
PROCEEDINGS OF SPIE 

Volume 7353 
 
 

Proceedings of SPIE, 0277-786X, v. 7353 
 

SPIE is an international society advancing an interdisciplinary approach to the science and application of light. 
 

Metamaterials IV 

Vladimir Kuzmiak 
Peter Markoš 
Tomasz Szoplik 
Editors 
 
20–22 April 2009 
Prague, Czech Republic 
 
 
Sponsored by 
SPIE Europe 
 
Cooperating Organizations 
Institute of Physics, Academy of Sciences (Czech Republic) 
Department of X-Ray Lasers, Institute of Physics (Czech Republic) 
Czech and Slovak Society for Photonics (Czech Republic) 
Photonics Society of Poland (Poland) 
 
Published by 
SPIE 
 



The papers included in this volume were part of the technical conference cited on the cover and 
title page. Papers were selected and subject to review by the editors and conference program 
committee. Some conference presentations may not be available for publication. The papers 
published in these proceedings reflect the work and thoughts of the authors and are published 
herein as submitted. The publisher is not responsible for the validity of the information or for any 
outcomes resulting from reliance thereon. 
 
Please use the following format to cite material from this book: 
   Author(s), "Title of Paper," in Metamaterials IV, edited by Vladimir Kuzmiak, Peter Markoš, Tomasz 
Szoplik, Proceedings of SPIE Vol. 7353 (SPIE, Bellingham, WA, 2009) Article CID Number. 
 
ISSN 0277-786X 
ISBN 9780819476272 
 
Published by 
SPIE 
P.O. Box 10, Bellingham, Washington 98227-0010 USA 
Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445 
SPIE.org 
 
Copyright © 2009, Society of Photo-Optical Instrumentation Engineers 
 
Copying of material in this book for internal or personal use, or for the internal or personal use of 
specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by 
SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this 
volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright 
Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made 
electronically through CCC Online at copyright.com. Other copying for republication, resale, 
advertising or promotion, or any form of systematic or multiple reproduction of any material in this 
book is prohibited except with permission in writing from the publisher. The CCC fee code is 
0277-786X/09/$18.00. 
 
Printed in the United States of America. 
 
Publication of record for individual papers is online in the SPIE Digital Library. 

 
SPIEDigitalLibrary.org 
 
 
 
 

 
Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published 
first online and then in print and on CD-ROM. Papers are published as they are submitted and meet 
publication criteria. A unique, consistent, permanent citation identifier (CID) number is assigned to 
each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as 
soon they are published online, and connects the same identifier to all online, print, and electronic 
versions of the publication. SPIE uses a six-digit CID article numbering system in which: 

 The first four digits correspond to the SPIE volume number.  
 The last two digits indicate publication order within the volume using a Base 36 numbering 

system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 
05, 06, 07, 08, 09, 0A, 0B … 0Z, followed by 10-1Z, 20-2Z, etc. 

The CID number appears on each page of the manuscript. The complete citation is used on the first 
page, and an abbreviated version on subsequent pages. Numbers in the index correspond to the 
last two digits of the six-digit CID number. 



  Contents 

 
 vii Conference Committee 
 
 ix Introduction 
 
 xi Photon physics: from wave mechanics to quantum electrodynamics (Plenary Paper) 

[7355-100]  
O. Keller, Aalborg Univ. (Denmark) 

 
 
 
 SESSION 1 METAMATERIALS I  
 
 7353 02 Spatial dispersion in a wire mesh metamaterial (Invited Paper) [7353-01] 
  D. Felbacq, B. Guizal, Univ. Montpellier II, Groupe d’Etude des Semiconductors, CNRS 

(France); G. Bouchitté, C. Bourel, Univ. du Sud-Toulon-Var, Lab. IMATH (France) 
 
 7353 03 Low-loss infrared metallo-dielectric metamaterials: theory and applications [7353-02] 
  B. Kanté, A. de Lustrac, J.-M. Lourtioz, IEF, Univ. Paris-Sud, CNRS (France) 
 
 7353 04 Negative and imaginary permittivity in 2D photonic macroporous silicon structures [7353-03] 
  L. Karachevtseva, V. Ivanov, V. Onishchenko, O. Stronska, V. Lashkariov Institute of 

Semiconductor Physics (Ukraine) 
 
 7353 05 Negative effective permeability of multilayers of ordered arrays of metal-dielectric 

nanosandwiches [7353-04] 
  C. Tserkezis, N. Stefanou, G. Gantzounis, Univ. of Athens (Greece); N. Papanikolaou, Institute 

of Microelectronics (Greece) 
 
 
 SESSION 2 METAMATERIALS II  
 
 7353 08 Metamaterial absorber with wide angular and frequency bandwidth [7353-07] 
  A. Toscano, L. Vegni, Univ. degli Studi di Roma Tre (Italy) 
 
 7353 09 Infrared metamaterials and plasmons engineering [7353-08] 
  B. Kanté, A. de Lustrac, J.-M. Lourtioz, IEF, Univ. Paris-Sud, CNRS (France) 
 
 7353 0A Propagation and tunneling of electromagnetic waves through uniaxial metamaterials at 

arbitrary orientations of the optical axis [7353-09] 
  E. Starodubtsev, Gomel State Technical Univ. (Belarus) 
 
 7353 0B Optics of metamaterials based on channeled mirror structures [7353-10] 
  E. Ya. Glushko, Institute of Semiconductor Physics (Ukraine) 
 
 
 
 

iii



 SESSION 3 MODELLING OF METAMATERIALS  
 
 7353 0C Analysis of metallic nanostructures via a discontinuous-Galerkin time-domain approach 

