPC

• Since Late 90’s, Computing Technology Has Advanced in an 
Astounding Pace (The Moore’s Law)

• We are Living in the Age of HPC
Faster memory, CPU, I/O communication, and storage as well as 

compact/smaller size 

Multi-core Computers

Graphics Processing Units

Energy-efficient/low-power computing devices (IBM’s TrueNorth)

• More to come
 Memristor Devices

Specialized Chip/cores for Sparse Graph Processing

Recent HPC Hardware Used for 
ML Algorithms

IBM’s TrueNorth FPGA
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Table 1. The number of images of each object at different depression angles.

Targets BMP2 BTR70 172 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234

17° 2.33 233 232 256 299 298 299 299 299 299
15° 587 196 582 195 274 274 274 273 274 274

T72-132 BRDM2 BTR60

ïr 2 yCl D7

GPU Enabled Target Classification 
Measured SAR Data

 Training, validation, and testing data come from the
MSTAR* program sponsored by DARPA and the AFRL in 
the 1990s

 10 target classes with images taken at various angles

– 15 Degree Elevation Angle dataset for training, 17 
Degree dataset for testing

– Roughly 250 images per target class, per angle

– Generally considered an incredibly small dataset for a 
deep learning application

 Using a single GPU at AFRL/RI HPC

* MSTAR: Moving and Stationary Target Acquisition and Recognition

Target types
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python

flVIDIA.

Caffe

SAR Imagery  

BMP2 T72

T62 2S1 ZIL131D7

BTR70 BRDM2 BTR60

ZSU234

Software Tools

• Python – Data augmentation methods

• Caffe – Deep learning framework employed via DIGITS 
and command line
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Caffe

• Deep Learning framework developed by the 
Berkeley Vision and Learning Center (BVLC)

• Written in highly optimized C++/CUDA code

• Easily define network architectures

• Modify DL models as needed for an application

Caffe ML Algorithm Flow

Gather and label data
Convert data and 
labels to LMDB* 
format

Train model in 
Caffe using training 
dataset

Save learned weights

Evaluate Performance
Test model in Caffe
using test dataset

* LMDB: Lightning Memory-Mapped Database Manager
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0.2

0
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Epoch

600 700 1000

100 200 600 400 500 600 700 800
I

900
II

1000

loss (train) accuracy (val) loss (val)

100

70

10

0

I0815 12:03:19.780280 3181 caffe.cpp:300]
I0815 12:03:19.780316 3181 caffe.cpp:300]

I0815 12:03:19.810564 3181 caffe.cpp:300]

I0815 12:03:19.810609 3181 caffe.cpp:300]

I0815 12:03:19.840967 3181 caffe.cpp:300]

I0815 12:03:19.841004 3181 caffe.cpp:300]
I0815 12:03:19.871201 3181 caffe.cpp:300]

I0815 12:03:19.871237 3181 caffe.cpp:300]

I0815 12:03:19.871246 3181 caffe.cpp:305]
I0815 12:03:19.871261 3181 caffe.cpp:317]

I0815 12:03:19.871305 3181 caffe.cpp:317]

Batch 996, accuracy = 1

Batch 996, loss = 0.0115048

Batch 997, accuracy = 1
Batch 997, loss = 0.0182748

Batch 998, accuracy = 0.953125

Batch 998, loss = 0.154708
Batch 999, accuracy = 1

Batch 999, loss = 0.000220068

Loss: 0.115863
accuracy = 0.989016

loss = 0.115863 (* 1 = 0.115863 loss)

Clean training run

Neural Net reaches over 99% accuracy on validation set 

Classification results on
Measured Data 

~99% accuracy on 10-target classification using Caffe
State-of-the-art results 

Learning rate 0.001

Batch size 64

1000 training epochs

5 Convolution layers

3 InnerProduct (FC) layers

2x2 stride 1 max pool filters

Key network parameters

Dropout regularization
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Target Classification Using DNN on 
Synthetic SAR Data

 Training, validation, and testing data used from Synthetic 
Radar Data

 30 target classes with images taken at various elevation 
angles and a single azimuth angle

