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ABSTRACT 

Signal reconstruction from its power spectrum is an important technique widely useful in different application fields. 

However, uniqueness is generally hard to be guaranteed by usual approaches due to nonlinearity of the power spectrum 

measurement models. In this paper a very general structure of the 1-dimensonal signal with given power spectrum is 

established and on basis of this formulism some conditions are introduced to guarantee the uniqueness of solution in 

signal reconstruction. Such conditions are about the information of the interference signals and according to which an 

algorithm is established for signal construction. The algorithm is simple, efficient and its solution is unique in case of 

linear-phase signals. Some generalized and more practical conditions are also discussed. 
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1. INTRODUCTION

1.1 Basic problems and related works 

Signal reconstruction problem widely appears in different application fields. In this problem the complete signal, i.e., 

both its magnitudes and phases at a finite number of specified time instants or spatial positions, need to be reconstructed 

from its power spectrum measurements1,2.  

Power spectrum measurement is essentially a non-linear observation model and only magnitude information of signal’s 

Fourier transform is obtained3. As a result, uniqueness is generally hard to be guaranteed by usual approaches due to 

nonlinearity of the power spectrum measurement model and its information incompleteness. So far, most approaches are 

based on extending the sampling frequency, e.g., by doubling the number of sampling points, to provide sufficient 

measurements to guarantee uniqueness4,5. Such methods obvious have lots of limitations in some realistic applications, 

e.g., it is unfeasible to have adequate sampling density or speed with some acceptable cost, particularly for two or higher

dimensional signals6. Even for one dimensional situation, e.g., the time sequence signal of finite length, simply enlarging

its sample set is in many cases unfeasible in practice7-9. On the other hand, in many typical situations some additional

information about the signal itself may be available which can be helpful for reconstructing the real signal to get the

unique solution in some conditions. For example, in one dimensional photoelectric lattice and two-dimensional

photoelectric membrane experiments not only the absorption spectrum (essentially the power spectrum of the anisotropic

photoelectric material’s permeability) can be measured but also the value of permeability itself can be measure at some

special position10. In some nonlinear optical experiments, not only the field spectrum at given set of frequencies but also

some additional information about the field itself or reference field at some special points can be available11,12. Naturally

how to make use of such additional information to develop the reconstruction algorithm is a valuable problem which

needs theoretical and practical investigation. However, so far there are only few works in this direction.

1.2 Contributions 

In this paper a very general structure of the 1-dimensonal signal with given power spectrum is proved and on basis of 

this formulism some conditions are introduced to guarantee the uniqueness of solution in signal reconstruction. Such 

conditions are about some additional information of the interference signal which is useful and obtainable in the situation 

where the original spectrum as well as the interference spectrum of the signal with some finite-length reference signal is 

measured. On basis of this formulism and uniqueness condition, an algorithm is established for signal construction, 
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which is simple, efficient and the solution is unique in case of linear-phase signals. Some generalized and more practical 

conditions are also discussed.  

2. BASIC PROBLEM, MODELS AND ELEMENTARY PROPERTIES

Notations and Conventions All vectors x, y, etc. are column vectors, so xT, yT, etc. are raw vectors. x(n) is the n-th 

component of vector x. Z is the set of integers. 

2.1 Basic model  

The basic model for one-dimensional signal reconstruction is the following observation equation: 

|𝑥̃(ω)|2=|∑ 𝑥(𝑛)𝑛∈𝑍 exp(-inω)|2   (1) 

In this equation, x≡{x(n)} is a sequence of complex-number valued signals with N items, each item x(n)=|x(n)|exp[iφ(n)] 

where ω is the discretized frequency. The starting instant no and length N of such signal sequence is given, so without 

loss of generality, let {x(n)} be {x(0), x(1), ..., x(N-1)} where x(0) and x(N-1) are non-zero while x(n)=0 for n<0 or n≥N. 

All unessential sampling parameters and scale factors are neglected.  

The basic problem is: reconstruct signal x≡{x(n)} according to observations {|𝑥̃(ωj)|} which are a collection of data at 

discretized frequencies {ωj}. 

It is emphasized that the observation |𝑥̃(ωj)| has only magnitude information in frequency domain, however, what is to be 

constructed is the complete signal x(n)=|x(n)|exp[iφ(n)] with information of both magnitude |x(n)| and phase φ(n).  