(Invited Paper) [7353-11] 
  K. Stannigel, M. König, J. Niegemann, K. Busch, Univ. Karlsruhe (Germany) 
 
 7353 0D Analytical modelling of linear and nonlinear properties of metamaterials based on 

multipole expansion [7353-12] 
  J. Petschulat, A. Chipouline, E. Pshenay-Severin, Friedrich-Schiller-Univ. Jena (Germany);  
  A. Tünnermann, Friedrich-Schiller-Univ. Jena (Germany) and Fraunhofer Institute for Applied 

Optics and Precision Engineering (Germany); T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul,  
  F. Lederer, Friedrich-Schiller-Univ. Jena (Germany) 
 
 7353 0E Monte Carlo analysis of local distribution of negative refractive index in nanosphere-doped 

liquid crystal metamaterial [7353-13] 
  M. Jarema, W. Walasik, G. Pawlik, R. Orlik, A. C. Mitus, Wroclaw Univ. of Technology (Poland) 
 
 7353 0F Magneto-optical response enhancement in 1D and 2D magnetoplasmonic crystals 

[7353-14] 
  A. A. Grunin, A. G. Zhdanov, B. B. Tsema, A. A. Ezhov, T. V. Dolgova, E. A. Ganshina, 

Lomonosov Moscow State Univ. (Russian Federation); M. H. Hong, National Univ. of 
Singapore (Singapore); A. A. Fedyanin, Lomonosov Moscow State Univ. (Russian Federation) 

 
 7353 0G An all-purpose three-dimensional finite element model for crossed-gratings [7353-15] 
  G. Demésy, Univ. Aix-Marseille III (France) and STMicroelectronics (France); F. Zolla,  
  A. Nicolet, M. Commandré, Univ. Aix-Marseille III (France) 
 
 7353 0H A genetic algorithm based procedure to retrieve effective parameters of planar 

metamaterial samples [7353-16] 
  S. Tricarico, F. Bilotti, L. Vegni, Univ. degli Studi di Roma Tre (Italy) 
 
 7353 0I Dielectric-metal-dielectric nanotip for SNOM [7353-48] 
  T. J. Antosiewicz, P. Wróbel, T. Szoplik, Univ. of Warsaw (Poland) 
 
 
 SESSION 4 PLASMONICS I  
 
 7353 0K Propagation of surface plasmons through planar interface [7353-19] 
  T. Váry, P. Markoš, Slovak Univ. of Technology (Slovakia) 
 
 7353 0O The negative refractive index metamaterials as the aggregate of spherical particles or 

porous disposed in the different ambient medium [7353-23] 
  M. Tagviashvili, V. Berezhiani, E. Andronikashvili Institute of Physics (Georgia) 
 
 
 
 
 
 
 
 
 

iv



 SESSION 5 PLASMONICS II  
 
 7353 0S Transmission enhancement of light through a metallic nano-slit with periodic metallic 

nanostrips [7353-27] 
  Y. Cui, Zhejiang Univ. (China) and Joint Research Ctr. of Photonics of the Royal Institute of 

Technology (Sweden) and Zhejiang Univ. (China); Y. Jin, Joint Research Ctr. of Photonics of 
the Royal Institute of Technology (Sweden) and Zhejiang Univ. (China); Y. Okuno, 
Kumamoto Univ. (Japan); S. He, Joint Research Ctr. of Photonics of the Royal Institute of 
Technology (Sweden) and Zhejiang Univ. (China) 

 
 7353 0T Plasmon-induced wavelength-dependent polarization switching in optical metamaterials 

[7353-28] 
  M. R. Shcherbakov, P. P. Vabishchevich, T. V. Dolgova, Lomonosov Moscow State Univ. 

(Russian Federation); A. A. Zaitsev, A. S. Sigov, Moscow Institute for Radioengineering, 
Electronics and Automation (Russian Federation); A. A. Fedyanin, Lomonosov Moscow State 
Univ. (Russian Federation) 

 
 
 SESSION 6 SUBWAVELENGTH IMAGING  
 
 7353 0W Metal-dielectric superlens with ultra-flat phase of the modulation transfer function [7353-31] 
  T. Stefaniuk, R. Kotyński, T. Szoplik, Univ. of Warsaw (Poland) 
 
 7353 0X Focusing of radially polarized light with corrugated silver nanolayer [7353-32] 
  P. Wrobel, J. Pniewski, T. J. Antosiewicz, T. Szoplik, Univ. of Warsaw (Poland) 
 
 7353 0Y Subwavelength focusing using radiationless inteference at optical wavelengths [7353-33] 
  R. Gordon, Univ. of Victoria (Canada) 
 
 
 SESSION 7 METAMATERIALS FABRICATION TECHNOLOGIES  
 
 7353 10 Proximity-effect induced limitations on the density of electron-beam patterned planar 

photonic nanostructures [7353-35] 
  R. Wüest, ETH Zürich (Switzerland) and ABB Ltd. (Switzerland) 
 
 7353 11 Optical spectroscopy of terbium-scandium-aluminium garnet and terbium-scandium 

perovskite [7353-36] 
  K. Postava, L. Halagačka, D. Hrabovský, O. Životský, J. Pištora, Technical Univ. of Ostrava 

(Czech Republic); D. A. Pawlak, S. Turczynski, K. Kolodziejak, Institute of Electronic Materials 
Technology (Poland) 

 
 7353 12 Design of miniaturized printed monopole antennas through phase-compensation [7353-37] 
  L. Scorrano, F. Bilotti, L. Vegni, Univ. degli Studi di Roma Tre (Italy) 
 