 Instead of Backprojection Image formation, we used 
Range-Doppler Map of the Targets

 We found about 99% accuracy on Target classification

Target Classification Using DNN on 
Synthetic and Measured SAR Data

 The objective of this research is to evaluate performance 
of target classification using Synthetic vs. Measured SAR 
data ( or vice versa) and identifying the “Gap/Tech 
Challenges” to generate High Fidelity Synthetic SAR data

 We implemented Training on measured SAR data for three 
targets and Tested on Synthetic SAR data (of the same 
targets)

 We found very low accuracy on Target classification

 This is due to the fact that quality (i.e. NIIRS) of synthetic 
data must be very close to measured data

 This will require huge HPC resources and expertise in 
Computational Electro-magnetic

 TRANSFER LEARNING
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Summary

• Research on applying DL techniques to multi-sensor 
information fusion is evolving

• Followings are key research that needs to be 
addressed: 

– Filling the Gap/mismatch between measured and synthetic data

– Transfer Learning over operating spaces (range, resolution, target 
settings)

– Robust evaluation of the algorithms

– Operational deployment considerations, computation efficiency 
(SWaP-C) 
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ABSTRACT   

Much research efforts have been devoted to applying deep learning (DL) algorithms in video 
imagery for object recognition. However, very limited publications can be found on technical 
challenges and approaches to execute DL algorithms in radio frequency (RF) data.  This talks 
highlights recent advancements of DL on synthetic aperture radar (SAR) imagery for object 
recognition.  Radar enables imaging ground objects at far greater standoff distances than an electro-
optic sensor.  Further, radar enables imaging a scene and obtaining salient features of objects in all 
weather/day-night conditions. One example is that future self-driving/autonomous vehicles/cars 
could  integrate radar among other sensors for decision making while sharing the roads and avoiding 
collisions/accidents. Existing non-DL based object recognition algorithms are less accurate and 
require impractically large computing resources.  DL enables more accurate, realtime/non-realtime, 
and low-power object recognition system development. An examples is presented on Convolution 
Neural Network (CNN) based SAR object recognition for GPU and energy efficient computing 
systems.  Results demonstrate acceptable classification accuracy on relevant SAR data.   
 

Keywords: Deep Neural Network (DNN), Artificial Intelligence (AI), Synthetic Aperture Radar 
(SAR), Radio Frequency (RF), Big Data 

RF BIG DATA  

According to IBM[1, 2], big data has several characteristics. Among these are volume, velocity, 
variety,  and veracity.  A big volume of data could be processing terabytes to exabytes or more data 
in a milliseconds or seconds.  In some applications, RF data could be collected from petabytes to 
exabytes and these data need to be processed (e.g., object recognition) in real-time or near real-time.  
Radar images are difficult for humans to analyze. It requires significant efforts for accurate 
interpretation; however a DL system is very capable to interpret these images. The benefits of 
utilizing radar technology are evident given its advantages over electro-optical imaging.  
Specifically, radar is able to operate in a variety of operating conditions—including poor visibility, 
inclement weather, and night-time settings.  Given the disparity between the technical capabilities of 
radar and its difficulty of interpretation, it is a goal to develop accurate methods for automatically 
recognizing objects in radar images without the need for expensive expert analysis.  The benefits of 
object recognition for radar imagery include developing self-driving cars to autonomous systems.   
 

                                                
1 Correspondence: ukmccny@gmail.com 
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Though most recent work in applying artificial neural networks (ANN) to computer vision has 
focused on electro-optical images, the application to radar imagery is of particular interest for our 
research. Previously, achieving RF object classification using DL methods was the absence of 
necessary computational power.  A radar imagery data collection project—called Moving and  
Stationary Target Acquisition and Recognition (MSTAR)  program—was funded by DARPA and  
the AFRL in the 1990s to fill the void in available radar data for object classification research[3, 4].  
Additionally, the recent introduction of affordable GPU computing resources[5] has made the 
efficient processing of datasets for deep learning (DL) applications a reality for RF object 
classification research efforts.   

