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ABSTRACT 

Sea sky-line detection is crucial for unmanned vessel attitude estimation and maritime surveillance target detection to 

reduce computational complexity. Many existing seas sky-line detection algorithms mainly extract sea sky-lines through 

edge detection, but these methods are less robust and susceptible to water surface ripple interference. In this paper, we 

propose a sea sky-line detection algorithm based on watershed segmentation, which uses the local binarization method to 

locate the sea sky-line region, segments the connectivity region by watershed algorithm, selects the straight-line pixel 

points, and accurately calculates the slope and intercept of the sea sky-line using the LSD and RANSAC algorithms. The 

experimental results show that the algorithm can accurately detect horizontal lines with less error and outperforms the 

other five advanced algorithms. 

Keywords: Sea sky-line detection, watershed segmentation, LSD line detection, RANSAC line fitting, marine 

environment 

1. INTRODUCTION

Sea sky-line has different definitions in different scenarios, but the goal of sea sky-line detection is to accurately segment 

the sea from the sky1. In images of the sea or other waters, the boundary between the sea and the sky is an important 

reference line that can help to identify target objects as well as analyze the environment. Through sea sky-line detection, 

we can distinguish the water part of the image from the sky part, which provides the basis for subsequent target detection 

and analysis. Examples include sea target detection2, ship attitude fusio3, and image alignment4. The currently existing 

algorithms for sea sky-line detection are categorized into three main groups: edge-based detection5, region growth-based6, 

and machine-learning or deep-learning based segmentation7. Some algorithms increase speed by quickly locating the ROI 

of the sea sky-line but may cause localization errors in complex conditions like dense clouds or tilted lines. Edge detection 

faces challenges with variable edge values under different weather conditions, requiring threshold adjustments that may 

introduce false edges. Additionally, color feature-based filtering and VGG-16 classifiers, though effective in experiments, 

may be inefficient and computationally intensive in real-world applications. The region growing algorithm, suitable for 

high-resolution images, suffers from high time complexity and dependency on seed points, making it unsuitable for color 

gradient scenes. These issues highlight the need for further optimization of sea sky-line detection algorithms. This paper 

proposes a hybrid algorithm combining grayscale analysis, texture, gradient watershed, and horizontal line estimation to 

enhance detection in complex sea conditions. The process involves segmenting the image based on grayscale histogram 

characteristics, setting segmentation thresholds using histogram variance, distinguishing sky regions using morphological 

operations, and segmenting using region growing and watershed algorithms. The optimized LSD and RANSAC methods 

improve Line detection accuracy and speed. 

2. METHOD

This section begins with an analysis of the maritime image characteristics, followed by a detailed description of the three 

main steps of the algorithm proposed in this paper. 

2.1 Sea sky-line area detection 

Uneven sunlight affects global threshold segmentation of ocean and sky regions due to varying light spots on the sea 

surface. Before calculating the maximum interclass variance between sea and sky, the grayscale image is divided into N 
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(N=12) equal subregions horizontally, as shown in Figure 1. 

Figure 1. Schematic diagram of horizontally divided subregions. 

A connected-domain filtering algorithm (MPA) using binary morphological operations is proposed to address noise from 

sea surface ripples and ship wake. The sky and sea are binarized into white and black using adaptive thresholding. Sea 

surface white noise is removed with a 7×7 square structural element open operation, resulting in 𝐼𝑚𝑔𝑜𝑝𝑒𝑛
1 . Sky black noise 

is filtered with a close operation using the same element, producing 𝐼𝑚𝑔𝑐𝑙𝑜𝑠𝑒
2 . Foreground (𝐼𝑚𝑔𝑓𝑟𝑜𝑛𝑡

3 ) and background

(𝐼𝑚𝑔𝑏𝑎𝑐𝑘
3  ) images are generated using 3×3 cross structural elements for expansion and erosion. By calculating the 

difference between these images and analyzing connectivity components, unknown regions are marked as -1, identifying 

the sea-sky line region 𝑖𝑚𝑔𝑢𝑛𝑘𝑛𝑜𝑤𝑛  for detection (Figure 2).

