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ABSTRACT 

This study introduces a novel coarse-to-fine framework combined with ranking regression designed to capture the 

ordinal nature of age progression. Our approach initially categorizes ages into broader groups, utilizing the inherent order 

of age labels to refine age estimation hierarchically. A ranking regression model then meticulously fine-tunes the 

predictions, resulting in a more accurate age estimate. We present a multi-stage neural network architecture that first 

differentiates between broad age categories and then hones in on more specific age distinctions. Our evaluation of 

multiple benchmark datasets indicates a substantial reduction in prediction error over current leading models. The 

empirical findings highlight the effectiveness of our methodology in addressing the complex, non-linear patterns of facial 

aging. The proposed method propels the domain of age estimation forward and provides a versatile framework for other 

ordinal regression tasks. 
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1. INTRODUCTION 

Facial age estimation is vital in computer vision, with applications in advertising and healthcare monitoring, where 

accurately gauging age from facial features is transformative1. Yet, factors like genetics and lifestyle, plus image 

occlusions, complicate the task2,3. Age prediction benefits from the sequential nature of age labels, a detail multi-class 

classifiers miss, but metric regression methods use4. Facial aging varies by age group, causing non-stationary aging 

patterns that make developing accurate regression models difficult5,6. This perspective frames age estimation as an 

ordinal regression challenge4,6-8. For instance, Cao et al. perceived age estimation through the ranking lens, introducing a 

method anchored on Rank-SVM9. 

This ordinal regression paradigm can be deconstructed into a series of binary classification tasks10,11. As an illustration, a 

decomposition strategy suggests training a binary classifier for each rank k within the range {1,2, ..., 𝐾-1}, determining if 

a sample’s rank surpasses k. Subsequently, a sample’s rank is deduced from the collective outcomes of these K-1 

classifiers. Yet, this strategy often grapples with inconsistencies across the binary classifiers when implemented via 

neural networks. The CORAL framework12 was developed to address this, offering a method for ordinal regression 

through extended binary classification with theoretical assurances for classifier consistency13. CORAL can be easily 

integrated into existing convolutional neural network (CNN) architectures to handle ordinal regression tasks effectively. 

In this paper, a coarse-to-fine learning strategy with ranking regression has been proposed to address the inherent ordinal 

nature of age labels. The proposed approach consists of global and local regressors. The global regressor is responsible 

for initial broad age bracketing, followed by multiple specialized local regressors, each dedicated to refining age 

predictions within its designated age range. The global network first categorizes a facial image into a general age 

bracket, after which the corresponding local network fine-tunes the age prediction, ensuring both efficiency and precision 

in the estimation process. 

Our coarse-to-fine approach is inherently flexible, accommodating the varied aging patterns across different age groups. 
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This flexibility ensures that the model remains sensitive to subtle age-related changes within narrow ranges while also 

being able to generalize across more comprehensive age categories. The dual-layered structure, featuring a global 

regressor followed by targeted local regressors, balances swift age categorization and meticulous refinement. By 

incorporating ranking regression, we reinforce the model’s capacity to recognize the relative order of age labels, which is 

essential for accurate age estimation. 

The contributions of this paper are as follows. 

(1) We present a dual-layered ordinal regression framework with a coarse-to-fine approach. The initial network layer 

conducts a broad age categorization and is then refined by a more specialized sub-network within a narrower scope. 

(2) We provide empirical evidence of our methodology’s effectiveness across various age estimation datasets, 

demonstrating its advanced performance in ordinal regression tasks.  

2. RELATED WORK 

2.1 Ordinal regression 

In the domain of ordinal regression, the primary objective is to determine the rank of a particular item. A prevalent 

approach in the field is to transform ordinal regression into a series of binary classification tasks14. Li et al. innovatively 

employed a soft ordinal label for training their ordinal regression model and devised a method that integrated 

probabilistic embedding techniques within ordinal regression11. A notable contribution introduces a deep ordinal 

regression mechanism tailored for datasets of smaller sizes15. In subsequent work, they incorporated a multi-class 

classification loss into an ordinal regressor11. Fu et al. ventured into monocular depth estimation, leveraging the 

principles of ordinal regression16. 