CONVOLUTIONAL NEURAL NETWORKS 

Convolutional neural networks (CNN) are a special case of neural networks, as they make the 
explicit assumption that the input data are of constant size. This enables certain features to be 
encoded in them.  In particular, the computational units, or “neurons,” share parameters with their 
neighbors. The connections conceptually result in an intuitive visualization of the network as a series 
of filters that “slide” or “pool” over regions they are connected to—producing mathematical output 
based on the parameters, or “weights,” of each filter.  The output produced by these filters is then fed 
to other filters connected to them, and so on, concluding with a fully connected dens network shown 
in Figure 1. 
 

 
Figure 1: Illustration of Convolution Neural Networks [6] 

 
Through training, these filters learn to respond to complex features in image data.  Filters closer to 
the data input layer learn to recognize simple features, such as edges.  Mid-level filters might learn 
compositions of edges, like simple shapes.  High-level filters then learn complex abstractions of the 
data, such as compositions of shapes forming full objects of interest.  Thus, CNNs are a natural fit 
for working with the conceptual hierarchy of features present within image data. 
 

EXPERIMENTS ON RF OBJECT CLASSIFICATIONS 
Software tools used for this research are: Caffe, DIGITS, Python, and LMDB.  Caffe is a deep-
learning framework maintained by the Berkeley Vision and Learning Center (BVLC)[7].  Caffe 
provides full end-to-end capability for deep learning tasks, and is the deep learning framework of 
choice for many in the machine learning community. 
Experimental data were extracted from the MSTAR public dataset [3]. The MSTAR public dataset 
contains several hundred SAR  images of a variety of targets collected in varying conditions.  Sandia 
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National Laboratory used an X-band radar sensor at 1-foot resolution in spotlight mode to collect 
target data at 15, 17, 30, and 45-degree depression angles.  Images taken at varying azimuth angles 
provide a 360-degree view of each given target.  The images are 128x128 pixel chips containing a 
target roughly centered within its background.  Bulldozers, trucks tanks, and anti-aircraft vehicles 
are among the targets included in the dataset as shown in Figure 2 with the SAR images in Figure 3.   
 

 
Figure 2: Electro-optic Images of Objects 

 

 
 

Figure 3: SAR Images of Objects 
 

RESULTS 
On MSTAR public release data [3], 99% classification accuracy was achieved using the model 
specifications described in Chen, et al. [8].  Most DL architectures tested reached an accuracy limit 
of 98.3%-98.7%, depending on testing batch size and number of testing iterations ran.  This held true 
for models employing small convolution filters, models with additional convolution layers before 
pooling, and models with fully connected layers at the end of the network architecture.  Dropout 
regularization provided an accuracy improvement of roughly 0.5% over models not employing a DL 
technique. Though a relatively modest improvement, it is nonetheless indicative of the benefits of 
using dropout to ensure a model’s ability to generalize to new data. 
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CONCLUSION AND FUTURE RESEARCH 
Research on applying DL techniques to multi-sensor information fusion is evolving, such as for 
image fusion [9]. Integrating RF sesnsor for Artifical Intelligence (AI) and information fusion has 
lots of technical challenges. Followings are key research that needs to be addressed:  
 

• RF Synthetic Data Research: DL algorithms require lots of training data. Hence, research 
needs to be conducted to develop high fidelity synthetic RF data to augment measured RF 
data. This is important as measured RF data are expensive to collect.  

• Transfer Learning Algorithms Development: Develop transfer learning techniques over 
operating spaces (e.g., range, resolution, target settings) 

• Robust Evaluation of DL Algorithms: Results (classification accuracy) of DL algorithms are 
meaningless unless they are validated with representative operating environments (e.g., 
environment) [10]. Hence, validation and verification for reproducible object classification 
results in extensive operating conditions are very important.  

