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I. INTRODUCTION 

With the raise of resolution, optical payloads are becoming increasingly sensitive to satellite jitter. An 
approach where the entire spacecraft is pointed with great accuracy requires sophisticated and expensive bus 
design. In an effort to lower the overall cost of space missions that require highly stable line-of-sight pointing, a 
method of separating the bus and the payload with low frequency isolators is proposed. This isolation system 
can block the transmission of disturbance and allow relatively large bus motion. However, if the isolator is 
linear then there is a trade-off between isolation and static deflection as the launch and the on-orbit stage have 
difference requirements on the isolation frequency. Otherwise, an extra locking system should be appended to 
protect the payload before getting into orbit, as the STABLE isolation system[1] and the MIM isolation system[2] 
did.  

To overcome this limitation, an alternative approach is to design a nonlinear isolator with high-static 
stiffness during launch and low dynamic stiffness on orbit. Several specially designed nonlinear isolators have 
achieved low dynamic stiffness with large static load capacity. Virgin[3] considered a structure made from a 
highly deformed elastic element to achieve a softening spring. Platus[4] exploited the buckling of beams under 
axial load in a specific configuration to achieve a negative stiffness in combination with a positive stiffness, and 
hence low-dynamic stiffness. Others have achieved the same by connecting linear springs with positive stiffness 
in parallel with elements of negative stiffness[5]~[7]. 

In the present study, a bifunctional isolator has been developed for optical payloads. The isolator have good 
performance both during launch and on orbit because of its specially designed nonlinear stiffness and damping. 
The isolator works in a linear part with low stiffness and small damping ratio under the micro-vibration and 
microgravity on orbit. The transmissibility requirement and the displacement restriction during launch are 
satisfied by tuning the nonlinear stiffness and damping parameters. A group of sample isolators are designed 
tested both statically and dynamically. 
II. MECHANICAL MODEL DESIGN 

The dynamic environment during launch is quite different from on-orbit. In the launch phase, the overload 
factor varies slowly and can be treated as quasi-static load. Meanwhile, large dynamic load is induced by jet 
vibration, noise, and stage separation. When the spacecraft get into orbit, the quasi-static load disappears and the 
vibration induced by the moving parts on the satellite is at the micro level. A nonlinear isolator can be 
constructed with different equivalent stiffness under the two load conditions to meet the different requirements 
of these two phases. The equivalent stiffness under launch load should be high enough to restrict the static 
deformation, while the on-orbit state stiffness should be much lower to isolate the disturbing vibration. 
According to the requirements, a mechanical model possessing low stiffness when the deformation is small and 
higher stiffness when the deformation is large can be constructed, as is shown in Fig.1. 

Assuming the static load is sF  and expanding the nonlinear stiffness as exponential series, the stiffness of 

the isolator can be expressed as 
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The damping force can be written as 
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The width of linear part is define as 
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Fig. 1. Stiffness Curve of the Isolator 

III. DYNAMIC RESPONSE ANALYSIS 
A. On-orbit Transmissibility 

The on-orbit excitation at the payload mounting surface is typically low level wide band micro vibration, 
with the spectrum distributing from 5Hz to 2000Hz. By setting the width of linear part larger than the maximum 
relative displacement of the payload, the isolator will work in the linear part on orbit. Therefore, the on-orbit 
isolation frequency is solitarily determined by  0k

0
0

1

2

k
f

m
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According to the classical vibration isolation theory, the isolation frequency should be less than 1/ 2  times of 
the lower bound of the disturbing frequency. To achieve better isolation performance, the isolation frequency 
should be lower and the damping ratio should not be too large. Typically, the isolation frequency is no less than 
1Hz to avoid coupling with the attitude control system.  
B. Launch Transmissibility 

( )kf x ( )cf x
 

Fig. 2. Single Degree of Freedom System 
 

During launch, the spacecraft endures large quasi-static load and severe dynamic load. The stiffness of the 
isolator should be high enough to restrict the displacement of the payload. In addition, the isolation frequency 
should be tuned to avoid coupling vibration with the vehicle or the satellite. Since the natural frequency of the 
payload is usually much higher than the isolation frequency, the dynamic model can be simplified as a single 
degree of freedom system as shown in Fig.2. 