In the following analysis the auto-correlation sequence plays an important role which definition is: 

a(n)≡∑ 𝑥̅(𝑘)𝑘∈𝑍 x(n+k)  (2) 

The auto-correlation sequence a≡{a(n)} of signal {x(0), x(1), ..., x(N-1)} is a sequence of size 2N-1 where a(n)=0 |n|>N. 

The Fourier spectrum of a and the Fourier spectrum of x are related by  

𝑎̃(ω)≡∑ 𝑥̅(𝑘)𝑛,𝑘∈𝑍 x(n+k)exp(-inω)=|𝑥̃(ω)|2   (3) 

Note that the signal x of size N has 2N to-be-determined real-number valued variables: N magnitudes |x(n)| and N phases 

φ(n). As a result totally 2N observations |𝑥̃(ωj)| in model (1) are needed to reconstruct the complete signal x. By the well-

known interpolation formula, such observations can determine the continuous power spectrum  𝑎̃(ω)=|𝑥̃(ω)|2 of the auto-

correlation sequence a, i.e., 

𝑎̃(ω)=∑ |𝑥̃(𝜔𝑗)|22𝑁
𝑗=1  ∏

sin(𝜔−𝜔𝑖)/2

sin(𝜔𝑗−𝜔𝑖)/2

2𝑁
𝑖=1,𝑖≠𝑗  (4) 

where ωi-ωj≠2mπ for any m∊Z. The auto-correlation sequence a can be completely determined by Fourier transform of 

(4). Due to non-linearity of the model, however, signal x itself cannot be completely determined by this approach. For 

example, it’s easy to verify that all signals {exp(-iα)x(n)}, {x(n-m)} and {𝑥(−𝑛)̅̅ ̅̅ ̅̅ ̅̅ } have the same auto-correlation

sequence as signal {x(n)}. Such signals are called hereafter the simple variant of the original signal {x(n)}, which have 

the same physical significance of x in practical applications. With this consideration, the signal reconstruction problem 

can be re-stated more exactly by:  

Given observations {|𝑥̃(ωj)|} which are a collection of data at discretized frequencies {ωj}, reconstruct signal x≡{x(n)} 

which is unique in the sense that all different solutions are within the simple variant category of the exact signal x. 

As a result of the following analysis, the uniqueness cannot be simply reached by 2N observations, therefore some 

additional observations or constraints are necessary. Our analysis in the following also shows under which additional 

conditions the uniqueness can be really guaranteed.   

2.2 Some related models 

In practice some measurement models in different forms frequently appear, e.g., the electric conductivity measurement 

model used in the research of polymer electronic devices is:  

|𝑥̃(ω)|2=|∑ 𝑥(𝑛)𝑛∈𝑍 K(ω, n)|2 (5)
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where the kernel function 

K(ω, n)≡(2πb)-1/2exp(-iπ/4)exp[(i/2b)(an2-2ωn+dω2)] 

By straightforward calculation, it holds that 

|𝑥̃(ω)|2=|∑𝑛∈𝑍 𝑥(𝑛)exp[(ian2/2b]exp(-inω)|2

i.e., model (5) can be reduced to model (1) if x(n)exp[(ian2/2b] rather than x(n) is regarded as the signal. In its 
application domain a and b are given parameters so signal reconstruction problem of model (5) is equivalent to the same 
problem of model (1).

Many other observation models in applications have the relations with model (1) similar as the above, hence model (1) is 

typical and the following analysis is focused on it. 

3. GENERAL FORMALISM AND MAIN RESULT ON UNIQUENESS

Non-uniqueness is the most essential obstacle for signal reconstruction on basis of model (1). In this section the complete 

form of signal x is derived from measurement Equation (1). As a result, the most important impact factors for the 

uniqueness can be determined and furthermore the uniqueness condition can be established on basis of this analysis.   

3.1 General formalism and main result  

For a given sequence a≡{a(n): n=1-N, …, N-1} of length N, define an associated polynomial of degree 2N-2: 

Pa(z)≡∑ 𝑎(𝑛 − 𝑁 + 1)𝑧𝑛2𝑁−2
𝑛=0  (6) 

For the auto-correlation sequence a of signal x it always holds that 

𝑎̃(ω)=|𝑥̃(ω)|2=exp[-i(N-1)ω)]Pa(exp(-iω))  (7) 

By Equation (2) we have 𝑎(−𝑛)̅̅ ̅̅ ̅̅ ̅̅ =a(n) so it’s true that

z̅2(N-1)Pa(1/z̅)=𝑃𝑎(𝑧)⬚
̅̅ ̅̅ ̅̅ ̅̅ ̅

As a result, if γ is a non-zero root of Pa(z) then so is 1/𝛾̅, i.e., the roots of Pa(z) can be paired as (γ, 1/𝛾̅) which are 

distributed inside and outside the unit circle symmetrically.  