 
 SESSION 8 DEVICE APPLICATION OF METAMATERIALS  
 
 7353 15 A quasi-quantitative demonstration of multi-mode refractive index sensors based on 

standing-wave plasmonic resonances in split ring resonators [7353-40] 
  Y.-T. Chang, T.-J. Yen, National Tsing Hua Univ. (Taiwan) 
 

v



 
  POSTER SESSION  
 
 7353 19 Imaging in the visible wavelength range through anisotropic layered flat lens operating in 

the canalization regime [7353-44] 
  A. Pastuszczak, R. Kotyński, Univ. of Warsaw (Poland) 
 
 7353 1A Zero-average index band-gap edges in m-bonacci metamaterial multilayers [7353-45] 
  J. A. Monsoriu, Univ. Politécnica de Valencia (Spain); R. A. Depine, M. L. Martínez-Ricci, Univ. 

de Buenos Aires (Argentina); P. Andrés, E. Silvestre, Univ. de Valencia (Spain) 
 
 7353 1C Complex Fourier factorization method applied in modeling optical metamaterials based on 

2D periodic nanostructures [7353-47] 
  R. Antos, M. Veis, S. Visnovsky, Charles Univ. (Czech Republic) 
 
 
  Author Index 

vi



Conference Committee 

 
Symposium Chairs 

Pavel Tomanek, Brno University of Technology (Czech Republic) 
Alan G. Michette, King's College London (United Kingdom) 
Bahaa E. A. Saleh, Boston University (United States) 

 

Symposium Honorary Chair 

Jan Perina, Sr., Palacký University (Czech Republic) 
 

Conference Chairs 

Vladimir Kuzmiak, Institute of Photonics and Electronics  
(Czech Republic) 

Peter Markoš, Slovak University of Technology (Slovakia) 
Tomasz Szoplik, University of Warsaw (Poland) 

 

Program Committee 

Nader Engheta, University of Pennsylvania (United States) 
Didier Felbacq, Université Montpellier II (France) 
Fransisco Javier Garcia de Abajo, Consejo Superior de Investigaciones 

Científicas (Spain) 
Nigel P. Johnson, University of Glasgow (United Kingdom) 
Maria Kafesaki, Institute of Electronic Structure and Laser of the 

Foundation for Research and Technology-Hellas (Greece) 
Yuri S. Kivshar, The Australian National University (Australia) 
Didier Lippens, Institut d'Electronique de Microélectronique et de 

Nanotechnologie (France) 
Ekmel Özbay, Bilkent Üniversitesi (Turkey) 
Dorota A. Pawlak, Instytut Technologii Materialów Elektronicznych 

(Poland) 
Concita Sibilia, Università degli Studi di Roma, La Sapienza (Italy) 
Costas M. Soukoulis, Iowa State University (United States) 
Sergei Tretyakov, Helsinki University of Technology (Finland) 
Martin Wegener, Universität Karlsruhe (Germany) 
Nikolay I. Zheludev, University of Southampton (United Kingdom) 
Richard W. Ziolkowski, The University of Arizona (United States) 

 

 

 

vii



Session Chairs 

 
 1 Metamaterials I 

Kurt Busch, Universität Karlsruhe (Germany) 
 

 2 Metamaterials II 
Peter Markoš, Slovak University of Technology (Slovakia) 
 

 3 Modelling of Metamaterials 
Vladimir Kuzmiak, Institute of Photonics and Electronics  

(Czech Republic) 
 

 4 Plasmonics I 
Stavroula Foteinopoulou, Foundation for Research and 

Technology-Hellas (Greece) 
 

 5 Plasmonics II 
Concita Sibilia, Università degli Studi di Roma, La Sapienza (Italy) 
 

 6 Subwavelength Imaging 
Vladimir Kuzmiak, Institute of Photonics and Electronics  

(Czech Republic) 
 

 7 Metamaterials Fabrication Technologies 
Constantin R. Simovski, University ITMO (Russian Federation) 
 

 8 Device Application of Metamaterials 
Tomasz Szoplik, University of Warsaw (Poland) 
 

 

viii



Introduction 
 
 
Metamaterials have become an influential concept which has a profound 
impact on physics, optics, and engineering communities. Unique 
electromagnetic features of metamaterials that have been demonstrated over 
the past two decades have created prospects of advancement in new 
applications such as cloaking, superlensing, and hyperlensing. When the 
metamaterial features are not limited to negative refraction only, similarity of 
properties of metamaterials, photonic crystals, plasmonic, and metal-dielectric 
multilayer structures lead to entirely new limits of knowledge and unexpected 
applications. 
 
This fourth conference (the second one held in Prague) in a series of SPIE 
conferences on metamaterials brought together the two scientific communities 
of metamaterials and plasmonics. It provided an overview of recent activities in 
the field of complex metamaterial structures, their coupling properties, 
hybridization of both the electric and magnetic resonances, and latest 
achievements in tunable and nonlinear metamaterials. Both device applications 
and progress in modeling metamaterials were presented. New concepts of 
plasmonic devices for light transport in the subwavelength scale and their use in 
nano-optics systems were discussed in several interesting presentations. 
 
This conference was one of 10 conferences held at the SPIE Europe Congress on 
Optics and Optoelectronics organized in Prague by the Institute of Physics, 
Academy of Science of the Czech Republic and SPIE Europe. The Congress 
brought together leading scientists to an important Middle Europe forum 
addressing the most important developments in the field of photonics and 
optoelectronics.  
 
As chairs of this meeting we would like to express our thanks to all those 
participants who contributed through their presentations and to the program 
committee members. 
 
