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ABSTRACT 

 Autonomous decision-making has the advantages of strong information processing ability, fast response, and high cost-

effectiveness, which is a key technical support for achieving unmanned, clustered, and intelligent combat. Firstly, clarify 

and sort out the basic concepts of autonomous decision-making in unmanned clusters and the development history of major 

countries and regions. Subsequently, in line with the trend of modern combat style transformation, combined with the main 

technical methods, the basic working principles of autonomous decision-making were analyzed in depth, mainly involving 

multi-source information fusion, battlefield situation assessment, task allocation optimization, and cluster path planning. 

Finally, the future development trends of autonomous decision-making methods were analyzed from the perspectives of 

enhancing intelligence, improving adaptability, enhancing system stability and sound security. 

Keywords. Autonomous decision-making; information fusion; situation assessment; task allocation; path planning 

1. INTRODUCTION 

In the military and civilian domains of the 21st century, unmanned intelligent swarm systems are progressively showcasing 

their pivotal role, particularly in intricate and hazardous environments, demonstrating substantial potential and value1. 

Autonomous decision-making, characterized by robust processing capabilities, rapid responses, and high efficiency, 

empowers unmanned swarm systems to function in complex and dynamic environments independently, without direct 

human intervention2. They can autonomously adapt, allocate, coordinate, plan, and control, which has emerged as a crucial 

factor in the effective execution of tasks by unmanned systems. This significantly enhances task performance and 

diminishes the risks of human casualties in increasingly intricate and volatile combat scenarios as well as everyday 

applications3. 

Despite these advancements, the development and enhancement of autonomous decision-making encounter several 

challenges, encompassing the assurance of decision-making accuracy and reliability4, the maintenance of efficient 

collaboration among unmanned swarm systems under extreme conditions, and the reinforcement of system adaptability 

and flexibility when faced with unfamiliar situations5. These prevailing challenges epitomize the existing research 

dilemmas and obstacles. 

2. BASIC CONCEPTS AND DEVELOPMENT HISTORY 

2.1 Basic concepts 

Unmanned group autonomous decision-making entails the collaborative completion of intricate tasks by unmanned 

systems. This process operates autonomously, responding in real-time to environmental shifts, devoid of direct human 

intervention6. It encompasses various technical disciplines, including machine learning, artificial intelligence, multi-agent 

systems, and adaptive control. Its aim is to enhance task execution efficiency, flexibility, and resilience, particularly in 

unpredictable and dynamic settings7. 

2.2 Development history 

2.2.1. America. During the early research phase (1950-1970), the US government conducted research on unmanned 

systems, primarily for military applications such as unmanned aircraft and autonomous navigation systems8. The research 

primarily focused on fundamental technologies such as perception, control, and communication of unmanned systems. 

During the theoretical exploration and technology breakthrough stage (1980-2000), the research focus gradually shifted 
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towards unmanned groups, exploring cooperative control and autonomous decision-making methods between group 

individuals, and incorporating theoretical tools such as distributed algorithms, game theory, and machine learning 9. During 

the application expansion and international cooperation stage (2010 to present), the US has continued to innovate and 

expand the application of autonomous decision-making methods in the field of unmanned group autonomous decision-

making. The US has attempted to apply autonomous decision-making methods to practical scenarios, thereby increasing 

the intelligence and autonomy of the systems. 

2.2.2. Europe. During the initial research phase (1980s to 1990s), institutions in countries such as France, Germany, and 

the United Kingdom embarked on related studies, focusing on theoretical exploration and algorithm development10. In the 

phase of technological practice (early 21st century to around 2010), institutions like Fraunhofer in Germany, the French 

National Defense Research Institute, and the UK Royal Air Force Scientific Laboratory played pivotal roles, emphasizing 

cluster collaboration, path planning, and decision optimization11. In the stage of application promotion (post-2010), various 

countries commenced applying these methods in practical scenarios. Institutes such as the Netherlands Organization for 

Applied Scientific Research, Leonardo in Italy, and ETH Zurich in Switzerland actively explored applications across 

diverse fields. 

2.2.3. Asia. In the early 21st century, research in the field of autonomous decision-making in Asia commenced 

comparatively later, characterized by a modest level of sophistication. Primarily, emphasis was placed on traditional 

control theory and algorithms, overlooking a thorough investigation into collaborative decision-making among multi-agent 

systems within intricate environments12. Over time, research endeavors gradually pivoted towards unmanned swarm 

autonomous decision-making methods. Successively, several nations established dedicated research institutions to delve 

into theoretical underpinnings and technological advancements in this domain, with a specific focus on fostering more 

intelligent and self-reliant unmanned swarm systems, as shown in Figure 1. In recent years, significant strides have been 

made by various countries in applying continuous theoretical innovation and technological breakthroughs across multiple 

sectors, thus emerging as a pivotal force in global research concerning unmanned swarm autonomous decision-making 

methods13. 