Equation (2) implies 𝑎(1 − 𝑁)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =a(N-1)=x(0)x(N-1)≠0 (otherwise at least one of x(0), x(N-1)=0 which conflicts the

assumption for sequence x), so Pa(0)≠0. This implies: 

Pa(z)=a(N-1)∏ (𝑧 − 1/𝛾𝑗̅)(𝑧 − 𝛾𝑗)𝑁−1
𝑗=1  (8) 

By (7) and 𝑎̃(ω)=|𝑥̃(ω)|2 there holds that 

𝑎̃(ω)=|Pa(exp(-iω))| 

=|a(N-1)|∏ |(exp (−𝑖𝜔) − 1/𝛾𝑗̅)(exp (−𝑖𝜔) − 𝛾𝑗)𝑁−1
𝑗=1 |=|a(N-1)|∏ |𝛾𝑗|−1𝑁−1

𝑗=1 ∏ |exp (−𝑖𝜔) − 𝛾𝑗)𝑁−1
𝑗=1 |2 

For real-valued frequency ω then 

𝑥̃(ω)=|a(N-1)|1/2∏ |𝛽𝑗|−1/2𝑁−1
𝑗=1 ∏ (exp (−𝑖𝜔) − 𝛽𝑗)𝑁−1

𝑗=1  (9) 

where {βj: j=1, …, N-1 and βj ≠1/𝛽̅k for any j≠k} is a subset of roots. 

Since signal x is determined by its spectrum  𝑥̃(ω), Equation (9) shows the general formalism of the solution to Equation 

(1). Nevertheless, it is not unique because different subset of {βj} of cardinality N-1 determines different solutions.  

The above argument essentially proves the theorem which is the main result in this section: 

Theorem 1 Any signal x implied by Equation (1), up to its simple variant, must has the spectrum in form of (9) where 

{βj: j=1, …, N-1and βj ≠1/𝛽̅k for any j≠k} is the subset of roots of polynomial Pa(z) defined in (6). 

This theorem is the foundation to develop the signal reconstruction algorithm. An interesting corollary of this theorem is 

that if Pa(z) associated with the measurement data only has roots on the unit circle then the constructed signal is unique 

(up to simple variants). Such situation cannot occur in general, but the more is the number of roots on the unit circle on 
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the complex plane, the less is the number of different solutions. Let L≡|{(γj, 1/𝛾𝑗̅): γj ≠1/𝛾𝑗̅} be the number of pairs not 

distributed along the unit circle, mj be the multiplicity of the j-th pair (γj, 1/𝛾𝑗̅), then it is easy to verify that the number of 

signals implied by Equation (1) is at most: 

(1/2)∏ (1 + 𝑚𝑗)𝐿
𝑗=1  

In applications theorem 1 has another useful equivalent form which can be stated as the following.  

Theorem 2 Let x and y be two signals of length N and both satisfying Equation (1), then there exist two signals u and v 

of finite lengths such that  

x=u # v      and     y = {exp[iα]𝑢(−𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅}#{v(n-m)} 

where # is the convolution operator, a is some real-number constant and m is an integer constant.   

The proof of this theorem is straightforward. Since by theorem 1 signal both x and y can be represented by (9) but with 

different set of roots {βj: j=1, …, N-1} and {γj: j=1, …, N-1}, then  

𝑥̃(ω)=constant 𝑦̃(ω)∏
(exp (−𝑖𝜔)−𝛾𝑗)

(exp (−𝑖𝜔)−𝛽𝑗)

𝑁−1
𝑗=1   

Let {β1, …, βm} and {γ1, …, γm} are the largest ono-intersection subset of roots where |γj|≤1, j=1, …, t and |γj|>1, 

j=t+1, …, m. Since the distribution of Pa(z)’s roots are symmetric relative to the unit circle, there should exist exactly t 

roots βj=1/𝛾𝑗̅, j≤t and other m-t roots βj=1/𝛾𝑗̅, j≥t+1, therefore:  

𝑥(𝜔)̃

𝑦(𝜔)̃
=constant ∏

(exp (−𝑖𝜔)−𝛾𝑗)

