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ABSTRACT 
Commodity graphics hardware boards (GPUs) have achieved remarkable speedups in various sub-areas of Computed 
Tomography (CT). This paper takes a close look at the GPU architecture and its programming model and describes a 
successful acceleration of Feldkamp’s cone-beam CT reconstruction algorithm. Further, we will also have a comparative 
look at the new emerging Cell architecture in this regard, which similar to GPUs has also seen its first deployment in 
gaming and entertainment. To complete the discussion on high-performance PC-based computing platforms, we will 
also compare GPUs with FPGA (Field Programmable Gate Array) based medical imaging solutions.  
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1. INTRODUCTION 
The thirst for visual and physical realism in computer games, backed by heavy consumer spending and enabled by a 
growing sophistication in VLSI design and manufacturing, has given rise to an incredible performance growth in PC-
scale computing platforms. Peak performances of 500 GFlops (109 floating point operations/s) and more are now 
possible, which is 100 times greater than the peak performance of the 16-processor Cray C90 supercomputer that ruled 
the national labs just a decade ago, in form of a closet-size computer with a $500k price tag. In contrast, the most 
popular of these PC-scale computing platforms, the boards hosting a Graphics Processing Unit (GPUs), fit into the PCI 
slot of any standard desktop computer (or even a laptops) and are available for $500 or less at any neighborhood 
computer outlet.  

In fact, due to the to the increasing levels of programmability and flexibility, these computing platforms have also 
found use in a much broader range of general computing applications, including those formerly only achievable with 
supercomputers. GPU-clusters targeted for large-scale scientific computing have been emerging [1][2], and the 
folding@home [3] distributed supercomputing effort will also soon utilize the legions of idle GPUs to gain better 
understandings of the protein folding process. The use of GPUs for general-purpose computing has become popularly 
known as General Purpose GPU (GPGPU), and an extensive website www.gpgpu.org logs many of these works. For 
example, GPGPU has enabled the acceleration of computations in domains as diverse as database processing [ref], 
computer vision [4], computational geometry [5], sorting [6], and also medical imaging [7][8], which is the subject of 
this paper.  

GPUs are, in some ways, similar to the vector processing units of the Cray supercomputers of the past which, in 
contrast to the sequential instruction-driven Von Neumann style data processing of CPUs, only required the decoding of 
one single instruction for a long vector of data. But unlike this traditional vector processing hardware, GPUs can perform 
multiple operations per data item which is more efficient in terms of memory bandwidth. In this regard, GPUs share 
more common features with the later streaming architectures. Nevertheless, despite these close relations to vector and 
stream processors, the true ancestors of GPUs are the geometry and rasterization engines of the Silicon Graphics (SGI) 
workstations of the 1990s. Recognizing the massive amount of identical operations that exist within graphics 
applications, consisting of vertex transformations and shading, followed by scan-conversion with texture mapping 
interpolation, an SGI Infinite-Reality workstation featured four heavily pipelined geometry and raster engines each. Both 
employed the SIMD (Same Instruction Multiple Data) data processing model, which is also used by GPUs today. 
However, a feature that was completely lacking in these early SGI platforms was the ability to freely program the SIMD 
processors. Rather, all one could do was set the parameters used in the graphics processing operations, such as lighting 
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model, z (depth)-buffer mode, and so on. To enable this communication, SGI founded the OpenGL graphics language 
which is still in use today, now accompanied by its rival DirectX.  

The lack of programmability impeded the use of SGI hardware for serious GPGPU applications. Nevertheless, it was 
medical imaging that was chosen to be one of the few non-graphics applications to be run on that platform. In 1992, 
Cabral, Cam, and Foran [9] described how one could accomplish both volume rendering and inverse volume rendering, 
that is, CT reconstruction (via filtered backprojection) on SGI texture mapping hardware. Later, Mueller and Yagel [10] 
employed the same platform for iterative reconstruction (with SART), which used (X-ray) volume rendering for forward 
projection and inverse volume rendering for backprojection. Since both operations can be implemented fairly easy with 
OpenGL instructions, using projective textures [11] for backprojection from arbitrary angles, the main limitation was 
imposed by the lack of floating point precision. This required the backprojection accumulations to be done on the CPU, 
which incurred major data communication delays. Fortunately, these could partially be hidden by splitting longer data 
words into the 4 (RGBA) color channels. Finally, the amount of texture memory available to store the data and the 
reconstruction result was also very limited, on the order of MBs.  