 

Vladimir Kuzmiak 
Peter Markoš 

Tomasz Szoplik 
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PHOTON PHYSICS:
FROM WAVE MECHANICS TO QUANTUM

ELECTRODYNAMICS

Ole Keller

Institute of Physics and Nanotechnology, Aalborg University, Denmark

ABSTRACT

When rewritten in an appropriate manner, the microscopic Maxwell-Lorentz equations appear as a wave-
mechanical theory for photons, and their quantum physical interaction with matter. A natural extension leads
from photon wave mechanics to quantum electrodynamics (QED). In its modern formulation photon wave me-
chanics has given us valuable new insight in subjects such as spatial photon localization, near-field photon
dynamics, transverse photon mass, photon eikonal theory, photon tunneling, and rim-zone electrodynamics. The
present review is based on my plenary lecture at the SPIE-Europe 2009 Optics and Optoelectronics International
Symposium in Prague.

1. INTRODUCTION

The birth of quantum field radiation theory in the years 1925-30, did not cause physicists to give up the idea of
a particle concept of light. Beautiful wave mechanical theories for the photon were thus established by Landau
and Peierls in 1930,1 and by Oppenheimer2 the year after. For a brief historical review of photon wave mechanics
the reader may consult reference three.3 Over the years physicists interest in photon wave mechanics, and its
extension to the field-quantized level, has waxed and waned, but never fallen to rest.4 In the present review, I
look at this almost century old field in a modern perspective, and point out some of the modern perspectives for
low-energy physical optics.

It has been known for almost two centuries that the eikonal equation in geometrical optics is form-identical
to the Hamilton-Jacobi equation for Hamilton’s characteristic function in Newtonian mechanics.5, 6 This fact led
almost exactly a century later De Broglie and Schrödinger to the wave mechanics of massive particles.3, 5, 6 In
this perspective, it is perhaps not surprising that classical electrodynamics, based on the microscopic Maxwell-
Lorentz equations, may be looked upon as the wave-mechanical theory of the photon. Starting from the Klein-
Gordon equation, the quantum-mechanical eikonal equation for a relativistic spinless particle subjected to an
electromagnetic field is first established.

In free space various constructions (objects) can claim to represent a photon wave function. Here, we discuss
two of the most attractive suggestions: the photon energy wave function,2, 4 and a wave function based on the
transverse vector potential.7 For the potential approach, we set up the photon Schrödinger equation in both
momentum and configuration space. Afterwards, we discuss the transverse photon mass concept in diamagnetic
field-matter interaction, and the photon eikonal theory.

Modern photon wave mechanics appears to be particularly important in the quantum theory of near-field
electrodynamics.8, 9 In the rim zone of matter virtual photons play a significant role, but only in light-matter
interactions. A (new) virtual photon type called a near-field photon is introduced and its wave mechanics ana-
lyzed. The near-field photon is accompanied by a gauge photon, and the two photons place in QED is discussed.
I end the review by a brief discussion of the position operator problem for massive photons (plasmaritons), and
emphasize the importance of the rim zone in treatments of the spatial localization problem for photons emitted
from microscopic (or mesoscopic) sources.10, 11

Plenary Paper

Photon Counting Applications, Quantum Optics, and Quantum Information Transfer and Processing II,
edited by Ivan Prochazka, Roman Sobolewski, Miloslav Dusek, Proc. of SPIE Vol. 7355, 735502
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2. GEOMETRICAL OPTICS AND NEWTONIAN MECHANICS IN THE
HAMILTON-JACOBI FORMULATION

It has been known for almost two centuries that the dynamics of a system of interacting classical (Newtonian)
particles can be described neatly on the basis of Hamilton’s equations

q̇i =
∂

∂pi
H ({q} , {p} , t) (1)

ṗi = − ∂

∂qi
H ({q} , {p} , t) (2)

where qi is the generalized coordinate number i, and pi its associated canonical (conjugate) momentum. The dots
stand for differentiation with respect to time. As indicated, the Hamilton function H depends in general on the
full set of coordinates and momenta, and on time. By a particular canonical transformation, which generating
function involves Hamilton’s principal function S ({q}, {P}, t), the new Hamiltonian can be required to vanish
identically. This ensures that the new generalized coordinates and momenta ({P}) become time-independent,
and can be taken as the initial values of the old phase space variables. Hamilton’s principal function now must
satisfy the partial differential equation (called the Hamilton-Jacobi equation)

H

(
{q} ,

{
∂S

∂q

}
, t

)
+
∂S

∂t
= 0, (3)

and the (old) generalized momenta are identified as

pi =
∂

∂qi
S ({q}, t) , (4)

leaving out the reference to {P} from the notation. In the special but important case where H does not depend
explicitly on time, a trial solution of the form

S ({q}, t) = W ({q})− Et (5)

leads to the Hamilton-Jacobi equation

H

(
{q},

{
∂W

∂q

})
= E (6)

for Hamilton’s characteristic function, W ({q}). Usually, the constant E represents the (conserved) energy of the
system. For a single particle in a time-independent potential, V (r), the equation for Hamilton’s characteristic
function takes the following form:

∇W (r) · ∇W (r) = 2m (E − V (r)) , (7)

where m is the particle’s mass, and r its position vector. With the identification in Eq. (4), which here on vector
form gives p = ∇W , Eq. (7) expresses the fact that the particle’s total energy is the sum of the kinetic and
potential energies.

