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ABSTRACT

We present methods of transforming the standard quadrature amplitude squeezing of a continuous-wave light
beam to its Stokes parameters and transverse spatial modes statistics. These two states of light are called
polarization squeezing and spatial squeezing, respectively. We present experimental results of the quadrature
amplitude, polarization and spatial squeezing obtained with a common experimental setup based on optical
parametric amplifiers. The transformations from quadrature amplitude to polarization and spatial squeezing are
achieved with only simple linear optics.
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1. INTRODUCTION

Given a set of non-commuting variables, the Heisenberg principle imposes uncertainty limits on the simultaneous
measurements of these variables. For example, if [A,B] = δ we would obtain the Heisenberg uncertainty relation
of ∆2A∆2B ≥ δ2/4, where ∆2O = 〈O2〉 − 〈O〉2 is the variance of the measurement of an observable O. For
the last two decades, squeezed light has been used to circumvent quantum measurement noise by making the
pair of uncertainty variances of the two non-commuting variables asymmetric. The observable of interest, say
A, can then be determined to an accuracy greater than the standard quantum limit at the expense of the other
observable B, with ∆2A < |δ/2| < ∆2B.

The first and many subsequent demonstrations of squeezing1 were performed on the quadrature amplitudes of
light. A beam of light can be either amplitude or phase squeezed. In this paper, we refer to this form of squeezing
as temporal squeezing since the light statistics of both amplitude and phase squeezing are temporally ordered.
Temporal squeezing is proposed to be used in many applications, ranging from improvements of interferometric
sensitivity2 to the demonstration of quantum teleportation.3, 4 Recently, there has been increasing interest in
the utilization of temporal squeezing in large scale gravitational wave detectors.5 In Section 2, we present our
experimental results of quadrature amplitude squeezing.

The Stokes parameters of a light beam which define its polarization state can also be squeezed. Polarization
squeezing is interesting because it has the potential to couple the quantum states of light to atomic ensembles.6

In some quantum information protocols, polarization squeezing can be used to facilitate communication without
the need of a network wide universal local oscillator.7 The commutation relations of Stokes parameters are
discussed in Section 3 and the squeezing results are presented using the Poincaré representation.
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More recently, it has also been demonstrated that different parts of the transverse spatial profile of a light
beam can exhibit quantum correlations. This form of spatial ordering is referred to as spatial squeezing. Spatial
squeezing has applications in situations where the displacement, or the pointing direction, of a laser beam needs
to be determined with great accuracy. For example, displacement measurements of atomic force microscope
cantilever may ultimately be limited by the quantum noise of its optical readout beam. We present the basic
method and experimental results for generating one dimensional spatially squeezed light in Section 4.

Since optical squeezing is now the basic resource for generating optical entanglement, we briefly discuss how
the three forms of squeezed light can potentially be useful in quantum information protocols, such as quantum
cryptography and quantum imaging in Section 5.

2. TEMPORAL SQUEEZING

2.1. Theory

The Heisenberg uncertainty principle when applied to an optical field gives the relation

∆X+∆X− ≥ 1 (1)

where X+ = â + â†, and X− = −i(â − â†), are respectively the amplitude and phase quadratures of the light
mode described by the annihilation operator â. Two kind of minimum uncertainty states can be discerned : the
coherent states for which both amplitude and phase quadrature variances are equal to 1, and the squeezed states
for which one quadrature variance falls below 1. In the following we will use the linearized operators assumption8

where the annihilation operator is written as â = α + δâ. α and δâ denote the steady state component and the
zero mean value fluctuations of the annihilation operator, respectively.

An optical parametric amplifier (OPA) below threshold can produce squeezed states of light. Assuming that
the OPA is a simple Fabry-Perot cavity with a second order non-linear gain medium inside, the equation of
motion of the OPA in the non-pump depletion regime is given by9

ȧ=gâ†−κâ+
√

2κbÂb+
√

2κf Âf +
√

2κl
ˆδAl (2)

where Âf and Âb are the input fields injected into the front and back mirrors and δÂl is a vacuum fluctuation
term due to loss in the cavity. κ = κf + κb + κl is the total cavity damping rate, where κf , κb and κl are the
damping rates of the front and back mirrors and the loss in the cavity, respectively. The parameter g takes into
account the second order non-linear interaction and is proportional to the second harmonic pump field.