By assuming the payload mass m , the displacement of the payload and the mounting surface  e t  and 

, the governing equation can be written as  u t

( ) ( , )k cme f e u f e u e u F        s                                                            (7) 

Several methods for calculating the dynamic response of piecewise linear system are proposed in references 
[8]~[10], including harmonic balance method, equivalent linearization method, and perturbation method. 
However, there are limited research on the dynamic response of polynomial piecewise nonlinear system as 
shown in Fig. 1. In the present study, it is solved by applying harmonic balance method. Assuming the relative 
displacement 

 x e u                                                                                    (8) 
The equivalent dynamic equation can be written as 

sind eq d eq dmx c x k x mB t                                                                  (9) 

where  is the amplitude of the base acceleration and B dx  is the dynamic component of the relative 

displacement. Assuming the response is harmonic 
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   sindx t A t                                                                        (10) 

the equivalent stiffness  and the equivalent damping  can be expressed aseqk eqc [11] 
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Without loss of generality, one can specify that . Expanding the integrand in 1 2,x x  0 (11)  and (12), after a 

little algebra, one can obtain 
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The absolute transmissibility can be written as 
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The backbone equation is 
2 0eqk m                                                                                (26) 

Equation (25) and (26) are implicit functions of the amplitude and frequency, which can be solved with Newton 
iteration method. 
IV. PARAMETER DISCUSSION 

To simplify the discussion of parameters, the stiffness of the nonlinear part is approximated with only one 
parameter by assuming 

0ia i 2                                                                  (27) 
Define the second isolation frequency as 
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Fig. 3. Influence of Second Isolation Frequency                         Fig. 4. Influence of Linear Width  

on Backbone Curve                                                                     on Backbone Curve 
To examine the effect of the second isolation frequency alone, five different values of frequency 20, 25, 30, 

35 and 40 are used here along with the assumption of both the width and the stiffness of the linear part are 
constant. Fig.3 illustrates its influence on the backbone curve.  

Each curve in the figure has two turning points due to the characteristic of nonlinearity. When the 
amplitude increases, the deformation of the isolator becomes larger than x1 and get into the linear part, where the 
equivalent stiffness, as well as the peak frequency, drops down and the first turning point appears. When the 
amplitude is large enough, the isolator pass through the linear part and get into the nonlinear part on the other 
side. Thus, the equivalent stiffness and the peak frequency rise and here comes the second turning point. The 
maximum excursion of the isolation frequency is the subtraction of the frequencies at the two turning points. 
Numerical results show that the excursion is magnified by the increase of the second isolation frequency. 

The influence of the width of linear part on the transmissibility is examined by setting the second isolation 
frequency and the linear stiffness constant and choosing different value of x  from 0.1mm to 2.5mm, as shown 
in Fig.4. It can be seen from the figure that all the curves share the same first turning point, and the amplitude of 
the second turning point is x  larger than the first one. The bigger the width is, the larger the frequency 
excursion will be. 

                     
Fig. 5. Influence of Load Factor                            Fig. 6. Influence of Damping Coefficients  

on Backbone Curve                                                 on Transmissibility 
Since the load factor varies during the launch phase, it is necessary to discuss its influence on frequency 

excursion. A bunch of curves are obtained with the load factor varying from 0.2 to 6.0 and all the other 
parameters being constant, as is shown in Fig.5. It can be deduced from the findings displayed in this figure that 
the frequency excursion is significantly enlarged when the load factor goes down. Accordingly, the isolation 
frequency should be examined with the lowest load factor to satisfy the frequency restriction.  

The damping is another factor that significantly affects the isolation performance and needs proper design. 
As analyzed in section 3.1, the damping ratio of the linear part should be small to obtain acceptable on-orbit 
isolation performance. The effect of the damping coefficients of the nonlinear part is examined by assuming the 
linear part non-damped and all other parameters constant. It can be concluded from Fig.6 that the peak value 
drops down along the backbone curve as a result of an increase in the damping coefficient.  
V. DESIGN APPROACH 

The design problem for minimizing the vibration transmitted to the payload during launch can be 
formulated as the following optimization problem  

 0 1 2min , , , ,rms ie a k c c x                                                                (29) 

subject to on-orbit isolation frequency constraint 
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Width constraint of linear part 

 lx x                                                                             (31) 

