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ABSTRACT 

This paper investigates the problem of fixed-time tracking control for a space manipulator subject to internal uncertainties 

and unknown disturbances. To shorten the system’s response time, a novel globally fast fixed-time stable system is first 

developed. Based on this system, a novel non-singular terminal sliding mode surface is designed, which ensures fast and 

fixed-time convergence regardless of the initial states. A robust fast fixed-time sliding mode controller is then constructed 

by combining an adaptive mechanism, which can guarantee the tracking errors converge quickly to small regions around 

the origin within a bounded time. With the proposed control method, there is no required to know prior information about 

the bound of the lumped uncertainty. The suggested scheme is analysed using the Lyapunov stability theory, and the 

effectiveness is demonstrated through numerical simulations. 
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1. INTRODUCTION

Recently, the application of space manipulators (SMs) in deep space exploration has received widespread attention1. 

Compared to traditional ground-based manipulators, it’s more challenging to design tracking controllers for SMs due to 

its highly coupled characteristic. Moreover, unknown disturbances and parameter uncertainties are inevitable problems for 

SMs, which can further damage the control system performance and even destabilise the whole system. 

Even with different tracking control techniques, including neural network (NN)4, backstepping control3, sliding mode 

control (SMC)2, etc., the system's asymptotic convergence is only guaranteed. The idea of finite-time stabilisation was 

subsequently put out by5, allowing for successful trajectory tracking within a finite time. However, the disadvantage of the 

finite-time stability-based controllers is that the stabilisation time is sensitive to system’s beginning states. To solve this 

issue, control schemes based upon fixed-time stability was put forward6, 7, which results in the fixed-time convergence 

independent of initial state.  Noteworthy, the majority of existing fixed-time controls suffer from the problem of converging 

not fast enough. 

Inspired by the above discussions, a robust fixed-time sliding mode controller is developed for a space manipulator by 

combining a novel fast fixed-time stable theorem and adaptive technique. With the help of this method, it enables estimate 

the lumped uncertainties’ upper bound effectively and realize the fixed-time convergence of trajectory error. 

2. PROBLEM STATEMENT

Considering the disturbances, the free-floating SM model is expressed as follows8: 

( ) ( ),+ = +H q q C q q q τ d (1) 

The states q , q , n
q refer to the joint position, velocity, and acceleration vectors, respectively.

0
( , ) ( , ) ( , )= + C q q C q q C q q denotes the Coriolis and Centrifugal matrix and ( ) ( )0

( )= + H q H q H q denotes the 

inertia matrix, where 0
( , )C q q , 0

( )Η q  represent the nominal item, and 0
( , )C q q , ( )Η q   represent the uncertainty. 
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Regarding 
1 d
= −e q q  and  

2 d
= −e q q  as the position tracking error and its time derivative with the desired position 

n

d
q  and its derivative n

d
q . From (1), one can obtain the corresponding equation of the tracking error: 

1 2

1 1

2 0 0 0
( ) ( ) ( , )

dis d

− −

=


= − + −

e e

e H q τ H q C q q q f q
(2) 

Where ( )( )1

0
( ) ( , )

dis

−
= −  − f H q d C q q q H q q represents the lumped uncertainty. According to the property of the 

inertia matrix, the non-singularity of 1

0

−
H is always guaranteed. 

Assumption 19. Suppose that
dis

f  is bounded, satisfying 
2

1 2 3

T

dis d
c c c + + =f q q c θ with three constants 

1 2 3
, , 0c c c  . 

3. CONTROLLER DESIGN
3.1 Novel fast fixed-time stable system 

Theorem 1: Define a system as  
1

2
( )( ( ) ( ))y N y k y k y

 +
= − +

1
sig sig (3) 

Where 3

1 2
( ) 1 2 arctan( | | ) /

s
N y s s y = + with three positive constants

1
0s  ,

2
0s  ,

3
0s  . 

(1 sgn(| | 1)) ( 1)(1 sgn(| | 1))

2 2

y y 


+ − − − −
= + ,

(2 ) (2 2 ) sgn(| | 1)

2 2

y   


+ − + −
= +  with two constants

,  satisfying 1   and 1 / 2 1  . 
1

0k  and
2

0k  are two scalars. Then, system (3) is fixed-time stable. Proof: 

Let 1
| |z y

−
=  and its time derivative is calculated as 

1

2

2

(1 ) ( )

(1 ) ( )( | | | | )

(1 ) ( )( | | | | )

z y y

N y k y k y

N y k z k z



   

 







−

+ − −

= −

= − − +

= − − +

1

1

sig

(4) 

where 1
1





= +

−
 and 

1

 




−
=

−
. 

