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ABSTRACT 

In order to meet the requirements of real-time and accuracy for unmanned aerial vehicle (UAV) inspection of 

transmission lines, this paper deeply studies the application of YOLOV3 object detection algorithm in the onboard AI 

module of UAV inspection. By integrating the target detection candidate region selection and object recognition into one, 

the YOLOV3 algorithm, combined with multi-scale feature fusion, realizes high accuracy and real-time optimization of 

target detection and uses residual blocks to solve the problem of model degradation. The test results of transmission line 

insulators show that the average accuracy of YOLOV3 algorithm can reach 90%. Under the same conditions, the average 

processing speed of YOLOV3 algorithm is about 3.2 times that of Faster RCNN algorithm. 
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1. INTRODUCTION 

With the development of computer technology, target detection technology using UAV cruise combined with image 

recognition algorithm has been widely used in urban planning, emergency rescue, engineering construction, forest fire 

prevention, and power line inspection1,2. In power line inspection, drones equipped with AI modules can perform target 

detection and fault recognition on transmission lines, effectively reducing labor costs and labor intensity. The promotion 

and application of AI algorithms have significantly improved the automatic detection and judgment accuracy of 

transmission line defects and their real-time performance3-5, further improving the efficiency of power transmission line 

inspection and ensuring the safe and stable operation of the power grid. 

Scholars at home and abroad have extensively researched UAV image recognition and inspection technology6,7. Wang et 

al.8 studied the application of convolutional neural network (CNN) in power inspection component detection by 

optimizing the extraction of target areas and improving the classifier method. Guo et al.9 adopted a real-time target 

detection method based on deep learning algorithms, achieving target detection of various scales under various 

environments, with the highest detection speed reaching 30 frames/s. Pan et al.10 analyzed the principle of scattering 

transform and convolutional neural networks, processed the scattering coefficients of low-pass filters, and used the Gram 

matrix algorithm to reduce noise interference, resulting in a 1.4% improvement in real-time positioning performance 

(recall rate) of insulator strings compared to the traditional SSD network framework. 

The advantage of convolutional neural networks lies in the robustness of image recognition, but UAV inspection requires 

stable performance and real-time detection requirements11,12. Therefore, this paper studies the application of multi-rotor 

UAV AI modules with YOLOV3 image recognition network model in UAV power line inspection, optimizes the image 

recognition algorithm for accuracy and real-time requirements in power line inspection, further, improves the speed of 

image processing, and achievess a real-time return of detection results and automatic generation of detection reports. 

2. AI MODULE ALGORITHM 

2.1 YOLOV3 algorithm 

Image processing and object detection technology are one of the key technologies for UAV inspection13. In order to 

achieve accurate positioning of inspection targets and rapid identification of defects, the YOLOV3 algorithm is selected 

for image recognition in the onboard AI module. 

 
154479652@qq.com 

International Conference on Optics, Electronics, and Communication Engineering (OECE 2024), 
edited by Yang Yue, Proc. of SPIE Vol. 13395, 133951H · © 2024 SPIE · 0277-786X · Published 

under a Creative Commons Attribution CC-BY 3.0 License · doi: 10.1117/12.3050112

Proc. of SPIE Vol. 13395  133951H-1



Drawing on the Faster RCNN prior box method, the target position coordinates of the YOLOV3 algorithm in the initial 

training stage are: 

𝑥 = 𝑎𝑤 + 𝑥0                                                                                 (1) 

𝑦 = 𝛽ℎ + y0                                                                                 (2) 

wherein x and y are the center coordinates of the predicted bounding box of the algorithm; x0 and y0 are the center 

coordinates of the prior bounding box; w and h are the width and height of the prior bounding box; α and β are 

parameters to be learned. Since there is no restriction on the values of α and β, the center of the predicted bounding box 

may appear in any position when using Faster R-CNN for object detection, resulting in unstable algorithms during the 

initial training period. The YOLOV3 algorithm is adjusted based on this, and the center of the predicted bounding box is 

constrained within a specific grid, expressed as 

𝑥 = 𝜎(𝑡𝑥) + ⅆ𝑥                                                                             (3) 

𝑥 = 𝜎(𝑡𝑦) + ⅆ𝑦                                                                            (4) 

𝑤 = 𝑤0ⅇ𝑡𝑤                                                                               (5) 

ℎ = ℎ0ⅇ𝑡𝑘                                                                                 (6) 

In this equation, dx and dy represent the distance from the current grid’s top left corner to the image’s top left corner. w0 

and h0 represent the initial width and height of the prior box. tx, ty, tw, and th represent functions that need to be learned to 

predict the center coordinates, width, and height of the bounding box. The tx and ty are constrained within the range of (0, 

1) using a σ function, making it easier for the model to learn and improving prediction stability. 