Today’s GPUs have none of these shortcomings. They are generally programmable, have full IEEE single-precision 
floating point arithmetic, and due to the PCI-Express bus also have data fast transfer rates from main memory to GPU, 
where the data transfer may overlap with ongoing computations. They also feature large texture memories of 512 MB-1 
GB, which can hold reconstruction volumes of size 5123-10243 at floating point precision. Finally, they can be run in 
dual and quad board configurations on a single PC or a shuttle PC. And what is most relevant for this paper, they allow a 
5123 volume to be reconstructed at full floating point precision in real time at a bandwidth of 30 projections/s. 

Our paper is structured as follows. Section 2 will provide some general comments on GPU and stream-based 
computing and will also discuss other high-performance architectures. Section 3 will elaborate further on prior and 
related work using PC-grade high-performance architectures for CT reconstruction. Following, Section 4 will briefly 
discuss the theory of filtered backprojection via Feldkamp’s algorithm. Then, Section 5 will discuss in further detail both 
architecture and programming model of GPUs, and Section 6 will describe how this can be used for high-performance 
CT reconstruction. Section 7 will present results obtained with our GPU-based system, called RapidCT. Finally, Section 
8 will discuss the results and put them in perspective with other work, ending with conclusions.       

2. SOME GENERAL COMMENTS ON GPU AND STREAM-BASED COMPUTING  
The overall target of GPUs has not changed since the early SGI architectures, that is, to provide dazzling graphics effects 
for entertainment, visual simulations, and engineering. This task implies feeding a rectangular array of screen pixels with 
a massive amount of data, consisting of textures and geometry. Such a process can be elegantly modeled as a continuous 
data stream, which is consumed by a pipeline of processing kernels at a minimum of data dependencies. Since all pixels 
are being composed via the same underlying forward-streaming computation, an inherent data-parallel processing model 
can be employed – SIMD. It is this SIMD model that makes processor design simple and raises the percent chip area 
dedicated for arithmetic. It also bolsters the number of transistors and encourages rapid growth. Take for example the 
most recent G80 Nvidia GPU core, now available as the GeForce 8800 GTX. It has 681M transistors based on a 0.09 
micron process. Just half a year earlier the G71 core (sold as the GeForce 7900 GTX) was released, which had 278M 
transistors using the same 0.09 micron process. The benchmark performance of the 8800 GTX is about double of that of 
the 7900 GTX. In relation to the projected growth of general purpose CPUs, which is predicted by Moore’s law and 
amounts to an 18-month period for a doubling of benchmark performance, this represents a performance growth at a rate 
of 3 times Moore’s law. Further, in contrast to CPUs where much of the chip real estate goes into caches and cache 
management (for example, the Xeon chip uses 60% of the chip area for this), in GPUs the increasing number of 
transistors goes right into the arithmetic pipelines. In fact, GPUs have gained much of their speed increases by providing 
more SIMD pipelines (as well as providing more efficient mechanisms to keep these pipelines busy). For example, while 
the G71 had 24 pixel pipelines and 8 vertex pipelines (with a 650-750MHz clock and a 256-bit wide bus), the new G80 
has a whopping 128 arithmetic pipelines, now unified for better pixel/vertex load balancing [12]. Further, not only is the 
chip area dedicated to computation higher in GPUs, the total number of transistors is also typically greater. For example, 
the latest AMD processor, the 64 FX dual core chip, has 227M transistors (on the same 0.09 micron process) which is 
1/3 of the G80’s transistor count. Again, this can be attributed to the less complex SIMD design of GPUs.  

However, GPUs are not a general-purpose processor. They can only live up to their full potential when presented 
with a computational task that bears the features of the underlying streaming SIMD programming model. A few general 
rules are presented here: 
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Figure 1: Growth curves of GFLOP performance of GPUs and CPUs. 

1. It is better to focus each pipeline onto a single output data element (the pixel or fragment) than onto many output data 
elements (fragments). The former is called gathering, where many input data are processed to compute a single 
fragment. The latter is called scattering, where a process must spread its computation results onto many fragments. 
Fortunately, many times one can just reformat the computation to form a GPU-suitable program flow.  