The output from the OPA expressed in terms of an input Âf can be derived from Eq. (2). In the ideal limit,
no vacuum fluctuation couples into the cavity. This can be modelled by setting κb = 0 and κl = 0. The output
field quadratures from the OPA expressed in the frequency domain are

X+
out(ω) =

κf − iω + g

iω + κ − g
X+

f (ω) (3)

X−
out(ω) =

κf − iω − g

iω + κ + g
X−

f (ω) (4)

where the general operator Z = Z(ω) is the Fourier transform of the time operator Ẑ = Ẑ(t). By assuming the
detection frequency is small compare with the cavity linewidth, such that ω � κ, the output field quadratures
can be expressed more succinctly as

X+
out =

√
GX+

f (5)

X−
out =

1√
G

X−
f (6)

where the parametric gain is defined as G = [(κf + g)/(κf − g)]2. The amount of gain is dependent on the
pump power, and on the relative phase between the pump and input beams. In the amplification regime phase
squeezed light is produced, whilst in the deamplification regime amplitude squeezed light is produced.
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Figure 1. Schematic for generating squeezed light with an OPA. SHG: Second harmonic generator, OPA: optical para-
metric amplifier, MC: Mode cleaner cavity, PBS: polarizing beam splitter, M1,M2: Dichroic mirrors, 50/50: symmetric
beam splitter.

2.2. Experimental setup
The basic experimental setup used to generate temporal squeezing is depicted Fig. 1. The laser is a non-
planar ring diode-pumped continuous wave Nd:YAG laser, generating a TEM00 beam at 1064 nm. The Second
Harmonic Generator (SHG) is a hemilithic cavity consisting of a MgO:LiNbO3 nonlinear crystal with an input
planar surface anti-reflection coated and a spherical back surface high-reflection coated, both for 1064 nm and
532 nm. The green light at 532 nm produced by the SHG is sent to the OPA using a dichroic mirror, M1. The
mode cleaner cavity is a high finesse ring cavity which is used to filter frequency noise above its cavity bandwidth.
The transmitted beam, which is quantum noise limited at the detection frequency, is used as a seed for the OPA
and as a local oscillator for the characterization of the squeezed light.

The OPA is either a monolithic cavity based on a single MgO:LiNbO3 nonlinear crystal for experiments
requiring only one squeezer, or a hemilithic cavity similar to the SHG cavity for the experiments requiring two
squeezed sources. The advantages of the monolithic cavity are that it is very stable and has very low losses,
resulting in a large amount of squeezing. The advantage of the hemilithic cavity is that it is easier to be servo
controlled. The quadrature angle of the squeezing (relative to the seed beam) is chosen by locking the relative
phase of the pump beam to either a maximum or minimum of the output power from the OPA cavity. The
minimum corresponds to amplitude quadrature squeezing, while the maximum gives phase quadrature squeezing.
The output beam of the OPA is spatially separated with a dichroic mirror.

The temporally squeezed beam was analyzed with an optical homodyne setup. This is done by mixing the
output beam with the local oscillator on a 50/50 beam splitter and the resulting beams were detected using
two high quantum efficiency EPITAXX ETX-500 photodiodes. The difference of the photocurrents produced
by these detectors, which can be either sent directly to a spectrum analyzer, or demodulated at a particular
frequency and recorded on an oscilloscope, describes a particular quadrature of the output state depending on
the relative phase, θLO, between the output beam and the local oscillator.

2.3. Results
At a pump power of around 60% ± 10% of the OPA threshold, the best amplitude quadrature squeezing was
experimentally observed.10 Using a monolithic OPA cavity, we obtained 7.0 ± 0.2 dB of vacuum squeezing
at a detection frequency of 3 MHz. Experimental reconstruction of the Wigner function of the vacuum state
and squeezed vacuum state were also performed with this setup using optical homodyne tomography.11 The
reconstructed Wigner function of the squeezed vacuum state produced by the monolithic OPA, see Fig. 2 (a),
exhibits 4.1 dB of squeezing, and 8.7 dB of anti-squeezing. The lower value of the squeezing is due to the optical
homodyne tomography method which requires much more data points than a direct homodyne measurement,
thus introducing an averaging effect. Fig. 2 (b) shows a coherent vacuum state used as a calibration of the
experiment.
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Figure 2. Experimental Wigner function plots of (a) a squeezed vacuum state and, (b) a coherent vacuum state.