(exp (−𝑖𝜔)−1/𝛾𝑗̅̅ ̅)

𝑚
𝑗=1 =constant exp[imω]∏

(exp (−𝑖𝜔)−𝛾𝑗)

(exp (+𝑖𝜔)−𝛾𝑗̅̅ ̅)

𝑚
𝑗=1 =constant exp[imω]𝑢̃(𝜔)/𝑢̅̃(ω) 

where 𝑢̃(ω)≡∏ (exp (−𝑖𝜔) − 𝛾𝑗)𝑚
𝑗=1 . Equivalently: 

𝑥(𝜔)̃/𝑢̃(ω)=constant exp[imω]𝑦̃(ω)/𝑢̅̃(ω) 

Let 𝑣̃(ω)≡𝑥(𝜔)̃/𝑢̃(ω) then  

𝑥̃(ω)=𝑢̃(𝜔)𝑣̃(ω) and 𝑦̃(ω)=constant exp[ikω] 𝑢̅̃(𝜔)𝑣̃(ω) 

so, the theorem’s statement is true due to the result of Fourier inverse transform of the above relations. 

Note that in some applications the physical signal x is real vector (all its components x(n)’s are real-valued). For this case 

the roots of Pa(z) will be real numbers or pairwise complex-conjugate, as a result of this fact and theorem 1 different 

subset of {βj: j=1, …, N-1, βj≠1/𝛽̅k for j≠k} determines different real signal but not unique. In summary, even for real 

signal the uniqueness in reconstruction cannot be guaranteed without some additional conditions. 

4. THE UNIQUENESS CONDITION ON RELATED INTERFERENCE SIGNALS AND 

RECONSTRUCTION ALGORITHM  

In lots of applications the original spectrum {|𝑥̃(ωj)|} as well as the interference spectrum {|𝑥̃ (ωj)+𝑓 (ωj)|} of the 

referenced signal x+f with some reference signal f of finite length is measured. In some situations, e.g., in the experiment 

of photoconductivity of polymer membrane, f≡{f(n)} is completely known. In some other situations, only part of 

information of f is known in priori. Such different situations are investigated separately in the following subsections.   

4.1 Additional information of completely known interference signal  

Theorem 3 Let signal f≡{f(n)} of length N be given, then there exist at most two signals x≡{x(n)} of length N satisfying 

the measurement equations for j=1, …, N:  

|𝑥̃(ωj)|=|∑ 𝑥(𝑛)𝑛∈𝑍 exp(-inωj)|                                                             (10) 

|𝑦̃(ωj)|=|∑ (𝑥(𝑛) + 𝑓(𝑛))𝑛∈𝑍 exp(-inωj)|                                                     (11) 

If the spectrum of f is of linear phase qω+ω0 where q is some integer and ω0 is some constant frequency, the x is unique.  

Proof Let y=x+f, 𝑥̃(ωj)=|𝑥̃(ωj)|exp[iΦ(ωj)], 𝑓(ωj)=|𝑓(ωj)|exp[iΨ(ωj)], the the spectrum of y is:  
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|𝑦̃(ωj)|2=|𝑥̃(ωj)+𝑓(ωj)|2=|𝑥̃(ωj)|2+|𝑓(ωj)|2+2Re[𝑥̃(ωj)𝑓(̅ωj)] 

=|𝑥̃(ωj)|2+|𝑓(ωj)|2+2|𝑥̃(ωj)||𝑓(ωj)|cos(Φ(ωj)-Ψ(ωj))                                                  (12) 

In equality (16) the data terms |𝑦̃(ωj)|, |𝑥̃(ωj)|, |𝑓(ωj)| and Ψ(ωj) are all known so that the phase difference between 𝑥̃(ω) 

and 𝑓(ω), i.e., Ξ(ωj)≡Φ(ωj)-Ψ(ωj), can be uniquely determined in [0, 2π). Since cosine is an even function, Φ(ωj) has at 

most two solutions Φ1(ωj) and Φ2(ωj): 

Φ1(ωj)-Ψ(ωj)=-Φ2(ωj)+Ψ(ωj)+2πK 

where K is some integer. Then Φ1(ωj)=-Φ2(ωj)+2Ψ(ωj)+2πK.  