Solving (4), the settling time 
1

T is given by 

(0 )

1

20

(0 )1

1

2 20 1

1

2 1

1 1 2 1 2

1

1 ( )( | | | | )

1

1 ( )( | | ) ( )( ) | |

1 1 1 (0)
1 ln 1

1 ( )( 1)

z

z

dz
T

N y k z k z

dz dz

N y k k z N y k k z

k k z

k k k k k

 









 

−

−

=
− +

 
= +  − + + 

    −
 − + +    − + −    



 

1

1 1

 (5) 

Invoking 1 1
(1 )





= + 

−
 and (0) 0z  , the convergence time 1

T is obtained as 

( )
2 1

1

1 1 2 1 2

1 1
1 ln 1

1 ( )

k k
T

k k k k k 

  
 − + +   − +  

(6) 

This completes the proof. 

Remark 1. As (6) demonstrates, the upper bound of 1
T depends only on the system parameters 1 2

, , ,k k   regardless of 

any system initial states. 
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Remark 2. Ni et.al10 [10] developed a fast fixed-time stable system 1/ 2 / 2 ( 1)sgn(| | 1) / 2

1 2

y
y k y k y

  + + − −
= − −  with the upper 

bound on stabilization time 1

1 2 1

1 1
ln(1 )

(1 ) ( 1)

k

k k k 
+ +

− −
. Cao et.al11 constructed another fast fixed-time stable system 

1 (1 sgn( 1)) / 2

1 2

y
y k y k y

 + + −
= − − with the upper bound on stabilization time 1

1 2 1

1 1
ln(1 )

(1 )

k

k k k 
+ +

−
. Through 

comparison, the proposed stable system (3) is found to respond more quickly than two existing systems. 

3.2 Sliding mode surface design 

According to Theorem 1 and switching method in12, a novel non-singular fast sliding mode surface (NFSMS) is developed 

as  

( )2 1
( )

a c b z
N k k= + +s e e S S (7) 

where 0
a

k  and 0
b

k  are two scalars,
2

( ) 1 arctan( )
rs

m n
N s s


= +

1 1
e e and constants 0, 0, 0

m n r
s s s   . The i 

th elements of 
c

S and 
z

S can be denoted as s
ci

 and 
zi

s , respectively, and have the following forms 

11 2

1 1

2 3

1 1 2 1 1 3 1 1

sig ( ) if 0 or 0,| e |

sgn( ) if 0,| e |

i i i i

ci

i i i i i i

e s s
S

l e l e e l e s






+ =  
= 

+ +  

(8) 

12 1

1 1

2 3

1 1 2 1 1 3 1 1

ig (e ) if 0 or 0,| e |

sgn( ) if 0,| e |

i i i i

zi

i i i i i i

s s s
S

g e g e e g e s






− =  
= 

+ +  

(9) 

where 1,2,...,i n= , 0 1    is a constant, 
1 1 1

(1 sgn( 1)) / 2 ( 1)(1 sgn( 1)) / 2  = + − + − − −
1 1

e e , 

1 1 1 1 1
(2 ) / 2 (2 2 )sgn( 1) / 2    = + + − + −

1
e  with two constants 

1 1
,  satisfying 

1
1  , 

1
3 / 4 1  .  To

make the functions 
ci

S and 
zi

S , and their time derivative continuous, the values of 
1

l ,
2

l ,
3

l ,
1

g , 
2

g , 
3

g are  chosen as 

12 2

1 1 1
(2 3)( 2)l


  

−
= − − (10) 

12 3

2 1 1
(2 2)(2 4)l


  

−
= − − − (11) 

12 4

3 1 1
( 1)(2 3)l


  

−
= − − (12) 

14 4

1 1 1
(4 5)(2 3)g


  

−
= − − (13) 

14 5

2 1 1
(4 4)(4 6)g


  

−
= − − − (14) 

14 6

3 1 1
(2 2)(4 5)g


  

−
= − − (15) 

1 11 2 2 1

2 1 1 1
( )( ( ) ( ))

a b
N k k

 + −
= + +s e e sig e sig e (16) 