• Computational Efficiency: Developing a real-time training algorithms and size, weight, and 
power-constrained (SWaP) computing systems will be required for future DL-based AI 
systems.  
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    BACKGROUND-PERSPECTIVES 

 
   In this position paper concrete examples of the use of Neural Networks (NNs) and Artificial Intelligence (AI) 
components in Information Fusion (IF), are presented, based on work performed in the 1980s and 1990s-on at Grumman 
Aerospace Corporation, Advanced Technology Development Department, in Bethpage NY. 
   While the application of AI was prominent before NNs became popular, this paper starts with a description of my short 
verbal introduction to the subject at the panel, viz., NNs; and subsequently expands on the subject to depict the 
application of AI and NNs for IF applications.  
   As further detailed below, as part of the work at the Advanced Technology Development Department, of the 
Knowledge-Based Processing Systems Group and associated Knowledge-Based AI Technology development laboratory 
(1984-1990), founded and managed by the author starting in 1983, we used:  tracking, association and fusion algorithms, 
and developed: e.g., Common-LISP-based algorithms/programs/systems, including an interactive digital LISP-based 
image processing facility for both low-level vision processing and for an initial capability of  high-level image 
understanding towards target recognition; used Expert Systems Tools [1], NNs [2], Dempster-Shafer theory (DST)-
based algorithms for evidence representation and combination/fusion [3] and Fuzzy-Sets [4]; the latter three were also 
considered part of AI and not IF during that time frame. Given the available tool sets, we also developed the architecture, 
designed and implemented the simulation of a Tactical Assessment Expert System (TAES) [5]; all delineated in the 
sections below. 
           1. NEURAL NETWORKS 
 
   During my short introduction at the panel discussion the subject being addressed and the participants, only highlighted 
one aspect of the subject: “Deep Learning” [6, 7], viz., the use of Neural Networks (NNs) for significant feature(s) 
recognition back in the 1987-1990’s-on.  
   During that time frame we used a three hidden layer abductive polynomial NN [8] as the feature selection component 
of a ground-based-emitter discrimination algorithm in mid 1990s, resulting in a US Patent in 1999 [9]. Other 
components of the algorithm included Fuzzy Sets [4], and a related classifier. 
An example abductive polynomial NN is shown below [8]: 
 
 

  where, in the equations shown in the algebraic forms below, the w’s are the weights learned by regression, and the x’s 
are the input variables. 
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Singles, doubles, and triples are elements whose names are based on the number of input variables. The
algebraic form of each of these elements is shown in the following equations:

Single = WO + (W1 *Xl) + (W2 *X12) + (W3 *X13)

Double = WO + (W1 *Xl) + (W2 *X2) + (W3 *X12)+ (W4 *X22) + (W5 *Xl *X2) + (W6 *X13)
+ (W7*X23)

Triple = WO + (W1 *Xl) + (W2 *X2) + (W3 *X3) + (W4 *X12) + (W5 *X22) + (W6 *X32) + (W7*X1 *X2)
+ (W8 *Xl *X3) + (W9 *X2 *X3) + (W10*Xl *X2 *X3) + (W11 *X13) + (W12 *X23) + (W13 *X33)

        
                                                  Figure 1. An abductive polynomial NN example [8] 
    Given the CPU clock speeds of the mid 1990s, the training alone took two days. That is, computers were very slow 
(100-300 MHz clock speeds), memory was scarce and very expensive, and even the three hidden layers network took a 
day to converge to the solution.  
   The term “Deep Learning“ [6, 7] (referring to hidden layers in NNs) was not introduced at that time although the 
network had three hidden layers, and indeed it “deep” learned.  
   Of course, today’s Deep Learning NNs [7, 10] have multitudes of hidden layers for features recognition, but even the 
fastest special-chip-based networks do not always converge in real-time use quickly enough, (as mentioned in articles 
published in the Technology Related Business Sections in the New York Times during the Spring 2018). 
 