Geometrical optics deals with the phenomena for which the wavelength of light can be neglected. In this
short-wavelength limit (λ → 0) the optical laws may be formulated in the language of geometry, and the basic
quantity is the so-called eikonal S(r), which enters the various (monochromatic) electromagnetic field vectors
(V) via the ansatz V(r) = V0exp (iq0S(r)), q0 = ω/c0 being the vacuum wavenumber of light at the angular
frequency ω. The fundamental equations of geometrical optics is the eikonal equation6

∇S(r) · ∇S(r) = n2(r), (8)

where n(r) is the refractive index, which in the lowest-order approximation is taken as a real quantity. As first
noticed by Hamilton in 1827 there is a striking form-identity between the characteristic function [Eq. (7)] and
the eikonal equation of geometrical optics [Eq. (8)]. Classical electrodynamics based in the macroscopic Maxwell
equations (or in a somewhat broader perspective the microscopic Maxwell-Lorentz equations) is the covering
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theory of geometrical optics, and this fact led almost exactly one hundred years later De Broglie and Schrödinger
to the covering theory of Newtonian mechanics, i.e., quantum mechanics, as might be well-known to the reader.

For what follows it is valuable briefly to consider the quantum mechanical eikonal theory for a relativistic
spinless particle of rest mass m and charge q. Placed in an electromagnetic field described by the contravariant
four-potential {Aµ} = (A0 = Φ/c0,A) the classical relativistic Hamiltonian is

H = c0
[
(mc0)2 + (p− qA)2

]1/2
+ qΦ. (9)

The Hamiltonian in Eq. (9) has no explicit time dependence, and with p = ∇S, the equation for Hamilton’s
principal function [Eq. (3)] can be written down. All solutions to this equation will also be solutions to the
squared Hamilton-Jacobi equation, viz.,

c20(∇S − qA)2 + (mc20)
2 =

(
∂S

∂t
+ qΦ

)2

. (10)

The quantum mechanical eikonal equation for a relativistic spinless particle subjected to an electromagnetic field
is obtained starting from the Klein-Gordon equation

c20

[
(
�

i
∇− qA)2 + (mc0)2

]
Ψ(r, t) =

(
�

i

∂

∂t
+ qΦ

)2

Ψ(r, t). (11)

By inserting the eikonal ansatz

Ψ(r, t) = Ψ0exp
(
i

�
S(r, t)

)
(12)

for the wavefunction, the quantum mechanical Hamilton-Jacobi equation takes the form

(∇S − qA)2 + (mc0)2 − 1
c20

(
∂S

∂t
+ qΦ

)2

= i�

(
∇2 − 1

c20

∂2

∂t2

)
S (13)

in the Lorenz gauge. In the classical limit (� → 0), Eq. (13) is reduced to Eq. (10). In covariant notation, one
has in general

(∂µS − qAµ)(∂µS − qAµ) + (mc0)2 = i�∂µ(∂µS − qAµ), (14)

and with the Lorenz gauge condition, given by

∂µA
µ = 0, (15)

Eq. (14) is reduced to the form given in Eq. (13). The relativistic covariance of the eikonal equation is manifest
when the equation is written in the form given in Eq. (14).

3. PHOTON WAVE MECHANICS

The analysis in section 2 suggests that the microscopic Maxwell-Lorentz equations somehow may be considered
as a wave-mechanical theory of the photon. This possibility was originally investigated by Landau and Peierls1

and Oppenheimer,2 and over the years physicist’s interest in photon wave mechanics has waxed and waned, but
never fallen to rest. In free space, various ”constructions” (objects) can rightly claim that they represent the
wave function of the photon. What is important physically is that the observable predictions related to the
photon-matter interaction will be identical for the various choices.

In the energy wave-function formalism two photon wave functions, f (+)
± , are defined as follows:4

f (+)
± (r, t) =

(ε0
2

)1/2 [
e(+)

T (r, t)± ic0b(+)(r, t)
]
. (16)

The superscript (+) indicates that the wave function is build from positive-frequency components of the elec-
tromagnetic field. In the language of coherence theory the f (+)

± ’s are analytical signals. The wave function of
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the antiphoton is constructed from the negative-frequency part of the field spectrum. Physically, the photon
and antiphoton are identical. This can be inferred from the Maxwell equations. Small letters eT and b have
been assigned to the (analytical) electric and magnetic fields of the photon to indicate that the wave function
has been properly normalized. To normalize the wave function of the in general non-monochromatic photon it
is necessary to adjust the amplitude of the current-density source distribution correctly.8 To emphasize that
the electrical field in free space is a transverse vector field, a subscript T has been added to e(+). As we shall
understand very soon, f (+)

+ and f (+)
− are wave functions composed of positive- and negative-helicity components.

The photon helicity is a Lorentz-invariant property.

From the free-space Maxwell equations one can establish the following quantum mechanical wave equations
for the two helicity species:

i�
∂

∂t
f (+)
± (r, t) = ±c0

(
s
�
· �
i
∇

)
f (+)
± (r, t). (17)

In Eq. (17) we have written the wave equation in Hamiltonian form. The vector s is the Cartesian spin-one
operator of the photon. In a 3× 3 matrix representation the Cartesian components of s are given by

(sk)ij =
�

i
εijk, (18)

where εijk is the Levi-Civita tensor. Since p̂ = (�/i)∇ is the photon momentum operator in configuration
space, the scalar product s · p̂ confirms that the wave functions f (+)

± (r, t) describe photons composed of positive-
and negative helicity components. Since Plancks constant (h) does not appear in the classical Maxwell-Lorentz
equations, � can of course be eliminated from Eq. (17), as the reader readily may realize. The name photon energy
wave function relates to the fact that the quantum mechanical mean value of the photon energy-momentum four
vector operator {pµ} = (�ω/c0, �q) is given by

{Pµ} =
1

�c0

∑
s=+,−

∫ ∞

−∞
{pµ}

∣∣∣f (+)
s (q; t)

∣∣∣2 d3q

(2π)3q
, (19)

where the f (+)
± (q; t)’s are the scalar photon wave functions in momentum space.