2. The same goes for programs that have a large number of conditional statements. For example, Quicksort is a very 
efficient algorithm (often the most efficient) for sequential CPU platforms, but it is very inefficient for GPUs. Here, 
it is better to use Bitonic Sort, which is a highly parallelizable form of sorting and runs very fast on GPUs [13].  

3. It is also advised to have a sufficient amount of data items available to fill the pipelines and get a data stream going. 
The memory is not optimized for latency, but for bandwidth, which favors the streaming model. Although the 
hardware management facilities for fragments waiting for data items have become better (the pipelines are then fed 
with other waiting fragments having all data available), explicit program-controlled load-balancing of the different 
pipeline components is still required in many cases.    

4. It is also important that GPU programs exhibit a good amount of arithmetic intensity [ref]. Sometimes it is better to 
compute an intermediate result than to query a lookup table. Just like in any computational platform, memory is still 
a bottleneck, but GPUs excel (over CPUs) at computational speed. 

5.  Finally, due to the GPU strong heritage in graphics, where linear interpolation and the compositing/blending of two 
weighted values are frequent operations, these types of operations are often available in form of fast hardwired 
circuitry. Thus, it pays to make use of these facilities as much as possible.  

Therefore, if a computational task exposes, 
or can be reformulated to expose, these types 
of features, then it is likely that it will exhibit 
the typical speedups achieved with such a port. 
In order to assess the growth of GPU 
performance one may compare the increase in 
the rate of floating point processing, measured 
in GFLOPS. This is shown in the graph of Fig. 
1. We can see that the gap between CPU and 
GPU performance is widening quickly.  

For this reason, CPU manufacturers, such 
as AMD and IBM have sought to strike back.    
AMD recently acquired GPU manufacturer 
ATI and just released a stream processor card, 
the R580 CPU with 1GB of memory, which 
can be programmed using their new CMT 
(Close-to-Metal) programming interface [14]. 
Since this card is very similar to the former 
ATI GPU board, similar performance can be expected. IBM, in collaboration with Sony and Toshiba, has recently 
unveiled the Cell processor, which consists of one main processor element (PPE) and 8 tightly coupled synergistic 2-way 
processing elements (SPEs) [15][16]. The SPEs are similar to the processors found on GPUs, but they can be chained 
together under program control to form a MIMD (Multiple Instruction Multiple Data) configuration. The Cell processor 
has so far been used in the new Sony Playstation 3, and Mercury, Inc. [17] has also announced products that use the Cell 
Broadband Engine (BE) in various accelerator configurations. The Cell processor has a quoted clock speed of 3.2 GHz, 
while the G80 processors run at about half that speed. The peak performance of the Cell processor is 256 GFLOPS, 
which is far less than that of the G80, possibly due to the fewer number of pipelines. However, while it is tempting to 
compare GPUs and the Cell just by the number of pipelines, clock speeds, and GFLOP performance, only the particular 
application and their implementation can really tell which is more favorable to use.  

On the other hand, GPU manufacturer Nvidia has also sought to make its processors more available to the general 
user community. To achieve this goal, they recently introduced CUDA (Compute Unified Device Architecture), an 
interface that allows users to write high-performance programs for any compute-intensive task in the standard C-
language. Previously, users needed to use CG [18], in conjunction with OpenGL or DirectX, which yielded assembler-
like code that could be further optimized by hand. In this context, one should also mention Brook [19], a streaming 
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programming language from Stanford University which extended the programming language C to streams and produced 
optimized CG code when compiled. 

Finally, another way to obtain a high-performance architecture is by configuring a field programmable gate array 
(FPGA). An FPGA is a semiconductor device consisting of programmable logic components and programmable 
interconnects. Any basic logic such as AND, OR, XOR, NOT or more complex combinational functions such as 
decoders or simple math functions can be programmed. FPGAs are generally slower application-specific integrated 
circuit (ASICs) and can only designs of moderate complexity. Nevertheless, they allow programmers to hardcode a 
specific algorithm without incurring the overheads of instruction-style programming. 