                                        2. ARTIFICIAL INTELIGENCE (INCLUDES NNs) 
 
   Sections below, illustrate the complementary interactions and harmonious use of AI and NNs components in IF 
applications. Part of the material is adapted in part from the author’s position paper within: “Results from Levels 2/3 
Fusion Implementations: Issues, Challenges, Retrospectives and Perspectives for the Future – An Annotated 
Perspective” presented at the SPIE Signal Processing, Sensor Fusion and Target Recognition XVII conference, Proc. 
SPIE Vol. 6968, Orlando Fl., April 2008.  
   It is well known that the concept of Situation Awareness (SA), (Level 2), and Threat Assessment (TA), (Level 3); 
SA/TA existed before the Joint Director of Laboratories Fusion Model (JDL) [11, 12, 13], viz., JDL established the 
numerical representation and “at-that-time” definition of Fusion “Levels” [9]. This is illustrated in a “circa 1984-1986 
vintage” simulated “Tactical Assessment Expert System architecture,” [14] depicted in Figure 2.  
   The TAES system utilized knowledge-based Expert Systems tools combined with numerical algorithms with the 
primary objective to reduce pilot workload so the pilot becomes the systems manager not just the operator.  
 
 
 
 
 
 
 
 
 
 
 
 
 
                
 

 
 
 

                                       Figure 2. Tactical Assessment Expert System Functional Architecture 
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That is, the TEAS system could inform the pilot: targets detections/IDs, environmental data and system status reports, 
and suggested tactical decisions for pilot’s override. This was accomplished by modeling and encoding pilot’s thought 
processes (via interviews) to form of an “experienced-software-copilot” during the SA/TA knowledge acquisition stage. 
The fundamental construct/design guidance for this system was based on an early fusion model (before JDL), called the 
“Perceptual Reasoning Machine (PRM) paradigm” [15], shown as an internal governing component of the Generic 
Information Fusion Process Model System (PMS) [14,15,16,17] shown in Figure 3. The dotted and yellow-highlighted 
blocks shown in Figure 2, correspond to the PRM functions shown in Figure 3. Figure 4 depicts the information flow 
among the PRM elements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
                                          Figure 3. Genetic Information Fusion Process Model System (PMS)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                             Figure 4. Information Flow among PRM Elements [Note: KB=Knowledge Base]                            
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   The PRM construct, depicted in Figures 3 and 4, can be viewed as a “meta-level information management system”, in 
general, and specifically when used within PMS, which is, a set of procedures and algorithms that capture the functional 
(temporal and/or spatial) dependency relationships of the task or processes being modeled [14-17]. PRM consists of a 
feedback planning/resource control system whose interacting elements are: “gather/assess”, “anticipate” and “predict” 
[15-17], which are detailed, along with the required knowledge-bases, in Figure 4. Note: the “gather” part of the  
“gather/assess” module (shown in Figures 3 and 4) fuses optimally weighted information from multiple sensors/sources, 
and “assess” part functions are depicted in Figure 4. 
 