2.2 Coarse-to-fine strategy 

The coarse-to-fine strategy, inspired by human learning patterns, is an approach in machine learning where challenging 

tasks are incrementally tackled by first addressing broader, more straightforward concepts and then progressively 

refining them to more specific ones. In classification contexts, this involves leveraging an automatically constructed label 

hierarchy, allowing models to transition from general categories, like distinguishing between broad classes of animals 

and objects, to more nuanced classifications, such as differentiating specific entities like cats and dogs17. 

Adopting the coarse-to-fine strategy offers several benefits. It aligns with the natural human learning process, starting 

with foundational knowledge and building upon it incrementally18. This approach effectively addresses challenges 

arising from similarities in the output space, reducing classification errors between closely related classes17. Moreover, it 

provides flexibility in curriculum design, emphasizing the learning tasks rather than just the sequence of training data 

presentation19. This strategy facilitates more efficient and practical learning by breaking down complex tasks into simpler 

sub-tasks, especially when datasets lack examples for intermediate goals20. 

3. APPROACH 

The proposed method is illustrated in Figure 1. The model operates in a dual-phase process: initial coarse categorization 

followed by fine-grained prediction. In the first phase, the model leverages deep convolutional networks to discern broad 

age categories, utilizing the ordinal nature of age data. The resultant features are then refined through a ranking 

regression approach, where a fine-tuning mechanism is applied to achieve precise age estimates. This hierarchical 

processing ensures the model effectively captures the complex patterns of facial aging. The final output is a refined age 

prediction, offering improved accuracy over conventional methods. 

For any input image 𝑥 ∈ 𝑋, we begin by cropping the human face to eliminate the background and then align the face. 

The aligned face image is fed into a deep convolutional neural network to extract features. These features are 

subsequently linked to a global regressor, producing an initial coarse estimation. This preliminary result is further refined 

by mapping it to specific local regressors. The final age estimation is obtained as a weighted combination of all the local 

regressors. 
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Figure 1. Architectural overview of the coarse-to-fine age estimation framework with ordinal regression. The model operates in a dual-

phase process: initial coarse categorization followed by fine-grained prediction. 

3.1 Age group clustering 

Facial age estimation is a complex task due to the inherent nonlinearity of the facial aging process. This nonlinearity 

arises because different age groups exhibit distinct aging characteristics, which are influenced by a combination of 

genetic, environmental, and lifestyle factors2. In youth, facial changes predominantly revolve around growth, with 

features maturing and becoming more defined. As one transitions into adulthood, the emphasis shifts to skin texture 

alterations, influenced by environmental factors and lifestyle choices. In the later years, skin elasticity diminishes, 

leading to pronounced wrinkles and changes in facial contour. These distinct phases, influenced by genetics, 

environment, and habits, underscore the complexity of accurately estimating age based solely on facial features19. 

Utilizing a singular regression network to predict across an expansive age spectrum may not yield optimal precision due 

to the diverse aging characteristics inherent to different age groups. By segmenting the age spectrum and deploying 

dedicated regression networks for each segment, we can harness the specificity of aging patterns within that bracket. This 

segmented approach enables each network to learn intricately and adapt to its designated age range’s unique facial 

features and aging nuances, thereby enhancing prediction accuracy within that segment. The training would also be more 

accessible because only the patterns in the smaller range should be learned16. 

Hence, we divide the entire age range into multiple groups. We first embarked on feature extraction from the facial 

images to segment the comprehensive age dataset into distinct age groups. Leveraging convolutional neural networks 

ensures the extraction of salient and discriminative features that encapsulate the intricate aging patterns present in the 

dataset. We utilized the K-means algorithm to cluster the extracted features, and then we visualized the clustering results 

using t-SNE. Figure 2 shows the clustering result. The result revealed a natural partitioning into five overlapping age 

groups. The rationale behind choosing five intersecting age groups stems from the continuous and transitional nature of 

facial aging. By allowing these age groups to overlap, we accommodate individuals who may exhibit facial features 

characteristic of adjacent age brackets, ensuring a more nuanced and accurate age estimation. Therefore, the entire range 

[7, 45] in the AFAD dataset is classified into five groups [7, 24], [20, 29], [25, 34], [30, 39], and [35, 45]. 