3. PRIOR AND RELATED WORK IN PC-SCALE HIGH-PERFORMANCE CT    
For this discussion we have purposely restricted ourselves to approaches that use a single PC or workstation for 
reconstruction – there are a number of applications that have used PC clusters. The introduction has already mentioned 
the works by Cabral et al. [9] and Mueller and Yagel [10] to exploit high-end SGI workstations for accelerated CT.  We 
mentioned that the low 12-bit precision of the hardware was particularly limiting in the iterative scenario, and to cope, 
Mueller and Yagel devised a dual-channel scheme, using the RB (Red Blue) color channels, which enabled a pseudo 16-
bit precision and which also enabled some of the accumulations to be done directly in the hardware. The first paper 
discussing the use of PC-native GPU boards for CT was the one by Chidlow and Möller [20] who implemented emission 
tomography with OS-EM [21] on an Nvidia GeForce 4 GPU card. Although good speed-ups and quality reconstructions 
could be achieved, the potential of these solutions remained to be limited, due to the still limited precision and 
accumulation capabilities. This required many operations still to be performed on the slower CPU, which incurred 
expensive data transfers. To cope, similar to Mueller and Yagel, they also employed a virtual frame buffer extension by 
combining the color channels. Soon after, GPUs with full programmability and 32-bit floating point precision enabled a 
complete GPU-resident CT reconstruction, with both analytical and iterative methods [7] and with large data [8] at a 
fidelity comparable to CPU-based methods. Following these more fundamental works were a number of papers targeting 
specific CT applications, all with impressive speedup factors. Kole and Beekman [26] accelerated the ordered subset 
convex reconstruction algorithm, Xue et al. [23] accelerated fluoro-based CT for mobile C-arm units, and Schwietz et al. 
[24] accelerated the backprojection and FFT operations employed for MR k-space transforms. Finally, Xu and Mueller 
[25] used their GPU-accelerated reconstruction framework to enable interactive volume visualization directly from a full 
set of projection data.  

FPGA-based solutions include the cone-beam CT application by Goddard and Trepanier [26], the 9-bit precision 
parallel-beam application by Leeser et al. [27] and the 16-bit precision cone-beam reconstructor by Li et al. [28]. The 
performance times are somewhat similar, when normalized to a certain problem size. Goddard and Trepanier reconstruct 
a 5123 volume from 300 cone-beam projections in 38.7s using Feldkamp’s algorithm, while Li et al. solve the same 
problem in 33.5s. Extrapolating the parallel-beam results of Leeser et al. to this problem also yields a reconstruction time 
of 37s.   

Recently, the Cell processor was also used for cone-beam reconstruction with Feldkamp’s algorithm [9]. Using the 
Cell-board available from Mercury, Inc., a 5123 volume could be reconstructed from 512 projections in 13.6 s (8s for our 
normalized problem size) [30]. In fact, the Mercury board, called a blade, hosts two Cell processors and thus a 
reconstruction could be achieved in half the time, that is, 6.8s (4s).  

4. THE FELDKAMP CONE-BEAM RECONSTRUTCTION AGORITHM 
Our framework uses the standard Filtered Backprojection algorithm devised by Feldkamp, Davis, and Kress [9]. 
Basically, the Feldkamp (FDK) algorithm consists of three stages: projection-space filtering, back-projection, and 
volume-space weighting. This is captured in the following three equations (see also Fig. 2):  
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In these equations, a voxel is denoted by a vector r = (x, y, z) in the (reconstruction) volume space defined by (Xv, Yv,
Zv), with Yv being the rotation axis. The elements on the projection (detector) plane oriented at φ are represented by Pφ(Y,
Z), where Y and Z represent an element’s spatial location in detector coordinates. The vector Xφ is orthogonal to the 
detector plane and connects the detector center with the source S. The two orthogonal vectors Yφ and Zφ complete the 3D 
coordinate system of the detector space, which is related to (Xv, Yv, Zv) by ways of a transformation matrix composed of 
gantry rotation and possible gantry warp. Finally, the distances from the source to the rotation center O and the detector 
center are defined as d and D, respectively.  

Equation (3) constitutes the projection-space filtering, while equation (2) represents the backprojection operation, 
that is, the mapping of a voxel to a location on the projection plane and the subsequent assignment of the value 
interpolated there. Finally, equation (1) integrates the backprojection contributions for a given voxel over all projections, 
properly weighted in volume space. These three equations constitute a natural decomposition of the FDK algorithm, 
forming a pipeline consisting of filtering, backprojection, and weighting.  

Figure 2: The Feldkamp filtered back-projection algorithm. 