With the hemilithic cavities, the best measured amplitude quadrature squeezing12 was 4.5 dB at 6.5 MHz.
This smaller squeezing value was due to additional losses on the extra surfaces inside the OPA resonator. Using
hemilithic OPA cavities, however, enabled us to simultaneously keep more than one OPA locked on resonance.
We can therefore generate two temporally squeezed beams with 2 OPAs. This is useful for generating polarization
squeezing or 2D spatial squeezing as we will see in Sections 3 and 4.

3. POLARIZATION SQUEEZING

3.1. Theory

a)
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S3
right-circularly 

    polarized
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b) S3
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Figure 3. a) classical and b) quantum Stokes vectors mapped on a Poincaré sphere; the ball at the end of the quantum
vector visualizes the quantum noise in Ŝ1, Ŝ2, and Ŝ3; and the non-zero quantum sphere thickness visualizes the quantum
noise in Ŝ0.

The polarization state of a light beam in classical optics can be visualized as a Stokes vector on a Poincaré
sphere (Fig. 3) and is determined by the four Stokes parameters: S0 represents the beam intensity whereas
S1, S2, and S3 characterize its polarization and form a cartesian axes system. If the Stokes vector points in
the direction of S1, S2, or S3 the polarized part of the beam is horizontally, linearly at 45◦, or right-circularly
polarized, respectively. Two beams are said to be opposite in polarization and do not interfere if their Stokes
vectors point in opposite directions. The quantity S = (S2

1 + S2
2 + S2

3)1/2 is the radius of the classical Poincaré
sphere and the fraction S/S0 ( 0<S/S0 <1 ) is called the degree of polarization. For quasi-monochromatic laser
light which is almost completely polarized S0 is a redundant parameter, completely determined by the other three
parameters (S0 =S in classical optics). The quantum-mechanical analogue of the classical Stokes parameters for
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pure states13 in the commonly used notation are defined as:

Ŝ0 = â†
H âH + â†

V âV , Ŝ2 = â†
H âV + â†

V âH , (7)

Ŝ1 = â†
H âH − â†

V âV , Ŝ3 = iâ†
V âH− iâ†

H âV ,

where the subscripts H and V label the horizontal and vertical polarization modes respectively, and the âH,V

and â†
H,V are annihilation and creation operators for the light field in frequency domain. The commutation

relations of the annihilation and creation operators

[âk, â†
l ] = δkl , with k, l ∈ {H,V } , (8)

directly result in Stokes operator commutation relations,

[Ŝ1, Ŝ2] = 2iŜ3 , [Ŝ2, Ŝ3] = 2iŜ1 , [Ŝ3, Ŝ1] = 2iŜ2 . (9)

Apart from a normalization factor, these relations are identical to the commutation relations of the Pauli spin
matrices. In fact the three Stokes parameters in Eq. (9) and the three Pauli spin matrices both generate the
special unitary group of symmetry transformations SU(2) of Lie algebra. Since this group obeys the same algebra
as the three-dimensional rotation group, distances in three dimensions are invariant. Accordingly the operator
Ŝ0 is also invariant and commutes with the other three Stokes operators ( [Ŝ0, Ŝj ] = 0, with j = 1, 2, 3). It can
be shown from Eqs. (7) and (8) that the quantum Poincaré sphere radius is different from its classical analogue,〈
Ŝ

〉
=

〈
Ŝ2

0 + 2Ŝ0

〉1/2

. This is another consequence of the quantum noise in the Stokes parameters. On the
other hand quantum states of partial and opposite polarization can be defined in direct analogy to the classical
description. The noncommutability of the Stokes operators Ŝ1, Ŝ2 and Ŝ3 precludes the simultaneous exact
measurement of their physical quantities. As a direct consequence of Eq.(9) the Stokes operator mean values〈
Ŝj

〉
and their variances Vj =

〈
Ŝ2

j

〉
−

〈
Ŝj

〉2

are restricted by the uncertainty relations

V1V2 ≥ |
〈
Ŝ3

〉
|2 , V2V3 ≥ |

〈
Ŝ1

〉
|2 , V3V1 ≥ |

〈
Ŝ2

〉
|2 . (10)

In general this results in non-zero variances in the individual Stokes parameters as well as in the radius of the
Poincaré sphere (see Fig. 3b).13

To calculate the Stokes operator variances we again use the linearized formalism. The creation and annihila-
tion operators are expressed as sums of complex classical amplitudes α̃H,V and quantum noise operators δâH,V