 

Figure 2. t-SNE visualization of the feature space in the AFAD and FG-NET datasets. Note that feature vectors are aligned roughly. 

3.2 Ranking regression 

𝐷 = {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑁  represents the training dataset which consists of 𝑁 training examples. Here, 𝑥𝑖 denotes the 𝑖-𝑡ℎ training 
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example and 𝑦𝑖 the corresponding rank, where 𝑦𝑖∈𝑌 = {𝑟1, 𝑟2, …, 𝑟𝑘} with ordered rank 𝑟𝑘 > 𝑟𝑘-1 > ⋯ > 𝑟1. The ranking 

regression task can be achieved by solving a ranking function 𝑓: 𝑋 → 𝑌 while minimizing a loss function 𝐿(𝑓). 

Li and Lin introduced a comprehensive framework that transforms an ordinal regression challenge into multiple binary 

classification tasks11. This method necessitates a cost matrix exhibiting convexity across each row to derive a 

consistently ranked threshold model. However, given that the weightage associated with each binary task varies for 

individual training samples, this strategy is often deemed impractical due to its intensive computational demands, as 

highlighted by Niu et al.4. 

In the training dataset 𝐷 = {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑁 , the rank 𝑦𝑖 is first extended into 𝐾-1 binary labels: 𝑦𝑖

1, 𝑦𝑖
2, …, 𝑦𝑖

𝑘 such that 𝑦𝑖 𝑘 ∈
{0, 1} indicates whether 𝑦𝑖 exceeds rank 𝑟𝑘. Utilizing these extended binary labels during the training phase trains a 

singular CNN equipped with 𝐾-1 binary classifiers in its output layer. The predicted rank label for an input 𝑥𝑖 is derived 

as ℎ(𝑥𝑖) = 𝑟𝑞, where the rank index 𝑞 is defined by 𝑞 = 1 + ∑𝑘=1
𝐾−1 𝑓𝑘(𝑥𝑖). Here, 𝑓𝑘(𝑥𝑖)∈{0, 1} represents the prediction 

from the 𝑘-𝑡ℎ binary classifier in the output layer. Notably, while the 𝐾-1 binary classifiers share identical weight 

parameters, their bias units remain distinct. For model training, the loss function is 
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which is the weighted cross-entropy of $K-1$ binary classifiers. In equation (1), 𝜆(𝑘) refers to the weight of the loss 

associated with the 𝑘-𝑡ℎ classifier (assuming 𝜆(𝑘) > 0). In this paper, we indicate 𝜆(𝑘) as the most critical parameter for 

task 𝑘. For simplicity, all experiments will be implemented with uniform task weighting, that is, ∀𝑘: 𝜆(𝑘) = 1. 

3.3 Global and local regressor 

Based on the discussion in the age group clustering section, we proposed global and multiple local regressors. All these 

regressors employ the ranking regression concept as elucidated in Section 3.2. The global regressor is used in the entire 

age range, and is tasked with providing a coarse estimation. The input image will be mapped to one or two predefined 

age groups based on the coarse prediction age. Subsequently, the specific local regressor will undertake a more precise 

age estimation. We refer to this prediction process as the coarse-to-fine approach, where initial age estimation is refined 

through subsequent specialized prediction. The flow chart of our proposed coarse-to-fine approach is illustrated in Figure 3. 

 

Figure 3. Age prediction process flows within the coarse-to-fine framework. This illustration details the sequential steps from the 

initial age range classification to the final refined age prediction. 

Due to the overlap, the previous estimate may be involved in two rank groups in each iteration. In this case, both groups 

will be selected, and the estimated ages from the corresponding local regressors will be averaged. For instance, we 

consider a 𝑥𝑖, if the global regressor predicts 𝐺(𝑥𝑖) = 23, based on the group partitioning detailed in Section 3.1, the age 

23 falls within the subsets 𝐷2 and 𝐷3. Consequently, the final prediction for 𝑥𝑖 should be jointly determined by the local 

regressor 𝐿2 and 𝐿3. If 𝐿2(𝑥𝑖) = 22 and 𝐿3(𝑥𝑖) = 26, the ultimate estimation for 𝑥𝑖 is given by 𝑇(𝑥𝑖) = 
𝐿2(𝑥𝑖)+𝐿3(𝑥𝑖)

2
 = 

22+26

2
 = 

24. 