 

Figure 1. Schematic diagram of unmanned cluster application. 

2.2.4  Middle East. In the early stages of technology adoption (from the 1980s to the 1990s), advanced technology from 

the United States and Europe was introduced, focusing on initial applications that established the basis for subsequent 

independent research and development. During the phase of independent research and development (from the early twenty-

first century to the 2010s), autonomous research projects gradually evolved14. This period witnessed the establishment of 

numerous research institutions with a heightened focus on unmanned swarm autonomous decision-making methods, 

leading to the emergence of numerous significant research findings and technical solutions15. Subsequently, in the phase 

of application promotion (from the 2010s to the present), unmanned swarm autonomous decision-making methods started 

to find practical applications in various scenarios, with countries actively endorsing their use in national defense security, 

disaster relief, and energy exploration. 

3. BASIC PRINCIPLES 

3.1 Multi-source information fusion 

3.1.1 Improving the Kalman filter. The application of enhanced Kalman filtering in multi-source information fusion is a 

complex technical field aimed at optimizing autonomous decision-making through the effective integration of multiple 
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sensors and information sources16. It addresses challenges arising from the inherently nonlinear nature of models or non-

Gaussian noise distributions, leading to more accurate system state estimates and improved observability and reliability of 

the entire system17. Alan S. Willsky of the Massachusetts Institute of Technology has conducted pioneering research in 

multi-source information fusion and dynamic system estimation, particularly in the application of enhanced Kalman filter 

methods at multiple resolutions, with the goal of improving estimation accuracy and reducing required computational 

resources. 

3.1.2 Deep learning. The integration of deep learning within multisource information fusion aims to harness the 

complementarity among various sensors and data sources to enhance the decision accuracy and robustness of autonomous 

systems18. Typically, data from multiple sensors undergo a sequence of processes including standardization, denoising, 

and feature extraction to establish a comprehensive perceptual environment for autonomous system analysis and decision-

making, as shown in Figure 2. Features extracted from diverse information sources are subsequently merged, with these 

features being automatically learned and extracted through hierarchical structures in multilayer neural networks19. Yiannis 

Demiris, of Imperial College London, has devised deep learning algorithms for multisource information and sensor fusion, 

accentuating their application in adaptive and interactive learning. Nonetheless, mitigating the reliance on extensive 

datasets in complex robotic applications persists as a challenge. 

 

Figure 2. Schematic diagram of deep learning principles. 

3.2 Battlefield situation assessment 

3.2.1 Fusion bayesian networks. Bayesian networks, which describe the probabilistic dependencies between variables, are 

probabilistic graphical models suitable for representing and processing uncertain information. They have significant 

potential applications in situation awareness for autonomous decision-making by unmanned clusters on the battlefield 20. 

Various types of sensors gather a large amount of real-time battlefield information, serving as nodes in the Bayesian 

network and forming the network structure. Yossi Keshet's research at the Israel Institute of Technology focuses on the 

application of Bayesian networks in dynamic battlefield environments, characterized by strong adaptability to dynamic 

conditions and rapid response to changes in the battlefield environment, albeit performing poorly in cases of inadequate 

data quality or quantity. 

3.2.2 Knowledge graphs. A knowledge graph effectively organizes information via a graph structure, portraying entities 

as nodes and their interconnections as edges, as shown in Figure 3. Within the domain of unmanned swarm situational 

assessment, knowledge graph methodologies amalgamate diverse information reservoirs to establish a comprehensive 

knowledge framework that mirrors the drone swarm and its operational milieu21. The Chinese Academy of Sciences' 

Institute of Automation integrates environmental characteristics, task requirements, object relationships, and other 

pertinent information into knowledge graphs, allowing unmanned swarms to gain a more precise understanding of their 

operational environment. 
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Figure  3. Schematic diagram of nodes and edges. 

3.3 Task allocation optimization 

3.3.1. Market auction methods. The central concept is to approach the task allocation problem as a market system, where 

tasks are regarded as commodities and unmanned agents as buyers. Each drone provides a bid for each task based on 

factors such as task difficulty, the drone's current state, and capabilities22. Katia Sycara from Carnegie Mellon University 

has made significant contributions to the design of task allocation mechanisms using market principles, emphasizing the 

importance of decentralized decision-making, which effectively mitigates the risk of single-point failures and enhances 

system robustness, though it may increase computational costs for each node. 

3.3.2 Game theory. It is a mathematical theory that studies the interaction and decision-making of rational decision-makers 

under certain rules. This theory is utilized to simulate and resolve decision conflicts in the task allocation of drone swarms. 

Each drone functions as a decision player, needing to make choices among limited resources and multiple task demands23. 