Figure 2. Schematic diagram of morphological processing. 

2.2 Watershed detection sea sky-line alternative points 

In this paper, median filter preprocessing is used to smooth the sharp part of the sea surface image and retain the image 

edge details. The 𝑖𝑚𝑔𝑢𝑛𝑘𝑛𝑜𝑤𝑛  image is used as the mask of watershed segmentation, and only the segmentation lines of

the sky and sea surface are calculated, ignoring the internal details of the image. We no longer use the gray scale value, but 

the gradient value in the neighborhood of the pixel (this paper adopts the four-neighborhood) as the condition of the region 

growth order, and the formula of the gradient value is as follows: 

)( )( , ) ( , ) (i , ) ( , ) ( , )( , )
[( , ),( , )] g g b bDiff Max src src ,src src ,src src

x y x y j x y i ji j
x y i j r r

= − − − (1) 

( )(x,y) [( , ),( 1, )] [( , ),( 1, )] [( , ),( , 1)] [( , ),( , 1)]Grads Min Diff ,Diff ,Diff ,Diffx y x y x y x y x y x y x y x y+ − + −= (2) 

where srcr(x,y) denotes the grayscale value of the red channel with (x, y) coordinates of the original image, srcg(x,y)

denotes the grayscale value of the green channel with (x, y) coordinates of the original image, and srcb(x,y) denotes the

grayscale value of the blue channel with (x, y) coordinates of the original image. 

Improved watershed segmentation algorithm flow: 

(1) A three-channel color map src and mask are input.

(2) Label sky in mask as 1, sea as 2, and unknown areas as 0.
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(3) Gradient values for pixels labeled 0 and those >0 in their four neighboring domains are calculated. These values and

their corresponding coordinates are then saved to the end of the appropriate priority queue level.

(4) Step 3 is repeated until all mask pixels are traversed.

(5) The pixel with the smallest gradient value is popped from the queue. Its four neighbors are checked to determine if

more than one pixel is labeled >0. If so, the pixel is labeled as -1; otherwise, it is assigned the label of a neighboring

pixel >0. Any neighboring pixels labeled 0 are then pushed to the queue.

(6) Step 5 is repeated until the queue is emptied.

(7) The mask is returned, with pixels labeled -1 being marked as the watershed. The original image is visualized with

watershed pixels shown in blue, as illustrated in Figure 3.

Figure 3. Map of watershed segmentation results. 

2.3 Sea sky-line fitting 

In order to further eliminate the influence of non-marine antenna pixels on straight line fitting, the filtered pixel points are 

extracted by LSD straight line detection, line filtering, and extraction. Finally, in this paper, the parameters are fitted by 

RANSAC algorithm. 

Algorithm 1 Sea sky-line Fitting 

Input: binary mask map of watershed results𝑚𝑎𝑠𝑘𝑏𝑖𝑛.

1: The LSD algorithm is used to detect the line segments in the sub 𝑚𝑎𝑠𝑘_𝑏𝑖𝑛 to get 𝐿𝑖𝑛𝑒𝑚.

2: Calculate the angle of each line segment, Angle1, Angle2, Angle3,…, Angle𝑚.

3: for i=1,2, …, m: 

𝑖𝑓(𝑎𝑏𝑠(𝐴𝑛𝑔𝑙𝑒𝑖) < 40):

f𝑜𝑟 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 𝐿𝑖𝑛𝑒𝑖:

if 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 mask_bin == 255: 

   𝑞. 𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘(𝑝𝑖𝑥𝑒𝑙) 

4: for i in range(epoch): 

Two pixels are randomly selected from q, and 𝑤𝑖 , 𝑏𝑖 , 𝐴𝑛𝑔𝑙𝑒𝑖  are calculated, and 𝑎𝑏𝑠(𝐴𝑛𝑔𝑙𝑒) < 40.

totalin = 0

for pixel in q: 

𝑦𝑒 = 𝑤𝑖 ∗ pixel𝑥 + 𝑏𝑖

𝑖𝑓 𝑎𝑏𝑠(𝑦𝑒 − pixel𝑦) < 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ∶  totalin + + 

Record the parameters 𝑤𝑖  and 𝑏𝑖 of the maximum totalin as 𝑤𝑓𝑖𝑛𝑎𝑙  and𝑏𝑓𝑖𝑛𝑎𝑙 .

