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ABSTRACT  

Interferometry is a powerful tool often used for the metrology of surfaces with many applications in industries such as 
optical fabrication, data storage, machine tool, and semiconductor. For many years interferometers have been built into 
microscopes so surface microstructure can be measured. Phase-shifting interferometric techniques have provided an 
extremely accurate rapid way of getting the interferogram data into the computer and the inherent noise in the data 
taking process is so low that in a good environment angstrom or sub-angstrom surface height or thickness measurements 
can be performed. The recent development of single-shot phase-shifting techniques has made it possible to perform 
accurate phase measurement techniques in less than ideal environments and to make movies showing how surface shape 
or optical thickness is varying with time. These same interferometric techniques can be applied to biomedical 
applications. This paper will trace the history of the development of these interferometric techniques that led to the 
application of these techniques to looking at cells and tissues. 
 
Keywords: phase measurement, interferometry, phase-shifting, metrology, interferometric, optical measurement, 
interferometric microscope, phase imaging 
 

1. INTRODUCTION  
Interferometry is an extremely powerful tool for measuring surface height or optical thickness variations of samples with 
applications in many, many fields. To make interferometry most useful, it is essential that there is a good way of getting 
the interferometric data into the computer so this interferometric data can be analyzed to get the most information 
possible about the sample being measured or studied. Since the personal computer has become readily available in the 
1980s many techniques have been developed for getting interferometric data into a computer. The purpose of this paper 
is to briefly look at many of the best techniques. While most of these techniques were developed for applications in 
metrology, these same techniques can be applied for looking at cells and tissues.  
 
The paper begins with a brief look at basic interferometry and two basic interferometers. This will be followed by a 
description of phase-shifting interferometry, vertical scanning interferometry, and various single-shot dynamic 
interferometry approaches for rapidly getting interferometric data into the computer. Throughout the paper metrology 
applications will be illustrated. The paper will conclude with a brief introduction to using these interferometric phase 
gathering techniques in biomedical/biological applications. 
 

2. BASIC INTERFERENCE AND INTERFEROMETRY 
Interference and interferometry are described in many, many references.1-6 As far as this paper is concerned we will be 
involved only with two-beam interference and we will assume the two beams are coherent with respect to each other so 
when the two beams are combined interference fringes will be obtained as shown in Figure 1. If the wavefronts of the 
two interfering beams match, except for a tilt between the two beams, straight equally-spaced fringes result. As shown 
below, the shape and deviation from equal spacing of the fringes gives the phase difference between the two interfering 
beams. The well know two-beam equation below describes the irradiance of the interference pattern. I1 and I2 are the 
irradiances of the two interfering beams and ∅ଵ − ∅ଶ is the phase difference between the two interfering beams.  
ܫ  = ଵܫ + ଶܫ + 2ඥܫଵܫଶ cosሺ∅ଵ − ∅ଶሻ 
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 The irradiance of the interference pattern can be written as ܫሺݔ, ሻݕ = ௗ௖ܫ + ,ݔሾ߶ሺݏ݋ܥ௔௖ܫ ሻݕ +  ሻሿݐሺߙ
where φ(x,y) is the phase being measured and α(t) is the phase shift.  If four frames of data are taken as the phase 
changes by 90o between readouts, the irradiance for the four measurements and the measured phase, φ(x,y), are given by ܫଵሺݔ, ሻݕ = ௗ௖ܫ + ,ݔሾ߶ሺݏ݋ܥ௔௖ܫ ሻݐሺߙ	݂݅										ሻሿݕ = ,ݔଶሺܫ	0 ሻݕ = ௗ௖ܫ − ,ݔ௔௖ܵ݅݊ሾ߶ሺܫ ሻݐሺߙ	݂݅										ሻሿݕ = ,ݔଷሺܫ	2ߨ ሻݕ = ௗ௖ܫ − ,ݔሾ߶ሺݏ݋ܥ௔௖ܫ ሻݐሺߙ	݂݅										ሻሿݕ = 	ߨ

,ݔସሺܫ ሻݕ = ௗ௖ܫ + ,ݔ௔௖ܵ݅݊ሾ߶ሺܫ ሻݐሺߙ	݂݅										ሻሿݕ = 2ߨ3 	
ܶܽ݊ሾ߶ሺݔ, ሻሿݕ = ,ݔସሺܫ ሻݕ − ,ݔଶሺܫ ,ݔଵሺܫሻݕ ሻݕ − ,ݔଷሺܫ  									ሻݕ

While this is a very simple equation, it is very powerful and an excellent way of getting interferogram data into a 
computer.  As a result of the subtraction and division and performing the calculation at each detector point, the effects of 
fixed pattern noise and gain variations across the detector are canceled out, as long as the effects are not so large that the 
dynamic range of the detector becomes too small to be of use. 
 
It is interesting to note that when the original ideas for PSI were developed, PSI was not practical.  Solid-state detector 
arrays were not yet available, computers were large, expensive and not as powerful as you would want, and the required 
electronics were massive.  The early phase-shifting interferometers built in the late 1960’s and early 1970’s were 
extremely expensive and difficult to build and they had racks of electronics and only a few discrete detectors, while 
presently PSI systems are built using inexpensive personal computers and 4 million pixels, or larger, detector arrays are 
common. 
 