:
âH,V = α̃H,V + δâH,V and α̃H,V = αH,V eiθH,V . (11)

where we have introduced the modulus and the phase of the complex amplitudes. The operators in Eq. (11)
are non-hermitian and therefore unphysical. To express the Stokes operators of Eq. (7) in terms of hermitian
operators we define the generalized quadrature quantum noise operators δX̂H,V (φ), rotating them such as they
point into the phase and amplitude direction :

δX̂H,V (φ) = δâ†
H,V ei(φ+θH,V ) + δâH,V e−i(φ+θH,V ), (12)

δX̂+
H,V = δX̂H,V (φ=0), (13)

δX̂−
H,V = δX̂H,V (φ=π/2). (14)

φ is the phase of the quantum mechanical oscillator and δX̂+
H,V and δX̂−

H,V are the amplitude quadrature noise
operator and the phase quadrature noise operator respectively.

If the variances of the noise operators are much smaller than the coherent amplitudes then a first order
approximation of the noise operators is appropriate. This yields the Stokes operator mean values

〈
Ŝ0

〉
= α2

H + α2
V = 〈n̂〉 ,

〈
Ŝ2

〉
= 2αHαV cosθ , (15)

〈
Ŝ1

〉
= α2

H − α2
V ,

〈
Ŝ3

〉
= 2αHαV sinθ ,
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Where we have introduced the relative phase between the two beams as θ = θV − θH . These expressions are
identical to the Stokes parameters in classical optics. Here 〈n̂〉 is the expectation value of the photon number
operator. For a coherent beam the expectation value and variance of n̂ have the same magnitude, this magnitude
equals the conventional shot-noise level. The variances of the Stokes parameters are given by

V0 = α2
H

〈
(δX̂+

H)2
〉

+ α2
V

〈
(δX̂+

V )2
〉

+ 2αHαV

〈
δX̂+

HδX̂+
V

〉
,

V1 = α2
H

〈
(δX̂+

H)2
〉

+ α2
V

〈
(δX̂+

V )2
〉
− 2αHαV

〈
δX̂+

HδX̂+
V

〉
,

V2(θ) = α2
H

〈
(δX̂V (−θ))2

〉
+ α2

V

〈
(δX̂H(θ))2

〉
+ 2αHαV

〈
δX̂V (−θ)δX̂H(θ)

〉
, (16)

V3(θ) = V2(θ− π

2
) .

It can be seen from Eqs.(16) that the variances of Stokes operators can be expressed in terms of the variances
of quadrature operators of two modes. Polarization squeezing can then be defined in a straight forward manner.
The variances of the noise operators in the above equation are normalized to one for a coherent beam. Therefore
the variances of the Stokes parameters of a coherent beam are all equal to the shot-noise of the beam. For this
reason a Stokes parameter is said to be squeezed if its variance falls below the shot-noise of an equal power
coherent beam. Although the decomposition to the H,V -polarization axis of Eqs. (16) is independent of the
actual procedure of generating a polarization squeezed beam, it becomes clear that two overlapped quadrature
squeezed beams can produce a single polarization squeezed beam. If two beams in the horizontal and vertical
polarization mode having uncorrelated quantum noise Eqs. (16) can be rewritten as

V0 = V1 = α2
H

〈
(δX̂+

H)2
〉

+α2
V

〈
(δX̂+

V )2
〉

,

V2(θ) = cos2 θ
(
α2

V

〈
(δX̂+

H)2
〉

+α2
H

〈
(δX̂+

V )2
〉)

+ sin2θ
(
α2

V

〈
(δX̂−

H)2
〉

+α2
H

〈
(δX̂−

V )2
〉)

, (17)

V3(θ) = V2(θ− π

2
) .

It can be seen from Eq.(17) that for polarization squeezing generated from two amplitude squeezed beams, the
Ŝ0 and two additional Stokes parameters can in theory be perfectly squeezed when θ =0 or θ =π/2 are used.
Utilizing only one temporally squeezed beam, it is not possible to simultaneously squeeze any two of Ŝ1, Ŝ2, and
Ŝ3 to more than 3 dB below the standard quantum limit.