4. EXPERIMENT 

4.1 Datasets 

The MORPH II dataset21, one of the most extensive open-access facial datasets, is frequently utilized for age estimation 

tasks. It comprises 55,608 facial images. These images underwent preprocessing, which involved aligning each face 

Proc. of SPIE Vol. 13395  1339531-4



based on the average eye position determined through facial landmark detection. Subsequently, the images were adjusted 

to position the nose tip at the center. The age labels from 16 to 70 years old have been used in this study. 

FG-NET22 consists of 1002 color or greyscale face images of 82 individuals ranging in age from 0 to 69 and the CACD 

dataset23 contains 159,449 face images in the age range of 14 to 62. 

The Asian Face Database (AFAD)24, used in this study, contained 165,501 faces between 15 and 40 years old. Since 

these images were already centered, no additional preprocessing steps were necessary. 

4.2 Experimental settings 

In alignment with the methodology presented by Niu4, each image collection was split, allocating 80% for training and 

20% for testing. All images were resized to 128×128×3 pixels at first and then randomly cropped to 120×120×3 pixels. 

The face images of 128×128×3 RGB were center-cropped to a model input size of 120×120×3 for model evaluation. To 

avoid overfitting, especially when the training data is insufficient, we also augment training images by horizontal 

flipping and random cropping. 

ResNet-3425 serves as the backbone network for the proposed method. We refer to the original ResNet-34 CNN with 

standard cross-entropy loss as CE-CNN. The network is initialized with weights pre-trained on the ImageNet dataset, 

then further pre-trained on the IMDB-WIKI dataset. We employ mini-batch stochastic gradient descent (SGD)26 with 

Adam optimizer to optimize the network. The exponential decay rates are set to β₀ = 0.90 and β₁ = 0.99, with a batch size 

of 256. The initial learning rate is 0.0005, and λₖ is set to 1. The learning rate is adaptively adjusted during training. The 

algorithm is implemented using the PyTorch framework27 and accelerated on a GeForce GTX 2080Ti GPU. 

4.3 Evaluation metrics 

To evaluate and compare model performance, we calculated two key metrics on the test set after the final training epoch: 

1) Mean Absolute Error (MAE)  

2) Root Mean Squared Error (RMSE) 

These metrics provide a comprehensive assessment of the model’s accuracy in age estimation. 
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4.4 Results and analysis 

Comparisons with the State-of-the-art: We performed a series of experiments on four independent face image datasets 

to evaluate and compare our age estimation method. All implementations utilized the ResNet-34 architecture, as detailed 

in Section 4.2. For benchmarking purposes, we included the standard ResNet-34 classification network with cross-

entropy loss as a baseline for performance comparison. 

Table 1 shows the performance of our coarse-to-fine with ranking regression compared to other SOTA methods on the 

MORPH II, FG-NET, and CACD datasets. Our approach consistently outperforms other methods in terms of MAE. This 

underscores the effectiveness of integrating the coarse-to-fine strategy with ranking regression, which captures the 

ordinal nature of age labels and adapts to diverse aging patterns. 

Table 1. The comparisons between the proposed method and other state-of-the-art methods on MORPH II dataset, FG-NET dataset 

and CACD dataset. 

Method MORPH II FG-NET CACD 

DRFs28 2.91 3.85 5.77 

DEX29 2.68 3.09 5.68 

OR-CNN4 2.83 - 5.38 
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Method MORPH II FG-NET CACD 

Ranking-CNN7 2.96 - 5.45 

AGEn5 2.52 - 2.68 

C3AE30 2.75 2.95 - 

BridgeNet31 2.38 2.56 - 

CORAL-CNN9 2.64 - 5.25 

AVDL32 2.37 2.51 - 

DRC-ORID33 2.26 2.48 - 

MWR34 2.13 2.23 5.21 

Ours 2.11 2.21 5.16 

Table 2 shows the performance of our coarse-to-fine with ranking regression in comparison to other state-of-the-art 

methods in the AFAD datasets. The AFAD dataset, known for its demographic diversity and age variance, serves as an 

ideal benchmark for assessing age estimation models. Finally, we compared our proposed method against several state-

of-the-art approaches in both Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), two widely recognized 

metrics for evaluating the performance of age estimation systems. 