Output: fitted sea sky-line parameters 𝑤𝑓𝑖𝑛𝑎𝑙 , 𝑏𝑓𝑖𝑛𝑎𝑙
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According to the above algorithm, the results are shown in Figures 4(a)-4(e). 

(a) (b) (c) 

(d) (e) 

Figure 4. Schematic diagram of the sea sky-line fit. 

3. EXPERIMENTAL RESULT

To evaluate the performance of the algorithm in this paper, it is compared with five state-of-the-art methods: 

ngdsac_horizo8: deep learning method, fitting noisy data, including image segmentation, cascade filtering, and line-of-

sight extraction. gbhld algorithm9: graph-based detection of line-of-sight covering image segmentation, cascade filtering, 

and sea-sky antennae extraction. wt algorit10: localization of the sea-sky region by weighting the distribution of texture 

sea-antenna region using canny and hough straight line detection. MSCM algorith11: uses multi-scale cross-modal linear 

features. H-CI algorithm12: combines color intensity vectors with covariance matrix. To fully validate the performance, 

three datasets are used: the Singapore Maritime SMD, Buoy, and MU-SID13. 

This experiment uses an R7-5800h CPU and Nvidia GTX3060 GPU. H-CI, MSCM, and WT run on Matlab2021a, while 

GBHLD, ngdsac_horizon, and the proposed method run in a vscode+Python 3.8 environment. Notably, ngdsac_horizon is 

a deep learning method, training three models on three datasets with a 7:3 train:test split. The loss curve stabilizes at epoch 

40, as shown in Figure 5. The final ngdsac_horizon result averages the error across the three datasets for each model. 

Figure 5. Ngdsac_horizon loss curve. 

3.1 Evaluation criteria 

This paper conducts comparative experiments with the SMD dataset and a proposed sea sky-line description method to 

assess detection performance. The angle α of the sea sky-line relative to the horizontal X-axis and the Y-axis coordinate Y 

of the line’s midpoint are used, as shown in Figure 6. 𝛼𝑒𝑟𝑟𝑜𝑟 and 𝑌𝑒𝑟𝑟𝑜𝑟  are calculated by comparing predicted α and Y

values with labeled dataset values, with results expressed in mean and variance. The calculation formula is provided below: 

Figure 6. Schematic diagram of evaluation indicators for marine antennas. 
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𝛼𝑚𝑒𝑎𝑛
𝑒𝑟𝑟𝑜𝑟 =

1
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∑ |𝑌𝑖

𝑡𝑒𝑠𝑡 − 𝑌𝑖
𝑔𝑡

|𝑛
𝑖=1 (3) 

where n denotes the total number of frames in the dataset, this paper defines the evaluation metrics for the sea sky-line 

detection algorithm: 𝛼𝑖
𝑡𝑒𝑠𝑡 is the predicted sea sky-line angle to the X-axis in the ith frame of the image, and 𝛼𝑖

𝑔𝑡
 is the

true angle, whose accuracy is measured by the 𝛼𝑚𝑒𝑎𝑛
𝑒𝑟𝑟𝑜𝑟 (the average error between the predicted angle and the true angle).

Similarly, 𝑌𝑖
𝑡𝑒𝑠𝑡  is the coordinates of the predicted midpoint of the sea sky-line in the Y-axis, and 𝑌𝑖

𝑔𝑡
  is the true

coordinates, whose accuracy is measured by 𝑌𝑚𝑒𝑎𝑛
𝑒𝑟𝑟𝑜𝑟  (the average error between the predicted and true Y-axis coordinates).