5. GPU ARCHITECTURE AND POGRAMMING MODEL  
While not overly flexible in terms of program flow, GPUs are extremely powerful when it comes to the repetitive data 
processing often exhibited in loops. In fact, this form of computational model is very typical for graphical objects, which 
consist of large meshes of polygons, with each such polygon being defined as a set of three or more vertices. Here, each 
such vertex is represented as a 3D floating point (x,y,z) coordinate triple. To view such a graphical object from an 
arbitrary position, all vertices must first be transformed into viewing-space (defined by the viewing direction), 
orthographically or perspectively, and then reconnected to form the (projected) polygons. If only these connections (or 
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edges) are displayed, then the object appears as a wireframe model. However, if all screen pixels subtended by a given 
polygon are assigned a value, then a process called rasterization is invoked. More generally speaking, rasterization 
produces data (called fragments), which are associated with the corresponding screen pixels. Also, apart from shading 
effects, one can add more surface detail by assigning each vertex a certain location in one or more images or textures.
Each polygon then subtends a closed (polygonal) region in this texture, and the rasterization process provides the 
coordinates (as part of the fragment) into these textures (Fig. 3a). Since these do not necessarily coincide with a discrete 
texture pixel, the texture must be interpolated (either with linear or nearest neighbor interpolation) to yield the value 
assigned to or combined with the screen pixel (Fig. 3b).

Thus there is a strict computational pipeline governing the display of a graphical object: (1) the vertex 
transformations, (2) the generation of fragments, and (3) the computations imposed on the fragments, such as texture 
interpolations or more complex tasks, which result in the RGBA colors assigned to the screen pixels. Since screen pixels 
are numerous and typically independent, a high degree of SIMD parallelism exists. Further, since this basic graphics 
pipeline has no loop dependencies, the objects simply stream across the pipeline, starting as a list of vertices, which 
generate fragments, which in turn form the basis for computing the visual attributes assigned to the corresponding screen 
pixels. GPUs are hence a streaming architecture, processing massive sets of graphics primitives, i.e., polygons and 
textures, in a highly parallelized fashion. This dedicated computational model greatly simplifies the control circuitry 
which intensifies data processing and also enables optimized memory access for maximum throughput with significantly 
reduced latency.  

Figure 3: GPU operations: (a) rasterization; (b) interpolation. 

More concretely, vertices and fragments that share similar operations constitute the elements of a stream, where 
these similar operations on them are implemented via user-defined shader programs, one at the vertex stage and one at 
the fragment stage of the pipeline (see the red boxes shown in Fig. 4a). When rendering begins, a stream of vertices 
generated on the CPU, or stored in GPU vertex memory, is passed into the GPU’s geometry processing stage. These 
vertices usually carry multiple properties to describe the target object, such as coordinate (xyz), color (RGBA), normal, 
etc. A vertex shader can then be applied to transform and map the 3D coordinates of each vertex to homogenous space 
and eventually screen space, while possibly complex vertex lighting effects can also be calculated. Next, rasterization,
which is performed in fast special GPU hardware circuitry, re-assembles each polygon in screen space and quickly fills 
the space enclosed by it. This generates a stream of fragments, which map to corresponding screen pixels. The rasterizer 
also linearly interpolates any scalar or vector attribute that may have been associated with the vertices, such as 3D 
coordinates, texture indices, and others. This fragment stream is processed in the fragment shader, which performs a 
series of user-defined per-pixel calculations. In this effort, the fragment shader also gives rise to another data stream, 
consisting of textures, which are stored in GPU texture memory and provide the data used in the fragment shader. After 
fragment program completion, the result is written to the corresponding pixels on the screen (or the framebuffer). 

Textures are the dominating data representation and storage primitive used by GPUs. A texture is essentially a 1-3D 
array of data. Each texture element can be represented in a certain format, ranging from a scalar to a vector of up to four 
components. In a graphics context, the latter usually describes a Red/Green/Blue/Alpha (RGBA) value, but note that for 
general-purpose GPU-computing this 4-channel representation can provide an additional 4-way parallelism. This 
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Figure 4: GPU components: (a) graphics pipeline, (b) rasterization and fragment processing stage. 

parallelism can be exploited by packing data sharing common operations together, and good speedups can be obtained 
since GPUs tend to be very efficient at processing this type of vectors. Current GPUs also support various texture 
precisions ranging from basic 8-bit integer to advanced 32-bit floating point. There are, however, still constraints on the 
use of textures in certain combinations of formats and precisions. For example, 4-channel 16-bit fixed point textures are 
not yet supported. Further, for most GPU-based applications, 2D textures are the preferred primitive since they are 
naturally optimized by the hardware and support efficient read/write actions. 3D textures, in contrast, are used mainly in 
(read-only) visualization applications, since they do not support direct-write operations. When write-access is desired 
they are better represented as stacks of 2D textures.  