The vectorial and scalar wave functions are related by f (+)
± (q; t) = f

(+)
± (q; t)e±(q/q), where e± are the

helicity unit vectors of the + and − species. Relativistically, d3q/q is the invariant volume element on the light
cone.

It is often convenient to use spinor notation, and thus combine the two wave functions in Eq. (16) into a
single one, viz.,

Φ(r, t) =

(
f (+)
+ (r, t)
f (+)
− (r, t)

)
. (20)

The photon wave function in Eq. (20) is a six-component object.

In the present context it is useful to base photon wave mechanics on the electromagnetic potentials. In free
space only a transverse vector potential exists, and this potential is gauge invariant. The analytical part of the
transverse vector potential a(+)

T (r, t) satisfies the wave equation

�a(+)
T (r, t) = 0, (21)

where � = ∇2− c−2
0 ∂2/∂t2 is the d’Lambertian operator. Formally, one may factorize the �-operator as follows:

� =
(
i

c0

∂

∂t
+

√
−∇2

) (
i

c0

∂

∂t
−

√
−∇2

)
, (22)

and from this it appears that all solutions to

i�
∂

∂t
a(+)

T (r, t) = �c0
√
−∇2a(+)

T (r, t) (23)
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are also solutions to Eq. (21). One may consider a(+)
T (r, t) [small letter for normalization] as the vectorial

wave function for the photon in free space, and Eq. (23) as its quantum mechanical wave equation, written in
Hamiltonian form. The quantity

√−∇2 is a spatially nonlocal operator which action in Fourier (wave-vector)
space is given via √

−∇2a(+)
T (r, t) =

∫ ∞

−∞
qa(+)

T (q; t)eiq·r d3q

(2π)3
. (24)

The operator i
√−∇2 was originally introduced by Landau and Peierls in 1930 in connection with their attempt

to establish a wave equation for the light quantum (photon). In q-space, Eq. (23) takes the form

i�
∂

∂t
a(+)

T (q; t) = c0�qa(+)
T (q; t), (25)

and this equation may be considered as the vectorial wave equation for a transverse photon with momentum
p = �q and energy H = pc0. Two transverse scalar photon wave functions can be introduced in the (q; t)-domain
by expanding a(+)

T (q; t) after two orthogonal (possibly complex) unit vectors (helicity unit vectors, e.g) located
in a plane perpendicular to q.

4. TRANSVERSE PHOTON MASS. PHOTON EIKONAL THEORY

Let us now consider the photon propagation in a solid-state plasma (jellium), and let us limit ourselves to high
frequencies and linear photon-matter interactions. At high frequencies the particle properties of the photon
dominates over its wave properties, and the field-matter coupling is diamagnetic. In the space-frequency domain
the analytical part of the transverse vectorial potential hence satisfies the integro-differential equation12

(∇2 + q20)a(+)
T (r;ω) =

μ0e
2

m

∫ ∞

−∞

←−−→
δ T (r− r′) ·

[
N(r′)a(+)

T (r′;ω)
]
d3r′, (26)

where N(r) is the many-body electron density,
←−−→
δ T (r − r′) is the transverse delta function, q0 = ω/c0 is the

vacuum wave number of light, and e and m the electron charge and mass. In the present context there is a
particularly interesting special case of Eq. (26). Thus, if the electron density variations in space are negligible
[N(r) ∼= N0] it can be shown that a(+)

T (r, t) satisfies the equation

i�
∂

∂t
a(+)

T (r, t) = c0�

√
Q2

c −∇2a(+)
T (r, t), (27)

where the operator (Q2
c −∇2)1/2 acts as follows in Fourier space:

√
Q2

c −∇2a(+)
T (r, t) =

∫ ∞

−∞

√
Q2

c + q2a(+)
T (q; t)eiq·r d3q

(2π)3
. (28)

The quantity

Qc =
1
c0

(
N0e

2

mε0

)1/2

(29)

is the electron system’s plasma wave number. One may consider Eq. (27) as the quantum mechanical wave
equation for the transverse photon (plasmariton). In the wave-vector-time domain Eq. (27) takes the form

i�
∂

∂t
a(+)

T (q; t) = c0�
(
q2 +Q2

c

)1/2
a(+)

T (q; t), (30)

and from this one may show that the energy-momentum relation for the plasmariton takes the relativistic form

E = +
[
(pc0)2 + (Mc20)

2
]1/2

. (31)
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In a sense one may now claim that the transverse photon has acquired a finite mass

M =
�Qc

c0
(32)

in its high-frequency interaction with the jellium. The quantity Qc = Mc0/� is the Compton wave number of
the massive transverse photon.

The wave equation for the plasmariton is form-identical to the Klein-Gordon equation, and the eikonal ansatz
a(+)

T (r, t) = a(+)
T,0 exp(iS(r, t)/�) therefore leads to the following eikonal equation for the ”free” massive photon:

(∂µS)(∂µS) + (Mc0)2 = i�∂µ∂
µS. (33)

If the spatial variations in N(r) is taken into account the eikonal problem becomes more complicated.