In this paper, the same evaluation criteria as those used in the literature are used, namely: vertical position error, standard 

deviation of vertical position error, angular error and standard deviation of angle error. Tables 1-3 correspond to the data: 

Table 1. Evaluation results of the MU-SID dataset. 

Method Evaluation indicators 

𝜶𝒎𝒆𝒂𝒏
𝒆𝒓𝒓𝒐𝒓 𝜶𝒔𝒕𝒅

𝒆𝒓𝒓𝒐𝒓 𝒀𝒎𝒆𝒂𝒏
𝒆𝒓𝒓𝒐𝒓 𝒀𝒔𝒕𝒅

𝒆𝒓𝒓𝒐𝒓

MSCM 2.276 6.499 295.633 783.468 

H-CI 2.145 5.817 209.483 652.076 

GBHLD 3.198 6.731 199.498 276.713 

WT 3.040 6.792 133.478 206.907 

Ngdsac_horizon 1.342 3.239 40.253 126.079 

Proposed 0.207 0.630 26.060 117.989 

Table 2. Evaluation results of the BOUY dataset. 

Method Evaluation indicators 

𝜶𝒎𝒆𝒂𝒏
𝒆𝒓𝒓𝒐𝒓 𝜶𝒔𝒕𝒅

𝒆𝒓𝒓𝒐𝒓 𝒀𝒎𝒆𝒂𝒏
𝒆𝒓𝒓𝒐𝒓 𝒀𝒔𝒕𝒅

𝒆𝒓𝒓𝒐𝒓

MSCM 0.563 0.783 4.240 15.012 

H-CI 3.863 5.188 139.267 116.251 

GBHLD 2.946 5.133 52.861 74.115 

WT 0.385 0.677 3.094 17.691 

Ngdsac_horizon 0.521 0.534 2.344 1.981 

Proposed 0.294 0.393 1.573 1.269 

Table 3. Evaluation results of the SMD dataset. 

Method Evaluation indicators 

𝜶𝒎𝒆𝒂𝒏
𝒆𝒓𝒓𝒐𝒓 𝜶𝒔𝒕𝒅

𝒆𝒓𝒓𝒐𝒓 𝒀𝒎𝒆𝒂𝒏
𝒆𝒓𝒓𝒐𝒓 𝒀𝒔𝒕𝒅

𝒆𝒓𝒓𝒐𝒓

MSCM 1.510 2.253 218.240 214.682 

H-CI 1.338 2.024 83.338 78.188 

GBHLD 1.104 3.223 27.552 79.399 

WT 0.411 0.723 15.798 50.078 

Ngdsac_horizon 0.328 0.787 10.259 26.881 

Proposed 0.182 0.169 2.875 6.543 
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3.2 Analysis of results 

From the above three representative datasets, it can be seen that the method proposed in this paper has the smallest average 

localization error (𝑌𝑚
𝑒𝑟

𝑒
𝑟
𝑎𝑛
𝑜𝑟 ) or average angular error (𝛼𝑒

𝑚
𝑟
𝑒
𝑟
𝑎
𝑜𝑟
𝑛 ) and variance value, which is enough to prove the effectiveness 

of this algorithm. In addition, the proposed method in this paper is able to control the angular error in all three datasets 

below 0.3, which is significantly better than other algorithms. 

4. CONCLUSION

In this paper, a new visible light sea antenna detection algorithm is proposed, which is accurate and stable. Through the 

comparison experiments with the most advanced five types of algorithms in the three types of data set that are currently 

public, the algorithm proposed in this paper achieves the best accuracy and robustness, which proves that the sea antenna 

detection algorithm in the visible light image has good accuracy and robustness, and can overcome the adverse effects of 

interference such as image blurring, ship wake, large sea antenna inclination angle, and ship occlusion. 
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