The Nvidia GeForce 7800 GTX provides up to 8 vertex pipelines and 24 pixel (fragment) pipelines and the latest 
GeForce board, the 8800 GTX, has 128 unified pixel/vertex pipelines. Thus, a computational process also taking 
advantage of the 4-channel RGBA parallelism can achieve a 96-fold (512-fold) SIMD concurrence. Finally, dual-GPU 
boards or even quad-GPU designs have also become recently available on the market. These designs use the Scalable 
Link Interface (SLI) to connect the multiple GPUs together, and such a setup can double or quadruple, respectively, the 
amount of performance of a single GPU, on a single PC!  

6. GPU-ACCELERATED CT RECONSTRUCTION 
In the past section we have described the basic elements of a GPU pipeline. In this section we will describe how we map 
the three FDK constituents into this framework, which yields a streaming CT application.  

6.1 Projection-Space Filtering 
We choose to perform projection space filtering on the CPU, using the cache-optimized FFTW library [31]. This is 
reasonable since the FFT is a relatively sequential algorithm which involves many non-GPU-friendly operations, such as 
sorting, indexing and bit-wise calculations. Although a number of GPU-based FFT implementations are available 
[32][33] significant speedups are obtained only for 2D and 1D FFTs in conjunction with sufficiently large arrays (over 
10k elements) -- larger than those typically encountered in CT applications. This also resonates well with our declared 
goal to integrate the CPU as part of our computing pipeline, in order to make optimal use of all available resources. For 
synchronizing the GPU calculation and the data transfers from CPU to GPU, we take advantage of the Pixel Buffer 
Objects (PBO) and Vertex Buffer Objects (VBO). Another important issue is the precision used within the pipeline. 
While the projection data acquired by the detector typically have a dynamic range within 12-16 bits, the filtering 
potentially widens this range, and therefore maintaining full 32-bit floating point precision in later pipeline stages is 
most appropriate in clinical settings.    

6.2 Backprojection 
We represent the target volume as an axis-aligned stack of 2D textures, since a single 3D texture does not support an 
efficient update mechanism, as mentioned before. As illustrated in Figure a, the CT pipeline begins with generating a 
series of quadrilaterals Pi (called proxy polygons) which define the location and spatial extent of each volume slice as 
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well as corresponding 2D textures Ti that contains voxel values to be reconstructed (initialized to zero). Then from one 
or a set of specific projection angles, for each such slice Pi, viewing its host polygon face-on in orthographic viewing 
mode produces the fragments that relate to the slice voxels (solid arrows in Fig. 5b). The vertex shader then performs the 
mapping of these fragments into the perspective coordinate space of the back-projected image (the detector space). This 
is often referred to as projective-textures mapping (dashed arrows in Fig. 5b). Using the coordinate producedby the 
rasterizer, an interpolation of this image at the mapped location produces the fragment value, which is then added/written 
to the corresponding output texture Ti representing the slice. These operations represent one rendering cycle (pass) on the 
GPU. New passes will be initialized and executed repeatedly until every volume slice is processed, from every 
projection angle.   

In practical applications, the detector plane may not always be oriented perfectly collinear with the rotation axis for 
all angles. This may be due to (measurable) gantry instabilities, or it may be intended, in order to implement specific 
acquisition protocols on non-circular orbits. In order to describe a generalized mapping from volume space into 
perspective detector space, for a given angle φ, we first express the three orthogonal axes of the source coordinate 
system (Xs, Ys, Zs) (see Fig. 2) as unit vectors u, v, and n, and the source position as vector s (note, (Xs, Ys, Zs) are 
collinear to (Xφ, Yφ, Zφ), and all of these vectors are originally described in volume space). The full coordinate 
transformation from volume space to detector space can then be decomposed and expressed by a series of matrices, as 
shown in Equation (4).  
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 (4) 