3.3 Trajectory Tracking Control Law Design 

Using the error equation (2), the time derivate of the NFSMS (7) can be given by 

( ) ( )

( ) ( )

2 1 1

1 1

0 0 0

1 1

( ) ( )

( ) ( ) ( , )

( ) ( )

a c b z a c b z

dis d

a c b z a c b z

N k k N k k

N k k N k k

− −

= + + + +

= − + −

+ + + +

s e e S S e S S

H q τ H q C q q q f q

e S S e S S

(17) 

where the i th element of 
c

S and 
z

S are given by 

12

1 1 2 1

2

1 2 2 1 2 3 1 2 1

(1+2 ) if 0 or 0,| e |

2 3 if 0, | e |

i i i i i

ci

i i i i i i i

e e s s
S

l e l e e l e e s


 



 =  
= 

+ +  

(18)
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12 2

1 1 2 1

2

1 2 2 1 2 3 1 2 1

(2 1) e if 0 or 0,| e |

2 3 if 0, | e |

i i i i i

zi

i i i i i i i

e s s
S

g e g e e g e e s


 



− − =  
= 

+ +  

(19) 

To obtain high-precision trajectory tracking, a robust fast fixed-time controller is developed as follows 

eq sw ad
= + +τ u u u (20) 

( ) ( )( )1

0 0 0 1 1
( ) ( ) ( , ) ( ) ( )

eq d a c b z a c b z
N k k N k k

−
= − − − + + + +u H q H q C q q q q e S S e S S (21) 

2 21 2 2 1

0 1 2 3
( ) ( )( ( ) ( ) )

sw
N

 
  

+ −
= − + +u H q s sig s sig s s (22) 

0 1 2

ˆ
( )

2

T

m

ad

N


= −
c Θ

u H x s (23) 

where 2 2

2

1
(1 sgn( 1)) ( )(1 sgn( 1))

2 2 2

 
 = + − + − − −

1 1
e e , 2 2

2 2 2
( ) (1 )sgn( 1)

2 2

 
  = + + − + −

1
e  with 

2
1  , 

2

1
1

2
  . 

1
 , 

2
 , 

3
 are positive design parameters, ( ) 1 2 arctan( ) /

rss

m n
N ss ss = +s s with 

m
ss , 

n
ss

and 0
r

ss  , ˆ
m

c  stands for the estimate of  2 2 2

1 2 3
[ , , ]

T

m
c c c=c , and 

2 4

1 1
[1, , ]

T
=Θ x x . Introducing the following 

adaptive update law: 
2

2
ˆ ˆ

2
m m

N


 
 = −
 
 

Θ s
c η υc (24) 

where the constant 0
N

  , 
1 2 3

( , , )diag   =η  and 
1 2 3

( , , )diag   =υ denote two positive matrices. 

3.4 Stability analysis 

Theorem 3: The closed-loop system is practically fixed-time stable when the fixed-time tracking controller (20)-(23) is 

implemented to the SM system (2) with the adaptive update law (24).  

Proof: Let a Lyapunov function 

1

2

1 1

2 2

T T

m m
V

−
= +s s c η c (25) 

where ˆ
m m m
= −c c c . The time derivative of  

2
V  yields 

2 2

2 2

1

2

2

1 2 2 1

1 2 3 2 2

2 2 2 2 2

1 2 3 2

ˆ

ˆ
ˆ( )( ( ) ( ) )

2 2

ˆ( )( )
2

T T

m m

T

T T T Tm

dis m m

N N

T

T Tm

d m m

N

V

N

N

 

 

  
 

  


−

+ −

+

= −

 
 = − + + + − − −
 
 

 − + + + − +

s s c η c

Θ sc Θ
s s sig s sig s s s f s s c υc

c Θ
s s s s c θ s s c υc

(26) 

According to the Young’s inequality, for 
1

, (1, 2,3)
2

i
i  = , the following inequalities can be obtained: 

2 2

2

1

2 2

T

T m

d N

N




 +
c Θ

c θ s s  (27) 

( )
3 3

2 2

1 1

2 1
ˆ

2 2

T i i

m m i mi mi mi i m m

i i i

c c c c c
 

 
= =

 −
= −  − 

 
 c υc (28) 

Using the above inequalities, Eq. (26) can be rewritten as 
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2 2