3.2. Experimental setup

The experimental setup used to generate polarization squeezing14, 15 is depicted Fig. 4 (A). The refractive index
of the MgO:LiNbO3 crystal in each OPA resonator was modulated with an RF field, this provided error signals
on the reflected and transmitted seed power that were used to lock their length. The modulation also resulted
in a phase modulation on the output beams from the SHG and each OPA. The coherent amplitude of each
OPAs output was a deamplified/amplified version of the seed coherent amplitude; the level of amplification was
dependent on the phase difference between pump and seed (φsh). Therefore the second harmonic pump phase
modulation resulted in a modulation of the amplification of the OPAs, error signals could be extracted from
this effect, enabling the relative phase between pump and seed to be locked. Locking to deamplification or
amplification provided an amplitude or phase squeezed output, respectively.

Instanstaneous values of the Stokes operators of all polarization states analyzed in this paper were obtained
with the the apparatus shown in Fig. 4 (B). The beam under interrogation was split on a polarizing beam splitter
and the two outputs were detected on a pair of high quantum efficiency photodiodes with 30 MHz bandwidth; the
resulting photocurrents were added and subtracted to yield photocurrents containing the instantaneous values
of Ŝ0 and Ŝ1. To measure Ŝ2 the polarization of the beam was rotated by 45◦ with a half-wave plate before
the polarizing beam splitter and the detected photocurrents were subtracted. To measure Ŝ3 the polarization of
the beam was again rotated by 45◦ with a half-wave plate and a quarter-wave plate was introduced before the
polarizing beam splitter such that a horizontally polarized input beam became right-circular. Again the detected
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Figure 4. (A) Schematic of the polarization squeezing experiment and (B) apparatus required to measure each of the
Stokes parameters. DC: dichroic beam splitter, λ/2 and λ/4: half- and quarter-wave plates respectively φsh: phase
shift between 532 nm and 1064 nm light at the OPAs, θ: phase shift between quadrature squeezed beams, H: horizontal
polarization mode, V: vertical polarization mode.

photocurrents were subtracted. The expectation value of each Stokes operator was equal to the DC output of
the detection device and the variance was obtained by passing the output photocurrent into a Hewlett-Packard
E4405B spectrum analyzer.

3.3. Results
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Figure 5. Measured quantum polarization noise at 8.5 MHz from different combinations of two input beams: a) coherent
beam and vacuum, b) bright squeezed beam and vacuum, c) coherent beam and squeezed vacuum, d) two amplitude
squeezed beams and e) two phase squeezed beams. The surface of the ellipsoids defines the standard deviation of the
noise normalized to shot-noise (σSi =

√
Vi).

Four different kinds of polarization squeezing were realized as depicted Fig. 5. We first characterized the
polarization state of a single horizontally polarized bright amplitude squeezed beam provided by one of the
OPAs. The Stokes operators Ŝ0 and Ŝ1 were squeezed respectively 3.2 dB and 3.6 dB below the shot noise
at 8.5 MHz, while the variances of the remaining Stokes operators Ŝ2 and Ŝ3 were at the shot noise level (see
Fig. 5 b). Then we mixed a bright horizontally polarized coherent beam with a dim vertically polarized amplitude
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squeezed beam. The variances of Ŝ0 and Ŝ1 where slightly above the shot noise level, while Ŝ2 was anti-squeezed
and Ŝ3 squeezed 2.8 dB below the shot noise at 8.5 MHz (see Fig. 5.c). For the third experiment, we mixed two
phase squeezed beams respectively horizontally and vertically polarized. Ŝ0, Ŝ!1 and Ŝ3 were all anti-squeezed,
and Ŝ2 was squeezed optimally 2.8 dB below the shot noise at 4.8 MHz (see Fig. 5.c). Finally, we mixed two
amplitude squeezed beams respectively horizontally and vertically polarized. Ŝ0, Ŝ1 and Ŝ3 were all below the
shot noise with respective maximum squeezing of 3.8 dB at 9.3 MHz, 4.3 dB at 5.7 MHz and 3.5 dB at 9.3 MHz,
while the remaining stokes operator Ŝ2 was anti squeezed (see Fig. 5.e).