Representing a voxel coordinate (xv, yv, zv) as a 4D (homogenous) vector, we generate a 4x4 model-view matrix M
defined by s and (u, v, n). M transforms the voxel coordinates from the volume coordinate system (Xv-Yv-Zv) to the 
source coordinate system (u-v-n). Another 4x4 projection matrix, P, determined by the cone angle θ and the detector 
dimensions w and h implements the subsequent perspective projection. M and P map voxel coordinates into a canonical 
view space, which is essentially a volume whose Cartesian coordinates are between -1 and 1. Then, translation T and a 
scaling matrix S, determined by the size of the detector (w and h) produce the homogeneous coordinates in detector 
space. To compensate for the perspective distortion effects, a division by the 4th component is then required to derive the 
correct pixel coordinate (for more details on this type of mapping see [11][34]).  

On the GPU, the above process (except the final division) is performed on the 4 vertices of the proxy polygons in the 
vertex processing stage to generate their homogenous coordinates. The affine properties of the matrix operation then 
allow the fast hardware rasterization engine, via linearly interpolation of these coordinates, to produce the correct 
coordinates of the fragments in between. Once the fragments are generated, the fragment program performs the final 
perspective division, producing the detector coordinates needed for the sampling of the (filtered) projection image, 
which are streamed in as textures from the CPU. The sampling position usually does not coincide with the detector 
pixels and a sampling kernel needs to be applied to produce final values (see Fig. 3b). Here, the method employed for 
this sampling is important. We have found that, in conjunction with projections where the resolution exceeds that of the 
reconstructed volume, the less costly nearest-neighbor sampling produces satisfactory result (having actual high-
resolution data is superior to bilinear filtering of matched-resolution data). However, we have also added support for 
bilinear interpolation, which provides better anti-aliasing when the size of the projections is on the same order than that 
of the volume slices.  
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Figure 1. GPU components: (a) graphics pipeline
Figure 5: Streaming-CT: (a) pipeline (b) backprojection mapping 

Once the fragment values have been generated, we accumulate them into the corresponding slice voxels. The above 
procedure is repeated for each volume slice until the entire volume is updated. We then move to the next filtered 
projection generated by the scanner. The projection-processing iteration over all slices is indicated by the solid arrow in 
Fig. 5.  

6.3 Volume-space weighting
We perform the weighting along with the backprojection within the same vertex and fragment shader program. 
According to the FDK algorithm shown in equation (1), the extra per-voxel weighting wv is defined as d2/(d+r⋅xϕ)2,
where d is the distance from the source to the rotation center. Here d is a constant with respect to a certain view angle, 
while the denominator can be interpreted as the distance from the voxel to the plane that contains the source and is 
parallel to the detector. This factor can be easily computed by using the center ray vector u and the source position s. We 
calculate the denominator for four vertices in the vertex shader and again take advantage of the rasterization engine to 
linearly interpolate the values in between. The final weight wv is then calculated in the fragment shader by an extra 
division and square operation to multiply with the sampled value.  

6.4 RGBA packing 
Originally designed to process graphics primitives, the GPU architecture is capable of efficiently processing 4-
component vectors containing red, green, blue and alpha properties of such a primitive. This feature offers an 
opportunity to obtaining a second level of parallelism, that is, channel parallelism. In our CT reconstruction acceleration, 
when projections are acquired under or rebinned into parallel-beam geometry and have the same resolution than the 
object grid, adjacent volume slices share similar sampling patterns on the detector, which is independent of the rotation 
axis Y. Therefore, every four neighboring projection rows and corresponding volume slices can be packed into a texture 
of 4 channels and all the transformation and sampling can be implemented concurrently on the GPU. This method 
reduces the number of rendering passes by four, and in practice yields a 2-3 fold speedup. 

7. RESULTS 
We used a 3D version of the Shepp-Logan phantom to test our framework. All experiments were performed on a 2.2GHz 
dual-core Athlon PC with 1GB RAM, equipped with dual Nvidia Geforce 7800 GTX cards. Each GPU has 256 MB on-
board memory, running on driver version 91.31 (released June, 2006). The phantom projections were calculated 
analytically. All projections were acquired on a full circular orbit at a 15° cone angle. 