By constructing mathematical models to describe the strategic interactions between these drones, the goal of each drone is 

to maximize its utility function. The distributed decision framework developed by John S. Tsitsiklis of the Massachusetts 

Institute of Technology effectively coordinates task allocation among drones, reducing the need for central control and 

improving the scalability and robustness of the system. In some highly dynamic environments, distributed decision-making 

may result in insufficient real-time performance. 

3.4. Cluster path planning 

3.4.1 Image search methods. Nodes symbolize potential locations, and edges indicate viable paths from one location to 

another. The objective of the graph search is to find a path from the initial node to the target node. The commonly utilized 

algorithms are Dijkstra and A*, known for optimizing the search process by amalgamating the actual path length traveled 

and the estimated distance to the destination, swiftly determining the shortest path24. Nicholas Roy from the Massachusetts 

Institute of Technology integrated dynamic programming and machine learning techniques to enhance graph search 

methods, enabling drones to adapt to intricate and highly uncertain environments, showcasing notable advantages. 

Nonetheless, when dealing with large-scale drone swarms, there are limitations in computational load and real-time 

response capabilities. 

3.42 Bionic algorithms. Bio-inspired algorithms belong to a class of algorithms inspired by behaviors in nature, commonly 

used for solving path planning challenges for drone clusters. They derive insights from social behaviors and evolutionary 

mechanisms in the natural world to determine one or multiple optimal paths from the starting point to the destination. 

Particle swarm optimization mirrors the collective behaviors of birds and fish, as shown in Figure 4. Drone particles update 

their positions by emulating optimal peers and drawing from their own successful experiences, guiding the swarm toward 

an optimal state25. Yoshua Matsuo from the University of Tokyo advanced drone formation flight and complex maneuver 

coordination through bio-inspired algorithms, employing particle swarm optimization algorithms to enhance path planning 

efficiency and minimize conflicts and collisions. 
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Figure 4. Schematic diagram of unmanned cluster imitating biological particle swarm. 

4. FUTURE DEVELOPMENT TRENDS 

4.1 Enhance intelligence level 

The advancement of AI technologies, particularly in deep learning and reinforcement learning, holds significant 

implications for the autonomous decision-making capabilities of unmanned swarms. These technological advancements 

empower unmanned swarms to autonomously make more sophisticated decisions, thereby diminishing their reliance on 

human operators. By leveraging deep learning algorithms for sound and image recognition, unmanned swarms can 

accurately perceive and comprehend their surrounding environments, thus enhancing their navigation and task execution 

capabilities, especially in complex scenarios. 

4.2 Improve adaptability 

To tackle increasingly intricate tasks and environmental challenges, future unmanned swarms will prioritize bolstering 

adaptability and flexibility amid complex and uncertain conditions. Empowered by AI technologies, these swarms will 

swiftly learn and adjust within real-time environments, leveraging past experiences and current environmental cues to 

make informed decisions. Utilizing advanced adaptive algorithms, they will dynamically alter their behavior to address 

environmental fluctuations, thereby sustaining efficient and effective decision-making in the face of unfamiliar or evolving 

conditions. 

4.3 Enhance stability 

In high-intensity interference environments, ensuring the stability and reliability of unmanned swarm systems poses a 

significant challenge. The ability to resist interference is paramount for maintaining effective operation amidst hostile or 

natural disruptions. Techniques like frequency hopping and spread spectrum communication enhance resistance to signal 

interference, while deploying multiple communication methods, such as optical or acoustic communication, serves as 

alternative means. Real-time deployment of sensors and monitoring systems enables the detection of interference intensity 

and type, as shown in Figure 5, while predictive models forecast interference trends and impacts, facilitating timely 

adjustment of anti-interference strategies. 

 

Figure 5. Schematic diagram of adaptive anti radar interference. 
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4.4 Establish sound security mechanisms 

With the continuous evolution and escalation of network threats, the security measures of unmanned swarm systems 

require constant updates, particularly in thwarting network attacks and tampering. Advanced encryption technology is 

employed to safeguard data transmission and storage, thereby preventing the interception or manipulation of sensitive 

information. Encryption protocols ensure the integrity of command and control signals. Rigorous identity authentication 

and authorization mechanisms are implemented, enabling authorized users to access systems and data, coupled with 

periodic updates of authentication protocols and keys. 

4.5 Future development trends 

Unmanned swarm autonomous decision-making technology plays a critical role in the development of unmanned, 

clustered, and intelligent systems. It synthesizes cutting-edge research in artificial intelligence, information fusion, 

autonomous control, and related disciplines, offering substantial economic and military benefits. This paper reviews 

current research to highlight the distinctive features and emerging trends in this area globally. It delves into the core 

principles of prevalent techniques in multi-source information fusion, battlefield situation analysis, task allocation 

optimization, and swarm trajectory planning. The goal is to furnish insights and stimulate further investigation into more 

intelligent, adaptable, and robust decision-making strategies that enhance security. 
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