4. SPATIAL SQUEEZING

4.1. Theory

Precision optical imaging using CCD cameras or photodetector arrays is required in many areas of science,
ranging from astronomy to biology. Ultimately, the performance of optical imaging technology is limited by
quantum mechanical effects. Of particular importance, as far as applications are concerned, is the measurement
of image displacements, for example, the position of a laser beam. Techniques that rely on determining the
position of a laser spot include atomic force microscopy, measurement of very small absorption coefficients via
the mirage effect and observation of the motion of single molecules. These measurements are usually performed
using a laser beam centered on a split detector that delivers two currents proportional to the light intensity
integrated over the two halves (x < 0 and x > 0) of the image plane. If the beam is initially centered on the
detector, the mean value of the photocurrent difference is directly proportional to the relative displacement d of
the beam with respect to the detector. With a classical, shot noise limited laser source, the smallest displacement
that can be measured (with a signal-to-noise ratio of one) is shown to be16

dSQL =
√

N

2I(0)
. (18)

Here N is the total number of photons recorded by the two detectors during the measurement time, and I(0) is
the local density of photons (photons per unit transverse length) at the position of the boundary between the
two detectors. For a TEM00 Gaussian beam with radius w0, the minimum measurable displacement is found to
be

dSQL =
√

π

8
w0√
N

. (19)

For maximum focusing of the Gaussian beam, w0 = λ, and we obtain dSQL ≈ λ/
√

N , which is the absolute
minimum displacement of a physical system that can be measured with classical beams. Equation (19) shows
that a more powerful laser, or a longer measurement time, gives increased measurement precision. However, in
many applications these alternatives are simply not practical. In the case of atomic force microscopy, for example,
excessive laser power ultimately leads to radiation pressure noise. For biological applications, large laser power
may damage the samples under investigation and an increased integration time leads to loss of bandwidth. This
is the motivation for looking for alternative methods of increasing measurement precision.

The limit of equation (19) can be surpassed only using multimode non-classical light. Let us consider a beam
of light with an electric field distribution given by E(x). We can build an orthonormal basis of the transverse
plane {ui} such that u0 = E(x)/ ‖ E(x) ‖ is the first vector; u1 is a “flipped” mode, given by −u0(x) for x < 0
and u0(x) for x > 0; and the other modes are choosen in order to form a basis. In this basis, the mean field of
our light lies only in the first mode u0 but, a priori, all of the modes contribute to the quantum noise. In order
to determine the relevant modes of our measurement, we consider the interference quantities between two modes
on each half of the split detector:

Ix<0(ui, uj) =
∫ 0

−∞
u∗

i (x)uj(x)dx

Ix>0(ui, uj) =
∫ +∞

0

u∗
i (x)uj(x)dx. (20)
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Then the interference quantities relevant for a total measurement (sum of the two photodetectors) and a differ-
ential measurement (difference of the two photodetectors) can be written:

Isum(uiuj) = Ix<0(ui, uj) + Ix>0(ui, uj)
Idiff(uiuj) = Ix<0(ui, uj) − Ix>0(ui, uj) (21)

One can then show that for any transverse mode ui,

Isum(uiu1) = Idiff(uiu0). (22)

Since all ui, for i ≥ 2, are orthonormal to u1 (i.e. Isum(uiu1) = 0), equation (22) demonstrates that these modes
have a zero overlap integral with u0 in a differential measurement. It can then be shown that only u1, which has
a non-zero overlap integral with u0, has to be considered along with u0 in the noise calculation.16

We note that the modes u0 and u1 have perfect interference visibility as shown by their complete overlap
integral for the differential measurement, ie. Idiff(u0u1) = 1. In this regard, the measurement is analogous to a
perfect homodyne measurement with a beam splitter. The two modes are equivalent to the two input beams of
a beamsplitter and the two halves of the multimode beam are equivalent to the two outputs. Therefore, similar
to a homodyne measurement, the noise on the differential measurement is completely cancelled when the flipped
mode is occupied by a perfect squeezed vacuum, with the squeezed quadrature in phase with the coherent field
of the u0(x) mode.

4.2. Experimental setup
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Figure 6. (A) Scheme of the experimental setup and (B) experimental results. (A) EOM: Electro-Optic Modulator and
ESA: Electronic Spectrum Analyzer. The dashed lined correspond to light at 532 nm and the solid line to the light at
1064 nm. The TEM00 mode is produced by the OPA and is a squeezed vacuum, the flipped mode is a coherent state.
(B) Noise spectrum of the photocurrent difference in presence of an oscillating displacement with amplitude 2.9 Åat a
frequency of 4.5 MHz (resolution bandwidth: 100 kHz) a) using a coherent state of light and, b) using the spatially
squeezed light. These traces were obtained by averaging the signal over 10 successive traces.