Isolation frequency constraint during launch 

   l

peak

u                                                                     (32) 

Peak value constraint of transmissibility during launch 

   ua                                                                 (33) 

Static displacement constraint during launch 

   ufd n d                                                 (34) 
Table 1 Design constraints and optimized parameters of the sample isolator 

item constraint Design parameter value 

On-orbit isolation frequency f0 1.5Hz f0 1.5Hz 

Width of linear part △x >1mm △x 1mm 

Isolation frequency during launch 20-35Hz f2 32Hz 

Peak value of transmissibility during launch <3.5 c0 0Ns/m  

Static displacement during launch <3mm c1 32.5 10 Ns/m
The constraint equations defining the feasible domain are highly nonlinear in terms of the designing parameters. 
To overcome difficulties due to these nonlinearities, the multi-island genetic algorithm is applied to solve the 
problem. A sample isolator for 40kg payload is designed with this method. The design constraints and 
optimized parameters are listed in table 1.  
VI. EXPERIMENTAL STUDY 
A. Static Stiffness Test 

                                              
Fig. 7. Sample of the Isolator and Clamps for Static Test     Fig. 8. Static Stiffness Curve of the Isolator 
The sample isolators are manufactured according to the optimized parameters in section 5. Static test is 

conducted to verify the parameters, as is shown in Fig.7. Fig.8 is the tested static stiffness curve. With piecewise 
linear approximation and least square approximation approach, the tested parameters can be obtained as follows, 

, , . The width and stiffness of the linear part are quite close to the 

designed value, while the second isolation frequency is slightly higher but still within the constrained frequency 
range. The deformation of the isolator is 2.64mm when the load factor is 5.0, which means the isolator can 
effectively restrict the payload and avoid large amplitude sway during launch. 

0.92mmx  0 1.50Hzf  2 33.06Hzf 

B. Launch Environment Test 

 
Fig. 9. Launch Environment Test 

The launch environment test is conducted to verify the isolation performance during launch. The payload is 
connected to the vibration bracket by four isolators and excited from the bottom by the shaking table, as is 
shown in Fig.9. The power spectrum density of excitation and response is shown in Fig.10. From the tested 
transmissibility, it can be found that the peak frequency is 32.5Hz and the peak value is 3.29. The response 

Proc. of SPIE Vol. 10565  105651P-6



ICSO 2010                                                                     Rhodes, Greece 
International Conference on Space Optics                                                                             4 - 8 October 2010 

drops below the excitation level in the frequency range above 50Hz. The root mean square acceleration 
transmitted to the payload is attenuated to 28.82% of the excitation level, from which it can be concluded that 
the dynamic environment of the payload is well improved.  

      
(a) Excitation Level                         (b) Response of the Payload 

Fig. 10. Results of Launch Environment Test 
VII. CONCLUSION 

A bifunctional isolator with nonlinear stiffness and damping has been developed in the present study. The 
nonlinear characteristic is designed with a high stiffness under the launch load resulting in a small-static 
deflection, and a small dynamic stiffness on orbit resulting in a low natural frequency and hence a greater 
frequency range over which there is vibration isolation.  

Influence of the parameters on the dynamic response during launch and on-orbit isolation performance is 
discussed. The major findings are as follows: 
a) Since the width of the linear part is larger than the maximum on-orbit relative amplitude, the isolation 

frequency is solitarily determined by the linear stiffness. 
b) Parameter study of the backbone curve shows that the isolation frequency excurses downward from the 

second isolation frequency when the excitation level rises. The excursion is positively related with the 
second isolation frequency and the width of the linear part while negatively related with the static load. 

c) It can be concluded from the transmissibility analysis that the peak point drops down along the backbone 
curve when the damping coefficient increases. 
The optimization problem was formed to get the minimum vibration transmission design and solved by 

applying multi-island genetic algorithm. A group of sample isolators are manufactured based on the optimized 
parameters and tested statically and dynamically. Test results indicate that: 
a) The displacement of the isolator under the maximum static load is small, which means the payload can be 

effectively restricted during launch. 
b) The vibration transmitted to the payload was attenuated by more than 70%. So that the dynamic 

environment during launch is well improved. 
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