As an example of a phase-shifting interferometer we will show a computerized interferometric microscope system for 
the measurement of surface microstructure where a repeatability of the surface height measurements of less than 0.1 nm 
can be obtained for smooth surfaces and by using multiple-wavelengths and coherence scanning techniques surfaces 
having height variations larger than hundreds of microns can be measured to within an accuracy of a few nanometers. 
 
Figure 5 shows a simplified schematic of the instrument16-18, as well as a photo of a phase-shifting interference 
microscope.  The configuration shown in the figure utilizes a two-beam Mirau interferometer at the microscope 
objective.  In the figure a tungsten halogen lamp is used as the light source, although LEDs are currently more common.  
In the phase-shifting mode of operation, a spectral filter of approximately 40 nm bandwidth centered at 650 nm is used 
to increase the coherence length.  For the vertical scanning mode of operation described below, the spectral filter is not 
used.  Light reflected from the test surface interferes with light reflected from the reference. The resulting interference 
pattern is imaged onto the CCD array.  The output of the CCD is digitized and read by the computer. The Mirau 
interferometer is mounted on either a piezoelectric transducer (PZT) or a motorized stage so that it can be moved 
vertically. Thus, a phase shift is introduced into one arm of the interferometer.  By introducing a phase shift into only 
one arm while recording the interference pattern that is produced, it is possible to perform either the phase-shifting 
technique described above or the vertical scanning coherence sensing technique described below. 
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௘௤ߣ  = ଶߣሾݏܾܣଵߣଶߣ −  ଵሿߣ
 
The maximum surface slope that can be measured is still a quarter-wavelength between adjacent detector points, but now 
it is a quarter of the equivalent wavelength, not a quarter of the individual shorter wavelengths.  Thus, the dynamic range 
of the measurement is increased by the ratio of the equivalent wavelength to the individual single wavelength.  
Unfortunately, the noise is increased by the same ratio.  It is easy to get around this increased noise when steps are being 
measured.  The single wavelength measurements are correct, except the step heights are off by an integer number of half 
wavelengths.  The errors in the step heights can be corrected by comparing the heights measured using the equivalent 
wavelength with the heights measured using the single wavelength and adding or subtracting an integer number of half 
wavelengths to the heights measured using the single wavelength so the difference between the single wavelength 
measurement and the equivalent wavelength measurement is less than a quarter wave.  In this way it is possible to obtain 
the dynamic range of the equivalent wavelength and the accuracy of the single wavelength measurement. 
 
Often, a better way to increase the dynamic range of an interference microscope is to use coherence scanning23-25.  In the 
coherence scanning mode of operation a broad bandwidth source is used.  Due to the large spectral bandwidth of the 
source, the coherence length of the source is short, and good contrast fringes will be obtained only when the two paths of 
the interferometer are closely matched in length.  Thus, if in the interference microscope the path length of the sample 
arm of the interferometer is varied, the height variations across the sample can be determined by looking at the scan 
position for each sample point for which the fringe contrast is a maximum.  In this measurement there are no height 
ambiguities and since in a properly adjusted interferometer the sample is in focus when the maximum fringe contrast is 
obtained, there are no focus errors in the measurement of surface microstructure.  In the vertical scanning mode, nearly 
any type of surface can be measured as long as the reflected light gets back through the microscope objective.  However, 
care has to be taken that while almost any surface can be measured, there may be errors in the measurement.  For 
example, if a very rough surface is measured, there may be multiple reflections of the light in the surface structure 
resulting in errors in the surface measurement26-27.  In spite of this potential problem, the coherence scanning interference 
microscope is widely used in a wide variety of industries including magnetic data storage, semiconductor, machine tool, 
biomedical, etc. 
 
It is interesting that the ideas of coherence scanning certainly go back to the days of Michelson, but it was not until the 
1990’s that the required detectors and computers were available for making a practical commercial system25.  The early 
commercial systems used DSPs to perform the required calculations to simultaneously determine the coherence 
calculations at all detector points.  Then personal computers became powerful enough to do the calculations without 
DSPs and since then as computers became faster and faster it became easier to do the calculations at a million or more 
data points at vertical scan speeds of greater than 25 microns per second. It is interesting to think about what Michelson 
could have done if he had the computers, electronics, and detectors that we now have. 
 
Temporal phase-shifting interferometry is extremely useful, but sometimes either the sample or the environment is 
changing so fast there is need for taking all the phase-shifting frames in a single shot. A single-shot interferometer is less 
insensitive to vibration and if a sample is changing with time, the changes in the sample can be measured and movies 
can be made showing how the sample changes as a function of time. In temporal phase shifting interferometry we are 
taking three or more frames of data at different time, while in the single-shot measurement all the data is taken at once, 
however there is a time-space tradeoff. In the single shot approach more detector elements are required to get the same 
spatial resolution. Fortunately, detector arrays having millions of pixels are now available. 
 
3.2 Spatial carrier 

One of the oldest single-shot technique is what is often called the spatial carrier technique.28-30 In the spatial carrier 
technique, a lot of tilt is introduced between the two interfering beams so a lot of tilt fringes are obtained as show in 
Figure 7. Because of the tilt fringes the resulting interferogram is sometimes called a hologram. A Fourier Transform can 
be taken of the hologram to give different orders as also shown in Figure 7. The first order can be spatially filtered out 
and an inverse Fourier transform can be taken to obtain the wavefront. When the technique was first introduced, it was 
not very useful because detector arrays having a large number of pixels were not available. Now that solid-state detector 
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