In case of linear phase Ψ(ω)=qω+ω0 then: 

Φ1(ωj)=-Φ2(ωj)+2qωj+2ω0+2πK 

and the corresponding signals are related by just a simple variant relation:  

x1(n)=𝑥2(2𝑞 − 𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ exp[2iω0] 

namely, x is unique. This ends the proof. 

Sine linear phase reference signals are widely used, the reconstruction algorithm can be established as follows. 

According to theorem 3, its solution is unique in case of linear phase reference signal. 

Algorithm 

Parameters: Signal length N, set of sampling points {ωj: j=1, …, N} 

Input:  Measured spectrum samples |𝑥̃(ωj)| and |𝑦̃(ωj)|≡|𝑥̃(ωj)+𝑓(ωj)|: j=1, …, N;  

            Reference signal f≡{f(n): n=0, …, N-1} 

Computation Steps: 

(1)  Compute Ξ(ωj)=Φ(ωj)-Ψ(ωj)∊[0,π] according to Equation (12); 

(2)  Compute 𝑥̃(ωj)=|𝑥̃(ωj)|exp[i(Φ(ωj)+Ξ(ωj))] for each ωj; 

(3)  Compute the signal {x(n)} from {𝑥̃(ωj)} by fast Fourier inverse transform. 

4.2 Additional information of only power spectrum of the interference signal  

In some situation the reference signal f is unknown, however, still part of its information can be known such as its power 

spectrum. The measurement model is: 

|𝑥̃(ω)|=|∑ 𝑥(𝑛)𝑛∈𝑍 exp(-inω)|, |𝑓(ω)|=|∑ 𝑓(𝑛)𝑛∈𝑍 exp(-inω)|, |𝑦̃(ω)|=|∑ (𝑥(𝑛) + 𝑓(𝑛))𝑛∈𝑍 exp(-inω)|           (13) 

with measurements {|𝑥̃(ωj)|, |𝑓(ωj)|, |𝑦̃(ωj)|: j=1,…,N}. A useful uniqueness condition is stated in the following theorem. 

Theorem 4 Let x and f be signals of length N1 and N2 respectively which satisfy all Equations in (12). If the polynomials 

P(z) and Q(z) associated with {|𝑥̃(ωj)|} and {|𝑓(ωj)} (defined by (6)) respectively have no common roots, the both x and 

f are unique.  

Remark If signals x and f are independent each other then P(z) and Q(z) obviously have no common root. Therefore, the 

uniqueness condition in this theorem is very general in practies.  

Proof Let x1 and f1 are another pair of signal and reference signal satisfying (13). By theorem 2 there exist finite-length 

signals u, v, w and z such that: 

𝑥̃(ω)=𝑢̃(ω) 𝑣̃(ω), 𝑥1̃(ω)=𝑢̃(ω)𝑣̃(𝜔)̅̅ ̅̅ ̅̅ ̅exp[iρ] 

𝑓(ω)=𝑤̃(ω), 𝑧̃(ω) exp[-ikω]                                                                   (14) 

𝑓1̃(ω)=𝑤̃(ω)𝑧̃(𝜔)̅̅ ̅̅ ̅̅ exp[iσ-iqω] 

where ρ and σ are constants in (-π, +π], k and q are integer constants. Without loss of generality, suppose u(n)=0 except 

for n=0, …, m1; v(n) = 0 except for n=0, …, N1-1-m1; w(n) = 0 except for n=0, …, m2; z(n)=0 except for n=0, …, N2-1-

m2. For x1+f1 and x+f there holds: 
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|𝑥̃(ω)+𝑓(ω)|2=|𝑦̃(ω)|2=|𝑥1̃(ω)+𝑓1̃(ω)|2 

Substitute (13) into this equality and note that |𝑥̃(ω)|2=|𝑥1̃(ω)|2, |𝑓(ω) |2=|𝑓1̃(ω)|2, after some straightforward computation 

there holds:  

(exp[ikω]𝑢̃(ω)𝑤̃(𝜔)̅̅ ̅̅ ̅̅ ̅-exp[-i(lω+ρ-σ)]𝑢̃(𝜔)̅̅ ̅̅ ̅̅ ̅𝑤̃(𝜔))(𝑣̃(ω)𝑧(𝜔)̅̅ ̅̅ ̅̅ -exp[-i((k-q)ω-ρ+σ)]𝑣̃(𝜔)̅̅ ̅̅ ̅̅ ̅𝑧̃(𝜔))=0 

Hence either 

exp[ikω]𝑢̃(ω)𝑤̃(𝜔)̅̅ ̅̅ ̅̅ ̅=exp[-i(qω+ρ-σ)]𝑢̃(𝜔)̅̅ ̅̅ ̅̅ ̅𝑤̃(𝜔)                                                (15) 

or 

𝑣̃(ω)𝑧(𝜔)̅̅ ̅̅ ̅̅ =exp[-i((k-q)ω-ρ+σ)]𝑣̃(𝜔)̅̅ ̅̅ ̅̅ ̅𝑧̃(𝜔)                                                    (16) 

is true.  