1 2 2

2 2 2 2

3 3
2 2 2 2 2 2 2

2 1 2 3

1 1

3 3
1 1 2 2

1 2 1

1 1

2 11
( )( )

2 2 2

1 1
( ) 2 ( ) ( ) 2 ( )

2 2 2 2

i i

N i mi i mi

i i i

T T i i

mi mi

i ii i

V N c c

N N c c

 

 

   

 
     



 
 

 

+

+

= =

+ +

= =

 − 
 − + + + + −   

   

   
 − − − − +    

   

 

 

s s s s

s s s s s s

 (29) 

where 

2
21

3 3
3 32 2 2 2 2

1 1 1
1 1

1

2 2 2 2

i i i i i

mi mi mi mi Ni i
i ii i i

c c c c




    


  

+

= =
= =

      
 = + + − +      

      
    ,

2 1

2

i

i i i

i


  



−
= . 

If 2
1

2

i

mi

i

c



 , it has 

 

1 12 2 2

2 2 2 2
2 1

2 2 2

i i i i

mi mi mi mi

i i i i

c c c c

  

   

   

+ +
 

        
+ −  −        

        
 

 (30) 

For 2
1

2

i

mi

i

c



 , it follows that 

 

1 2 2 2

2 2 2 2 2
2 2

2 2 2 2

i i i i i

mi mi mi mi mi

i i i i i

c c c c c

  

    

    

+
 

          
+ −  −           

          
 

 (31) 

Since s  and 
m

c are uniformly bounded, it is assumed that 
m i

c  is bounded satisfying 
mi i

c  with positive constants 

i
 , 1, 2,3i = . Then it yields 

 

1 12 2 2

2

2 2 2 21
max 2, 2

2 2 2

i i i i

mi mi mi i

i i i i

c c c

  



   


   

+ +
 

        
+ −  −        

        
 

 (32) 

The inequality (29) can be simplified as  

 

1 2 2

2 2

2 2

3 3
1 2 2

2 1 2 1

1 1

1

1 2 2 2 2

1 1
( ) ( )
2 2 2 2

T Ti i

mi mi

i ii i

V c c

V V

 

 

 

 
 

 

 

+

+

= =

+

   
 − − − − +    

   

 − − + 

 s s s s
 (33) 

where 

1 2

2

3
2 2 2

2

i=1

1 1
max 2, 2

2 22

i i i

i mi N

i

c





  
 



+  
    = − + +      

  

 ,  21

1 1
min ,

i


  

+
=  and  2

2 2
min ,

i


  = .  

By Theorem 1, it can be concluded that the NFSMS (7) can converge to the  1 s
 = s s   in a bounded time under 

the proposed control law. Next, the fixed-time convergence of 
1

e  and 
2

e  is analysed from the following three cases. 

Case 1: When = =s s 0  is reached, 1
e  and 

2
e  satisfy the following equation 

 ( ) 1 11 2 2 1

2 1 1 1 1
( ) ( )( ( ) ( ))

a c b z a b
N k k N k k

 + −
= − + = − +e e S S e sig e sig e  (34) 

Define a Lyapunov function candidate 
1 1 1

1

2

T
V = e e , its time derivative yields 

 

1 1

1 1

1 2 2 1

1 1 1 1 1

1

1 1 1

( ) ( ( ) ( ))

( )( )

a b

a b

V N k k

N k V k V

 

 

+ −

+

= − +

= − +

e e sig e sig e

e
 (35) 
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Invoking Theorem 1, the system states 
1 2

( , )e e  are proved to converge to the origin within a fixed time along the NFSMS. 

Case 2: When 
i

s  reaches the region 
1

 ，for any 
1i

e   we have 

  2 3 2 3

2 1 1 1 2 1 1 3 1 1 1 2 1 1 3 1
( ) ( sgn( ) ) ( sgn( ) )

i i a i i i i b i i i i si
s e N e k l e l e e l e k g e g e e g e = + + + + + + =  (36) 

where 
i si

s  . Then,  ( ) ( )2 3

2 1 1 1 2 2 3 3
( ){( ) }

i si a b a b a b
e N e k l k g k l k g k l k g    + + + + + +  

Case 3: When 
i

s  reaches the region 
1

 , for any 
1i

e   it can be got that 

  1 11 2 2 1

2 1 1 1
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i a i b i si
e N e k e k e

 


+ −
+ + =  (37) 

which can be rewritten as 
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 + −
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+ − + =  
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 (39) 

Choose 
a

k , 
b

k  such that 
11 2

1

0
sig ( )

si

a

i

k
e




+

−   or 
2 11

1

0
sig ( )

si

b

i

k
e




−

−  , then it is concluded from Theorem 1 that 
2 i

e  

will converges to origin in fixed-time. Then, solving (37) leads to 
1 1i e

e   after fixed time. 