2.1 Evolving tools for Levels 2/3 
 
   The TEAS software architecture, shown in Figure 2, was built on Common  LISP and using the Automated Reasoning 
Tool (ART) [18] an expert system building tool. There were several knowledge bases (KBs) as shown in Figure 2, (1) 
Declarative KB (functional - not shown) consisting of: Static KB- relations via semantic network using inheritance 
wherein the system exploits the inheritance structure of the KB to interpret incomplete data and a Pop-up menu driven 
on-Line KB to keep track of targets encountered, and to support interpretation of incomplete data; and, (2) 
Procedural/Operational KB consisting of: Production rules, interacting with a Dynamic KB using mathematical 
constructs - associated with the Control KB which are coupled with the interacting feedback structure of the PRM 
components of: Dempster-Shafer evidential reasoning (part of ID fusion expert system), Data Fusion/Tracking and 
Anticipation Expert Systems providing the reasoning mechanism for TEAS to arrive at a comprehensive interpretation of 
uncertain situations. The TEAS system was totally data Driven, i.e., LIFO - rules groups fired independently based on 
available data, allowing all modules to access to information during any stage of the program. Simulation results 
illustrated the interaction between a hypothetical scenario pilot thought process model (database derived from Jane’s 
Book in all the Worlds Aircrafts) and the system, using simulated sensor reports to handle uncertainty. The TEAS 
system ran on the Symbolics 3675 LISP machine. The question arises how would one implement the software 
architecture of TAES today and what has changed since it was built. 
   As evident from the TAES construct, early approaches to higher-level fusion evolved from the mainstream use of early 
expert system tools (e.g., Knowledge Engineering Environment, “KEE” [19], Automatic Reasoning Tool, “ART” [18] 
built in Common-Lisp, both rule-based providing forward and backwards chaining, while ART provided hypotheses 
generation capability and prediction), other tools were based on: strings oriented symbolic (objects-oriented) language 
(SNOBOL-4) for pattern matching, common-LISP, logic (PROLOG), logical templates, procedural-LISP-based, such as 
Procedural Reasoning System “PRS”, case-based languages, Blackboard (BB) system [20] representations, associative 
memory [21], schema-based languages and neural networks (NN) for knowledge elicitation/learning/acquisition (viz., 
background NNs learning the pilot’s functions), evidential reasoning and ID declarations fusion using Dempster-Shafer 
calculi, tracking and related association algorithms, along with some of the basic methodologies remaining a part of 
current approaches. It should be noted: the “anticipate/predict” module of PRM (see Figure 4) was initially implemented 
using a KB of prior domain knowledge (which is automatically updated with current/latest knowledge), an inference 
engine and ART.  Subsequently it was modified and used an associative memory [21] NN provided at that time by DEC 
corporation. The associative memory provided the  “perceptual reasoning associative recall” function [22] in the PRM. 
   Current, and potential future trends, are primarily based on agent-based models [23] of interactions, including 
Blackboard (BB) systems [20], NN behavioral learning systems for knowledge acquisition, ontology representations 
(extending schemas), probability (Bayes-nets and Dempster-Shafer calculi and its extension [24, 25. 26] and possibility 
(fuzzy-sets)-based methods [27], graph theory oriented relational representations, game theoretic methods of 
optimization, some coupled with influence diagram formulations [28], but not excluding rule-based expert system tools, 
such as CLIPS built using C and JAVA [29], with the above representing a non-exhaustive representative list. The 
author is not aware of any comprehensive studies to compare the efficacy of the “historical main stream” and “current-
main stream” trends in order to learn from experience. 
 
2.2 Knowledge representation and reasoning (KKR) approaches/issues, when AI and NNs are available  
 
Related to section 2.1, methods of knowledge elicitation/acquisition, learning, representation and reasoning (KRR) have 
not appeared to have made significant strides over the past several years in spite of several conferences devoted to KRR 
[30], illustrating the difficulty associated with this topical area. The following list highlights potential KRR issues and 
challenges [30, 31]: 
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• Adequacy of KRR  

– Using logic, semantics, ontology, probabilistic methods, neural networks, associative memory, 
blackboard, simulations, rules and computation - how to quantify and measure? 

• Expressiveness of models vs. tractability of inference 
– Measures of richness of model vs. knowledge that inference is decidable and will produce and answer 

efficiently; and why correct and how arrived at that answer? [31] 
• Managing Complexity 

– Limits about tractability - how to bound the problem with incomplete knowledge 
• Data Information 

– How to manage heterogeneous and uncertain Knowledge Sources, and detect duplicate or incomplete 
concepts 

– Knowledge Acquisition/Elicitation Issues 
• Expert’s difficulty in verbalizing knowledge 
• Reliability and uncertainty of knowledge, and how to calibrate (ground truth)   

– Methods for reasoning and discovery under uncertainty   
• Indirect learning of knowledge -  “on-line background” learning of “selected” features 

• Presentation of knowledge to different users/experts with different levels of expertise. i.e., what is 
pragmatic? 
 

3. CONCLUSIONS 
 
   The purpose of this position paper is to illustrate the 1987-1990’s use of NNs “Deep Learning” and AI algorithms, and 
subsequently highlight the 1984-1987-on retrospectives and perspectives on issues and challenges of Levels 2/3 
information fusion using AI and NNs methods as components of the implementations, by presenting an independent 
point of view. There are many other possible additional implementation issues and challenges remaining, for example, 
in: model refinement, computational and processing methods, optimization, automation and decision making under 
uncertainty, human-machine interface and integration, distributed systems, knowledge elicitation, deep learning and 
representation, and potentially many more issues and challenges that hopefully will be addressed as part of future 
research in this area using new approaches. 
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