SPIE-IS&T/ Vol. 6498  64980N-9



7.1 Reconstruction quality 
For the following experiments, we used 360 projections of size 5122 each to reconstruct a 5123 volume. Fig. 6 shows 
slices from the reconstructed 3D Shepp-Logan phantom (at the original 0.5% contrast) from both parallel-beam (0°) and 
cone-beam (15°) projections, each obtained with our GPU framework as well as a traditional high-quality CPU 
implementation. We also compared two interpolation schemes, box (nearest neighbor) and bilinear. A Shepp-Logan 
filter was used for pre-filtering. The shifted profile in the cone-beam images results from the non-exact FDK 
reconstruction of the off-center slices. We found that both interpolation kernels, bilinear and box, yield excellent and, by 
visual inspection, nearly identical results. We observe that the box filter tends to produce somewhat sharper, but also 
noisier images. These differences, however, can only be discerned when comparing the values on an intensity profile, 
such as the one across the small tumors in the bottom. 
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Figure 6. A slice of the 3D Shepp-Logan phantom, reconstructed with our Rapid-CT GPU-based framework (first column) and with a 
traditional CPU-based implementation (middle column). A windowed density range of [1.0, 1.04] is shown. The right column shows 
the line profiles across the three tumors near the bottom of the phantom (dashed lines: ground truth; solid gray lines: CPU results;
solid black lines: GPU results). We observe that the GPU reconstructions are essentially identical to those computed on the CPU and 
that they represent the original phantom well. The bilinear filter yields slightly smoother profiles than the box filter, but the
reconstruction quality does not suffer significantly when using nearest-neighbor interpolation.

7.2 Reconstruction performance 
Table 1 compares the overall performance of our full floating-point Rapid-CT framework with the other high-
performance solutions mentioned in Section 2. At the time of publication, we did not have a GeForce 8800 GTX 
available to us, but using the common benchmark results, one can reasonably expect an increase in performance of factor 
2.6 (a factor 1.3 for an upgrade to the GeForce 7900 GTX and factor 2 for a subsequent upgrade to the 8800 GTX). We 
also list the performance figures obtained with the other approaches enumerated in Section 3, all scaled to our problem 
size. Finally, we also list the performance of a commercial CPU solution.  
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Table 1. Performance timings for various high-performance CT reconstruction solutions. 

Hardware platform Time 
Single GPU 7800 GTX  19.2 s 
Dual GPU 7800 GTX 10 s 

Single GPU 8800 GTX (est.) 7.4 s 
Rapid-CT

(Xu and Mueller) 
Dual GPU 8800 GTX (est.) 3.8 s 

Exxim Computing Corp. Dual Pentium 2.4GHz 100 s 
Goddard and Trepanier 

Leeser et al., Li et al FPGA 33.5 - 38.7 s 

Cell BE 8 s Kachelrieß et al.  Dual Cell BE 4 s 

8. DISCUSSION AND CONCLUSIONS 
The visual results indicate that GPUs can succeed in producing reconstructions at excellent quality. The timing results, 
on the other hand, are very interesting. We immediately see that GPUs are much more efficient than CPUs (an order of 
magnitude), which comes at no surprise. They also seem to be more efficient than FPGA solutions, but these works have 
been completed 2-5 years ago, and it is not clear how much FPGA technology has improved. These kinds of approaches 
may very well be competitive now. On the other hand, it is interesting to see that all FPGA solutions offer about the 
same performance, even though they are 3 years apart (in publication date). This may or may not indicate the 
performance growth patterns. It is also remarkable that the Cell processor solution and the GPU solution have relatively 
similar timings. This may be expected as they both are incarnations of the streaming paradigm. These similarities in a 
way reflect the current trends in PC hardware: on one side there are the GPU manufacturers (AMD/ATI, Nvidia) who 
bet on generalizations of their GPU architecture, and on the other side are the CPU manufacturers (IBM) who bet on a 
tight and parallel coupling of their traditional CPUs. It is not clear at this point which of the two strategies will win in the
end (or if they will converge), but a strong determinant will be market penetration and consumer investment. At the 
current time, a GPU-based solution looks a lot more cost-effective than a Cell-based solution. But this may change once 
reasonably-priced Cell-boards are available on the mass market and a few hit computer games are designed to run on 
them. Perhaps, in order to produce research with lasting value, research should be primarily focused on exploiting the 
SIMD paradigm for acceleration, and only secondarily on exploiting the short-term advantages a certain architecture 
currently offers. This was true for GPU acceleration as a whole, and it seems to be true also in this new market setting.      
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