4. SIMULATION RESULTS 

A numerical example is provided to demonstrate the effectiveness of our suggested control method in this section. The 

simulation studies are performed on a SM system with same detail physical parameters and initial conditions are in13. The 

control parameters are set as 0.8
a

k = , 0.6
b

k = ,  0.5
m

s = , 0.5
n

s = , 1
r

s = , 0.001 = , 
1

9
7

 = , 
1

15
17

 = , 

2
9

7
 = , 

2
15

17
 = , 

1
0.8 = , 

2
0.6 = , 

3
0.4 = , 0.5

m
ss = , 1.2

n
ss = , 2

r
ss = , 

2
0.3 = , 

1
0.8 = , 

3
2 = ,

0.1
N

 = , 
1

0.01 = , 
2

0.01 = , 
3

0.01 = . 

Figs 1 and 2 show the time-varying curves of the position and velocity trajectory tracking errors, respectively. Obviously, 

the joint position and velocity trajectories are able to track the desired trajectories within 1s. More specifically, the position 

tracking error can achieve stable at 0.793s, and the velocity tracking error can achieve stable at 0.912s. Figure 3 gives the 

time-varying process of control input. As shown in Fig.3, the required input torque is large at the beginning in order to 

obtain a fast transient response and reaches stability after 1s. In addition, the input torque is chattering free, smooth, and 

continuous, and. Fig.4 illustrates the estimated parameters of the upper bound of lumped disturbance. As can be observed, 

all the estimated parameters perform satisfactorily in terms of convergence performance. To this end, the proposed fast 

fixed-time sliding mode control scheme successfully solves the fixed-time trajectory tracking issue for SM with unknown 

disturbances and uncertainties. With the suggested control law, tracking performance can be brought to a satisfactory level. 
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Figure 1. Time-varying of position tracking error                      Figure 2. Time-varying of velocity tracking error   

                
Figure 3. Time-varying of input torque                                        Figure 4. Time-varying of parameter estimation   

To further evaluate the fixed-time convergence capability of the suggested controller, four different beginning states are 

conducted for the SM. Four initial conditions are selected in the simulation as follows: 

Case 1: (0) [0,1.0472,0,0.7854,0.7854,0,0.5236]
T

=q rad, (0) [0,0,0,0,0,0,0]
T

=q rad/s 

Case 2: (0) [0.02,0.98,0.02,0.8,0.75,0.02,0.55]
T

=q rad, (0) [0,0,0,0,0,0,0]
T

=q rad/s 

Case 3: (0) [0, / 3,0, / 4, / 4,0, / 6]
T

   =q  rad, (0) [0.1,0.2,-0.1,0.05,0,0.05,-0.1]
T

=q rad/s 

Case 4: (0) [0.01,1.01,-0.01,0.7,0.8,0.02,0.6]
T

=q rad, (0) [0.1,0.2,-0.1,0.05,0,0.05,-0.1]
T

=q rad/s 

The comparison results of trajectory tracking for four different initial conditions are given in Figs. 5 and 6, respectively. 

As depicted, the proposed controllers always complete the trajectory tracking tasks in almost the same time and always 

less than 1s, although under different initial conditions. This implies that the suggested control strategy has the fixed 

convergence capability with the bounded stabilization time independent of the initial conditions. 

 
Figure 5. Time-varying of position tracking error under four cases 
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Figure 6. Time-varying of velocity tracking error under four cases 

5. CONCLUSION

In this study, a novel fast fixed-time trajectory tracking controller was developed for space manipulator. Despite in spite 

of unknown disturbances and uncertainties, trajectory tracking manoeuvring was completed after a fixed convergence time 

for any initial system states. With the proposed scheme, the tracking errors of position and velocity can converge to a small 

region of the origin within a fixed time. A numerical illustration was provided to demonstrate the validity of the suggested 

control strategy. 
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