Suppose (15) is true: in this case the equality (9) and (14) leads to 

𝑢̃(ω)=u(m1)∏ (exp [−𝑖𝜔] − 𝛽𝑗)𝑚1
𝑗=1 , 𝑤̃(ω)=w(m2)∏ (exp [−𝑖𝜔] − 𝛾𝑗)𝑚2

𝑗=1  

Under the condition stated in this theorem, βj≠γi for any j and i. Substitute these two equations into (15) and after some 

algebra calculation, it holds:  

exp[iωm2] ∏ (exp[−𝑖𝜔] − 𝛽𝑗)𝑚1
𝑗=1 ∏ (exp[−𝑖𝜔] − 1/𝛾̅𝑖)

𝑚2
𝑖=1  

=C exp[-iω(k+q-m1)] ∏ (exp[−𝑖𝜔] − 1/𝛽̅𝑗)𝑚1
𝑗=1  ∏ (exp[−𝑖𝜔] − 𝛾𝑖)

𝑚2
𝑖=1                                   (17) 

where C is some constant independent of ω. Note that both sides are polynomials in z≡exp[-iω] and (by compare the 

degrees of both sides) m1=m2+k+q. Since both sides have the same set of roots, i.e.  

{βj: j=1, …, m1}∪{1/γ̅i: i=1, …, m2}={1/β𝑗̅: j=1, …, m1}∪{γi: i=1, …, m2} 

Since βj≠γi for any j and i, all roots in these sets except those on the unit circle (notated as exp [−𝑖𝜃𝑗] and exp [−𝑖𝜏𝑗]) 

can be paired as {(βj, 1/β𝑗̅): j=1, …, J1} and {(γi,1/γ̅i): i=1, …, J2} respectively where J1≤m1, J2≤m2. Hence 

𝑢̃(ω)=u(m1)∏ (exp [−𝑖𝜔] − 𝛽𝑗)𝐽1
𝑗=1 (exp[-iω]-1/𝛽𝑗̅) ∏ (exp[−𝑖𝜔] − exp [−𝑖𝜃𝑗])𝑚1−2𝐽1

𝑗=1  

𝑤̃(ω)=w(m2)∏ (exp [−𝑖𝜔] − 𝛾𝑗)𝐽2
𝑗=1 (exp[-iω]-1/𝛾𝑗̅) ∏ (exp[−𝑖𝜔] − exp [−𝑖𝜏𝑗])𝑚2−2𝐽2

𝑗=1  

Note that  

𝑥1̃(ω)=𝑢̃(𝜔)̅̅ ̅̅ ̅̅ ̅𝑣̃(𝜔)̅̅ ̅̅ ̅̅ ̅exp[iρ-im1ω]=exp[iρ-im1ω]𝑥̃(ω) 

𝑓1̃(ω)=𝑤̃(𝜔)̅̅ ̅̅ ̅̅ ̅z(𝜔)̅̅ ̅̅ ̅̅ exp[iσ-iqω-im2ω]=𝑓(𝜔)̅̅ ̅̅ ̅̅ ̅ exp[iσ-i(q+k+m2)ω] 

which implies that x is just a simple variant of x1 and f is also just a simple variant of f1. In a similar way, (16) implies 

the same result. This ends the proof. 

5. CONCLUSIONS AND FURTHER WORKS 

In this paper the general structure of the one-dimensional signal with given power spectrum is formulated and on basis of 

this formulism some conditions are introduced to guarantee the uniqueness of solution in signal reconstruction. Such 

conditions are about some additional information of the interference signal which is useful and obtainable in the situation 

where the original spectrum as well as the interference spectrum of the signal with some finite-length reference signal is 

measured. On basis of this formulism and the uniqueness condition, an algorithm is established for signal construction, 

which is simple, efficient and the solution is unique in case of linear-phase signals. Some generalized and more practical 

conditions are also discussed and it is worthwhile to investigate some of them furthermore in future works. 
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