5. THE NEAR-FIELD PHOTON CONCEPT

In near-field electrodynamics one must include two other types of photons, viz., longitudinal and scalar photons.
These so-called virtual photons, which do not exist as free particles, we hence characterize by the analytical
vector potentials a(+)

L (q; t)[a(+)
L = a

(+)
L q/q] and a

(+)
0 (q; t). Instead of using the longitudinal and scalar photon

variables it is convenient in near-field optics to introduce two new photon types via the unitary transformation9

(
a
(+)
NF (q; t)
a
(+)
G (q; t)

)
=

1√
2

(
i −i
1 1

) (
a
(+)
L (q; t)
a
(+)
0 (q; t)

)
. (34)

The quantities a(+)
NF (q; t) and a

(+)
G (q; t) are the quantum mechanical wave functions of the near-field (NF) and

gauge (G) photons. The theory for a(+)
L and a

(+)
0 , or equivalently a

(+)
NF and a

(+)
G , always is formulated in the

Lorenz gauge. The primary quantity in near-field electrodynamics is the analytical longitudinal electric field
E(+)

L (q; t) = E
(+)
L (q; t)q/q. It may be shown that the Lorenz gauge condition implies that E(+)

L (q; t) can be
expressed solely in terms of either a(+)

NF (q; t) or a(+)
G (q; t), i.e.,

E
(+)
L (q; t) =

√
2
(
c0q + i

∂

∂t

)
a
(+)
NF (q; t) = −i

√
2
(
c0q − i ∂

∂t

)
a
(+)
G (q; t). (35)

In free space the near-field and gauge photon wave functions satisfy the Hamiltonian wave equations

i�
∂

∂t
a
(+)
NF (q; t) = c0�qa

(+)
NF (q; t), (36)

i�
∂

∂t
a
(+)
G (q; t) = c0�qa

(+)
G (q; t), (37)

and since EL(q; t) = 0 in free space, Eqs. (35) and (36) imply that a(+)
NF (q; t) = 0. One cannot conclude from

these equations that the wave function of the gauge photon vanishes in free space. A gauge transformation to
a new (NEW) gauge within the Lorenz gauge can make a(+)NEW

G (q; t) = 0. The name gauge photon originates
in this property. In the presence of matter, the near-field and gauge photon variables satisfy the dynamical
equations (

c0q + i
∂

∂t

)
a
(+)
NF (q; t) =

1
i
√

2ε0

1
qc0

J
(+)
0 (q; t), (38)

(
c0q − i ∂

∂t

)
a
(+)
G (q; t) =

1√
2ε0

1
qc0

J
(+)
0 (q; t), (39)

where J (+)
0 (q; t) = c0ρ(q; t) is the μ = 0 component of the contravariant current density four-vector.
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6. RIM ZONE ELECTRODYNAMICS

The near-field photon concept connects to optical near-field interactions via Eq. (35) and (38). I shall not
here undertake a systematic analysis of this connection. The longitudinal part of the electric field, EL, plays
an important role in near-field optics, and this field relates to the near-field photon variable via the analytical
relation

E(+)
L (r, t) = c0

√
2

(
i

c0

∂

∂t
+

√
−∇2

)
a(+)

NF (r, t), (40)

where a(+)
NF (r, t) is the spatial Fourier transform of the vectorial quantity a(+)

NF (q; t)q/q. As an immediate conse-
quence of Eqs. (35) and (38) the reader may obtain the following relation between the longitudinal electric field
and the longitudinal source current density (JL):

JL(r;ω) = iε0ωEL(r;ω). (41)

In the presence of a transverse current density source, J(+)
T (r, t), the transverse photon variable satisfies the

inhomogeneous wave equation
�a(+)

T (r, t) = −μ0J
(+)
T (r, t), (42)

and from this one can obtain the integral relation

ET (r;ω) = iμ0ω

∫ ∞

−∞
g(|r− r′|;ω)JT (r′;ω)d3r′ (43)

between the transverse parts of the electric field and source current density. The quantity g(R;ω) = (4πR)−1

× exp(iq0R) is the outgoing scalar propagator. The relations in Eqs. (41) and (43) form the standard starting
point for classical near-field electrodynamics. Everywhere in space outside matter one has JL = −JT , since
J = 0. It appears from the equation

JL(r;ω) =
1
3
J(r;ω) +

1
4π
PV

∫ ∞

−∞
R−3

(←−−→
U − 3

RR
R2

)
· J(r′;ω)d3r′, (44)

where R = r− r′, and PV stands for principal value that JL is appreciably different from zero only in a narrow
zone outside a matter-filled region. This zone I have called the rim zone, and in this zone the longitudinal electric
field is nonvanishing, and satisfies

∇ ·EL(r;ω) = ∇×EL(r;ω) = 0, (45)

the last equation per definition, of course. In the language of photon wave mechanics near-field optics describes
how transverse photons via their interaction with near-field photons are generated and destroyed in space-time.

7. NEAR-FIELD AND GAUGE PHOTONS IN QED

The wave mechanical formalism can be extended to the quantum-electrodynamic level by the standard covariant
quantization with an indefinite metric (Gupta-Bleuler formalism),13.14 The Hamilton operator of the field
becomes (in box quantization)

Ĥ =
∑
q,r

�ωqâ
†
r(q)âr(q), (46)

where ωq = c0q. The r-summation in Eq. (46) is over the two transverse modes (T1, T2), and the longitudinal
(L) and scalar (0) modes. The annihilation (âr(q)) and creation (â†r(q)) operators of the various modes satisfy
the commutation relations [

âr(q), â†s(q
′)

]
= δrsδq,q′. (47)

By extension of Eq. (34) to the operator level it is easy to show that

â†LâL + â†0â0 = â†NF âNF + â†GâG, (48)
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a relation which allows one to eliminate the longitudinal and scalar photon operators in the field Hamiltonian
in favour of the near-field and gauge photon operators. The annihilation and creation operators of these virtual
photon types satisfy the commutator relations

[
âNF (q), â†NF (q′)

]
= δq,q′, (49)

[
âG(q), â†G(q′)

]
= δq,q′, (50)

and the NF-G commutators vanish. In free space the quantum Lorenz condition leads for all q to

[âL(q)− â0(q)] |ψ〉 = âNF (q)|ψ〉 = 0, (51)

so that no physical states |ψ〉 have near-field photons. The Lorenz condition puts no restrictions on the number of
gauge photons in free space. Two different gauges within the Lorenz gauge correspond to two different excitations
of G-modes, but as in the classical theory the gauge photon plays no physical role in free space.