The YOLOV3 network is based on the Darknet-53 feature extraction network for object classification, utilizing residual 

blocks to construct a multi-layer neural network classifier. The basic structure of the residual block is shown in Figure 1. 

 

Figure 1. Schematic structure of residual block. 

In Figure 1, x represents the input, and F(x) represents the output after the first layer of linear transformation and 

activation. This process turns the feature functions, which were originally required to be learned independently layer by 

layer, into a process of filling and augmenting x, thereby reducing the learning difficulty. 

2.2 Loss function 

The loss function is the deviation between the actual output value of the network and the sample label. The YOLOV3 

loss function generally consists of four parts, namely, the error of the center point of the bounding box, the error of the 

height and width of the bounding box, the error of the confidence, and the error of object classification. In essence, it 

uses the sum of the squares of the errors between the network output and each content of the sample label as the overall 

error of a sample. 

The error of the center point of the frame can be expressed as 

𝐿1 = 𝜆 ∑  𝑠2

𝑖=0 ∑ 𝐼𝑖𝑗[(𝑥𝑖 − 𝑥̂𝑖)
2𝐵2

𝑗=0
+ (𝑦𝑖 − 𝑦̂𝑖)

2]                                                   (7) 

wherein: s2 is the total number of grids; B is the total number of anchor boxes; λ is the error weight for bounding box 

regression, set to a value of 5; Iij is used to indicate whether the detection object is included in the error. If the jth anchor 
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box in grid i contains the target object, then Iij is set to 1, and the bounding box regression error is included in the 

comprehensive error. If the jth anchor box does not contain the target object, then Iij is set to zero, and no error data for 

this item is recorded. 

Similarly, the error of the frame width and height can be expressed as 

𝐿2 = 𝜆 ∑ ∑ 𝐼𝑖𝑗[(√𝑤𝑖 − √𝑤̂𝑖)
2

+ (√ℎ𝑖 − √ℎ𝑖̂)
2]𝐵

𝑗=0
𝑠2

𝑖=0                                                 (8) 

By taking the square root of height and width, the difference in sensitivity among different objects is reduced in error 

calculation, making them have similar weights in dimensional errors. 

The confidence error function can be composed of two parts. 

𝐿3 = 𝜆 ∑ ∑ 𝐼𝑖𝑗(𝐶𝑖 − 𝐶̂𝑖)
2 + 𝜆′ 𝐵

𝑗=0
𝑥2

𝑖=0 ∑ ∑ 𝐼𝑖𝑗
′ (𝐶𝑖 − 𝐶̂𝑖)

2𝐵
𝑗=0

𝑠2

𝑖=0                                            (9) 

wherein: λ’ is the confidence weight of the frame when there is no detection object, and this paper takes 0.5 as a rule of 

thumb; I’ij represents the parameter of no detection object, and its value is opposite to Iij; Ci is the confidence of the 

presence of a detection object in the ith grid. The first term in equation (9) represents the confidence when there is a 

detection object in the cell, and the prediction of the regression confidence of the frame needs to include the error. The 

second term is used to describe confidence when there is no detection object in the cell. 

Object classification error can be expressed as 

𝐿4 = ∑ 𝐼𝑖 ∑(𝑝𝑖(𝑐) − 𝑝̂𝑖(𝑐))2𝑠2

𝑖=0                                                                     (10) 

where: Ii represents that only the grid where the detection object exists will record this type of error; Pi(C) is the 

classification error value of the detection object in the ith grid. 

In summary, the prediction integrated error can be characterized by the sum of the above four error functions, that is 

𝐿 = 𝐿1 + 𝐿2 + 𝐿3 + 𝐿4                                                                          (11) 

2.3 Optimization of application 

For the power devices and defect datasets, the K-means++ algorithm is used to ensure the discrete distribution of initial 

points to enhance the rationality of the prior frame. When calculating, first randomly determine a cluster center from the 

training set target frames, then calculate the Euclidean distance D(s) between each sample s and the cluster center, and 

calculate the probability through equation (12), selecting the sample point corresponding to the maximum value as the 

next cluster center. 