Table 2. The comparisons between the proposed method and other state-of-the-art methods on AFAD dataset. 

Method MAE RMSE 

LDLF35 3.78 5.09 

CORF36 3.66 4.83 

OR-CNN4 3.23 4.48 

CORAL-CNN9 3.30 4.52 

DRFs28 3.48 4.85 

coGOL37 3.20 4.45 

Ours 2.92 4.25 

Ablation Study: We embarked on a series of ablation experiments to elucidate the individual contributions of the 

various components within our proposed methodology. These experiments were designed to systematically remove or 

substitute key components, thereby revealing their respective impacts on the overall performance. 

Initially, we assessed the influence of the coarse-to-fine strategy. A noticeable decrement in performance was observed 

by bypassing this strategy and directly employing the global regressor for predictions. This unequivocally underscores 

the pivotal role the coarse-to-fine strategy plays within the model, particularly in offering a structured learning trajectory 

when confronted with a broad age distribution. 

Subsequently, the contribution of the ranking regression was scrutinized. Reverting to conventional regression 

techniques in lieu of the ranking regression led to a discernible dip in predictive accuracy. This further attests to the 

superiority of ranking regression in capturing the ordinal nature of age labels and the additional robustness it imparts to 

the model. 

Table 3 shows the result of ablation study result with/without coarse-to-fine strategy and ordinal regression. Through 

these ablation studies, a conclusion was drawn: each component bestows unique value to our approach, collaboratively 

ensuring the model’s exemplary performance in facial age estimation tasks. Notably, the coarse-to-fine strategy and 

ranking regression emerge as quintessential, ensuring not just accurate predictions but also adeptly capturing the ordinal 

relationships between age labels. 
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Table 3. Ablation study result with/without coarse-to-fine strategy and ranking regression. 

Experiment variant MAE RMSE 

Baseline model 2.92 4.25 

Without coarse-to-fine strategy 3.30 4.48 

Without ranking regression 3.34 4.57 

Success and failure cases: In the experimental validation, we present two sets of results to demonstrate our model’s 

predictive capabilities. Figure 4 exemplifies accurate age estimations, reflecting the model’s strength in capturing diverse 

aging features. These successes are attributed to the effective hierarchical feature interpretation by our coarse-to-fine 

framework. 

 

Figure 4. Successful predictions by the coarse-to-fine age estimation model. These examples highlight instances where the model 

accurately estimates ages across a range of demographics and conditions. 

 

Figure 5. Challenges in age estimation with the coarse-to-fine model. This set illustrates scenarios where the model’s predictions 

deviate from the actual ages, providing insights into conditions that affect prediction accuracy. 

Contrastingly, Figure 5 displays cases with less accurate predictions, often due to challenging factors such as poor 

lighting, occlusions, or atypical facial features. Notably, performance dips were observed with extreme age groups where 

training data was limited. Furthermore, the model appeared to struggle with age estimations at the extremities of the age 

spectrum. The youthful and elderly faces displayed a higher discrepancy between predicted and actual ages. This is 

partly due to the sparsity of representative training samples in these age groups, leading to less robust feature learning. 

5. CONCLUSION 

In this paper, a coarse-to-fine learning strategy has been proposed by combining it with ranking regression for enhanced 

facial age estimation. This method, characterized by a global and subsequent local regressor, efficiently addresses the 
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ordinal nature of age labels and diverse aging patterns. Empirical tests across various datasets confirmed its robustness 

and superiority in age estimation tasks. While primarily tailored for age estimation, the approach’s principles show 

promise for other regression-based vision challenges. Future work will probe its adaptability in pose estimation and 

crowd-counting areas. 
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