8. PLASMARITON POSITION OPERATOR. SPATIAL PHOTON LOCALIZATION

Let us now ask the following question: to what extend can a point particle in the form of a transverse (massive)
photon be localized in space? If a particle’s position is to be measured in quantum mechanics, the various
positions in space, r0, should be the eigenvalues of some position operator (observable), r̂. To pin down elements
of the problem, we first consider a massive relativistic particle of zero spin. For such a particle the Lorentz-
invariant scalar product is given by15

〈ψ|φ〉 =
∫ ∞

−∞
ψ∗(p)φ(p)

d3p

[p2 + (Mc0)2]1/2
(52)

in the momentum representation. In the plasmariton case the particle mass (M) is given by Eq. (32). Within
the framework of the relativistic scalar product the Hermitian operator

r̂ = i�

{
∇p − p

2[p2 + (Mc0)2]

}
(53)

turns out to be an acceptable position operator for a Klein-Gordon particle. In the non-relativistic (NR) limit one
regains the naive position operator r̂NR = i�∇p. The operator in Eq. (53) satisfies the basic dyadic commutator
relation

[̂r, p̂] = i�1̂ (54)

where 1̂ is the unit matrix operator. In the momentum representation, where the eigenvalue equation reads

r̂(p)ψr0 (p) = r0ψr0(p), (55)

the (unnormalizable) eigenfunction belonging to the eigenvalue r0 is given by

ψr0(p) =
[
p2 + (Mc0)2

]1/4
exp (− i

�
r0 · p), (56)

apart from an arbitrary multiplicative factor. In configuration space the eigenfunction takes the form

ψr0(r) = 2(2π�)−2 (Mc0)3/2

|r− r0| F (Qc|r− r0|), (57)

where
F (Qc|r− r0|) =

∫ ∞

0

x(1 + x2)1/4 sin(Qc|r− r0|x)dx. (58)

It appears that the function F only depends on the ratio between |r − r0| and the Compton wavelength of the
plasmariton, λc = h/(Mc0). Since F (z) ≈ z−5/4 exp(−z) for z >> 1, the wave function of a scalar particle
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definitely localized at r0 is smeared out in configuration space over a region of linear extension as the Compton
wavelength around the point of localization. In the massless limit (M → 0), the wave function exhibits a
power-law dependence |r− r0|−7/2 around the point of localization.

So far, we have ignored the vector character of the problem. For a transverse plasmariton we may try a
three-vector momentum space wave function of the type

ψr0(p; s) =
[
p2 + (Mc0)2

]1/4
eps exp(− i

�
r0 · p), (59)

where eps (s = 1 or 2) is one of two transverse unit vectors. The longitudinal unit vector, which points in the
p-direction, is denoted by ep3 below. When the gradient operator, ∇p, acts on the wave function, it mixes in a
longitudinal component, and this effect in itself makes it problematic (impossible) to take the r̂-operator in Eq.
(53) as the plasmariton position operator. Instead, it is perhaps natural to use the dyadic quantity

r̂ij = i�

{
δij

(
∇p − p

2[p2 + (Mc0)2]

)
−

3∑
s=1

[∇p(eps)i] (eps)j

}
(60)

as a candidate for a plasmariton position operator.7 This choice leads to problems in configuration space,
however, because the related wave function (Fourier integral transform of Eq. (59)) is not convergent. If one
tries to use the standard regularization procedure the divergence-free demand on the wave function cannot be
maintained.

The photon position operator problem cannot be detached from the spatial localization issue of photons
emitted from a source (microscopic or mesoscopic). In the field-quantized description the relation between the
transverse electric field operator, ÊT , and the transverse current density operator, ĴT , can be written as follows:

ÊT (r, t) = μ0

∫ ∞

−∞
g(|r− r′|, t− t′) · ∂

∂t′
ĴT (r′, t′)d3r′dt′. (61)

If one now replaces ĴT by Ĵ with the help of the transverse delta function the ”propagator” relation

ÊT (r, t) = μ0

∫ ∞

−∞

←−−→
DT (r− r′, t− t′) · ∂

∂t′
Ĵ(r′, t′)d3r′dt′ (62)

emerges. Here, the transverse propagator has the explicit dyadic form8

←−−→
DT (R, τ) = − 1

4πR
δ

(
R

c0
− τ

)
(
←−−→
U −R−2RR) +

c20τ

4πR3
Θ(τ)Θ

(
R

c0
− τ

)
(
←−−→
U − 3R−2RR), (63)

where Θ is the Heaviside step function. The form in Eq. (63) tells us that the transverse photon localization (in
general) is limited to the extension of the rim zone, and that one cannot maintain the Einstein causality when
compressing the source domain artificially from ĴT to Ĵ. Eq. (63) has served as a starting point for microscopic
photon tunneling analyses in near-field electrodynamics.16
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