𝜂 =
𝐷2(𝑠)

∑ 𝐷2(𝑠)𝑠∈𝑆
                                                                                 (12) 

The process is repeated according to the roulette method. Considering the changes in image size caused by the changes 

in the angle of the detection target, in order to cover different sizes of detection targets, this paper selects nine prior 

frames with sizes of 10×13, 16×30, 33×23, 30×61, 62×45, 59×119, 116×90, 156×198, and 373×326 as the cluster centers. 

After obtaining nine cluster centers from the training set, the samples in the target frames need to be attributed to the 

clusters corresponding to the cluster centers. The cluster centers are recalculated according to the above process until the 

cluster centers no longer change, and then the prior frame cluster centers that meet the requirements are obtained. 

3. MODEL EVALUATION AND ANALYSIS 

In object detection, it is necessary to evaluate the location and classification of the detected objects. The evaluation 

metrics include precision and recall, and the calculation formulas are as follows 

𝑃𝑟 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
                                                                                 (13) 

𝑅 =
𝑇𝑃

𝐹𝑃+𝐹𝑁
                                                                                  (14) 
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where TP is true positive, FP is false positive, FN is false negative. In order to describe the model performance more 

accurately, the average precision is used to evaluate the model accuracy. For each different recall rate value (0 to 1, every 

0.1, a total of 11 points), the maximum precision rate when it is greater than or equal to these recall rate values is 

selected, and then the average of the precision rates of all categories is calculated as the average precision, which is 

expressed as 

𝑃𝑎 =
1

11
∑ 𝑃′(𝑅)𝑅∈{0,0.1,…,1}                                                                  (15) 

𝑃′(𝑅) = max 𝑃(𝑅̂)                                                                       (16) 

wherein: P’(R) is the maximum precision when the recall rate satisfies R≥R; R is the recall rate when the maximum 

precision is achieved. 

The application effects of three target detection algorithms, namely Faster RCNN, SSD, and YOLOV3, in recognition of 

transmission line insulators, were analyzed and compared. A total of 600 inspection images were used, including 300 

images of insulators with defects and 300 images of insulators without defects. The GPU model used was an NVIDIA 

GTX 1080Ti/1GB. Figure 2 shows the comparison of detection results among different algorithms. From Figure 2, it can 

be seen that the average accuracy of both Faster RCNN and YOLOV3 algorithms is above 90%, while the average 

accuracy of the SSD algorithm is about 80%. 

 

Figure 2. Comparison of detection results for three algorithms. 

To further verify the applicability of the YOLOV3 algorithm, 11,942 power inspection images were selected as a training 

set, and 1,916 images were used as a validation set for object detection and fault recognition. The detection results are 

shown in Table 1. 

Table 1. Detection results for different types of defects. 

Type Pa R Pr 

Glass cesium edge carrier 89.52 92.79 85.56 

Composite insulators 86.63 89.58 88.73 

Ceramic insulators 88.49 90.38 90.18 

Connection fittings 81.14 86.54 92.59 

Hanging point fittings 82.17 88.59 93.50 

Shockproof hammer 95.35 96.90 89.17 

Equalizing ring 80.94 88.16 94.61 

Insulator self-explosion 79.92 82.69 86.72 

Damaged anti-hair hammer 80.65 83.08 83.17 

Table 1 shows that the YOLOV3 algorithm is widely applicable to different detection targets and common fault types. 

The average precision of each detection target is higher than 79%, and the recall rate is greater than 82%. 
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4. CONCLUSION 

This article investigates the application effect of the YOLOV3 object detection algorithm in the airborne AI module of 

UAV inspection and reaches the following main conclusions: 

(1) Taking the detection of transmission line insulators as an example, the average accuracy of the YOLOV3 algorithm 

exceeds 90%; under the same conditions, the average processing speed of the YOLOV3 algorithm is approximately 3.2 

times that of the Faster RCNN algorithm and approximately 1.6 times that of the SSD algorithm. 

(2) For different detection objectives and common fault types, the average accuracy of the YOLOV3 algorithm is higher 

than 79%, and the recall rate is greater than 82%. 
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