The experimental setup for generating spatial squeezing17 is shown in Fig. 6 (A). The flipped mode, u1(x),
is produced by sending the remaining part of the initial 1064 nm laser beam through a specially designed phase
plate. This phase plate consists of two birefringent half-wave plates, one rotated by 90◦ with respect to the
other, forming the two halves x < 0 and x > 0 of the transverse plane. These elements introduce a phase shift
of 180◦ between the field amplitudes of the two halves. The squeezed output from the OPA is required to be
superimposed onto the flipped mode with minimal loss. This is achieved by using a beam splitter that reflects
92% of the squeezed state and transmits 8% of the coherent state. The reflected output is then sent to a quadrant
InGaAs detector (EPITAXX 505Q) with quantum efficiency greater than 90%. A lens is used to image the phase
plate on the detector plane and to counteract the diffraction of the flipped mode, which undergoes an abrupt
phase change and therefore contains high spatial frequency components. In order to produce a small controllable
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beam displacement in the frequency range of the previous measurements, we use two electro-optic modulators
(EOMs) driven at 4.5 MHz. Fig. 6 (A) shows that EOM2 is slightly tilted with respect to the propagation
of the light beam. When a voltage is applied across EOM2, a change in refractive index is induced and the
transmitted beam experiences a parallel transverse displacement measured at about 3nm/V. Apart from the
parallel displacement, EOM2 will also introduce an unwanted phase modulation on the transmitted beam which
is detrimental to our measurement. EOM1 of Fig. 6 (A) is therefore used to compensate for this introduced
phase modulation. When correct gains are chosen for both modulators, the transmitted beam will not have any
phase or amplitude modulation and are only left with pure transverse displacement modulation.

4.3. Results

Figure 6 (B) shows the differential signal monitored by a spectrum analyzer when the light beam undergoes
a displacement modulation with an amplitude of 2.9Å. Fig. 6 (B)a shows the trace when vacuum instead of
the squeezed vacuum is used in mode u0(x). Thus this noise floor gives the standard quantum limit in such
a displacement measurement. The signal-to-noise ratio (SNR) of this measurement is 0.68. When the two-
mode non-classical beam is utilized in the measurement (Fig. 6 (B)b), we obtain a SNR of 1.20. This gives an
improvement of the displacement measurement sensitivity by a factor of 1.7. The result is in agreement with the
theoretical value calculated with the noise reduction reported in the previous paragraph.

5. DISCUSSION AND CONCLUSIONS

Of the three forms of continuous variable squeezing introduced in the previous sections, we point out that only
temporal squeezing has realized some of its application potential for quantum information. Whilst further work
is still needed to extend the utility of polarization and spatial squeezing.

In principle experimental demonstrations of polarization squeezing6, 14, 18 and entanglement19 have been per-
formed. Polarization entanglement, however, is more diverse in the sense that entanglement may exist between
some or all combinations of the pairs of the Stokes parameters. To date, full entanglement of all Stokes parameters
has not been experimentally demonstrated in the continuous variable regime.

Transfer of optical polarization quantum states to atomic spin ensembles has been experimentally demon-
strated.6 There is therefore, potential for polarization entanglement to be transferred to spatially distant pairs
of atomic ensembles, which is a crucial element in most proposed quantum information networks.

Our work on spatial squeezing has demonstrated that a one-dimensional displacement measurement can have
accuracy surpassing the standard quantum limit. More complex arrangements of non-classical beams can be
used to extend spatial squeezing to two dimensions, or even to detection on arrays of pixels. Since quadrature
amplitude entanglement can be generated from temporal squeezing, one can explore the possibility of generating
spatial entanglement from spatial squeezing. The combination of the multi-pixel extension and the possibility of
generating spatial entanglement is an enabling step towards parallel processing of quantum information via the
transmission of quantum images.
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the standard quantum limit for optical imaging using nonclassical multimode light,” Phys. Rev. Lett. 88,
p. 203601, 2002.

18. P. Grangier, R. E. Slusher, B. Yurke, and A. LaPorta, “Squeezed-lightenhanced polarization interferometer,”
Phys. Rev. Lett. 59, p. 2153, 1987.

19. W. P. Bowen, N. Treps, R. Schnabel, and P. K. Lam, “Experimental demonstration of continuous variable
polarization entanglement,” Phys. Rev. Lett. 89, p. 253601, 2002.

Proc. of SPIE Vol. 5111     77


