
 

 
 

 

 

 

MSF-TransUNet: transformer multi-scale fusion on U-Net for gastric 

cancer pathological image segmentation 

Bing Baia,b, Xiaoqi Zhanga 

aDepartment of Information Engineering, Xuan Cheng Vocational & Technical College, Xuancheng 

242099, Anhui, China; bSchool of Automation and Information Engineering, Xi’an University of 

Technology, Xi’an 710048, Shaanxi, China 

ABSTRACT 

To address the challenges in gastric cancer pathological images, such as varying sizes and shapes of lesion regions as well 

as blurry boundaries, we propose an enhanced U-Net architecture segmentation algorithm based on an affine cross-

attention mechanism. Specifically, we introduce affine transformation modules into the up-sampling and down-sampling 

stages of the U-Net, replacing adjacent convolutional blocks to better capture variations in shape and size. Additionally, a 

cross-attention module is incorporated in the bridging phase to enhance feature utilization and mitigate mis-segmentation 

of healthy tissues. In contrast to the conventional U-Net, our algorithm demonstrates notable enhancements in terms of 

8.21%, 6.87%, and 5.57% in Dice coefficient, Intersection over Union (IoU), and Accuracy (ACC), respectively. The 

effectiveness of our introduced modules is reinforced through ablation investigations. The segmentation performance of 

lesion regions in gastric cancer pathological images is augmented by the proposed algorithm, as shown by the experimental 

results, effectively reducing the false-positive rate in image diagnosis. 

Keywords: Affine transformation, cross-attention, transformer, local features, global features, gastric cancer pathological 

images 

1. INTRODUCTION  

One of the most widespread malignancies in the digestive system, gastric cancer occupies a critical spot on the global 

cancer landscape. Consequently, the effective diagnosis and timely treatment of gastric cancer are paramount. The primary 

diagnosis of gastric cancer frequently hinges upon the examination of pathological images. Nevertheless, the process of 

diagnosing through pathological section screening is not only a time-intensive endeavor but also poses challenges for early 

detection, primarily due to the inconsistent quality of the pathological images, which can hinder accurate assessment. 

Therefore, the utilization of computer-aided diagnostic methods for classification and localization can aid in gastric cancer 

screening, saving time and improving efficiency. 

Medical image segmentation algorithms serve as a crucial tool in computer-aided diagnosis. Expediting diagnosis through 

image segmentation algorithms enhances the likelihood of tumor detection, enabling clinicians to efficiently utilize their 

discovery time and improve patient prognosis1. At present, the majority of medical image segmentation algorithms are 

designed with a mirrored encoder-decoder framework that operates from a top-down approach. Among them, the UNet 

architecture and its variants are renowned, with their key lies in their fully convolutional nature2. 

Although the U-Net model, leveraging Convolutional Neural Networks (CNNs), has yielded promising outcomes in 

medical image segmentation, there persists an opportunity to enhance its performance to better aid clinicians in early 

disease detection. Transformer models, renowned for their proficiency in managing lengthy sequence dependencies in 

language tasks3, have made significant strides. As a result, Transformer-based architectures, including Vision Transformer 

(ViT4), have outperformed CNNs in benchmark image processing evaluations. Recent advancements in ViT, exemplified 

by CvT5, CCT6, and Swin Transformer7, have demonstrated that Transformers can excel even with modest parameter 

counts and limited data inputs, challenging the notion that vast amounts of data are necessary. Presently, ViT models 

incorporate spatial positioning into image patches through positional encoding, which is then processed by standard 

Transformer layers to capture long-range semantic relationships within the data. 
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Utilizing the strengths of Convolutional Neural Networks (CNNs) and Transformer models within the domain of image 

segmentation, deep learning frameworks featuring fully convolutional encoder-decoders are proficiently employed to 

exploit long-range semantic connections within medical images for segmentation purposes. In pursuit of this objective, the 

inaugural fully convolutional Transformer designed exclusively for medical image segmentation is introduced. At the core 

of this innovative model lies the fully convolutional Transformer layer, functioning as the principal component, which 

comprises two essential elements: a convolutional attention module and a fully convolutional broad-focus module. Our 

key contributions are outlined as below: 

(1) Across diverse datasets, the efficacy of skip connections is scrutinized, uncovering the inadequacy of straightforward 

independent replication. 

(2) A fresh perspective is presented to elevate semantic segmentation performance, addressing the semantic and resolution 

disparities between low-level and high-level features through refined feature fusion methodologies and multi-scale channel 

cross-attention frameworks. This methodology adeptly captures intricate channel interdependencies, ultimately enhancing 

segmentation precision. 

2. RELATED WORK 

The application of the Visual Transformer (ViT)8 has generated encouraging outcomes in ImageNet classification through 

the direct utilization of Transformers with global self-attention on complete images. Following the triumphant expansion 

of Transformers across diverse computer vision realms, TransUNet9 surfaced as the pioneering Transformer-based medical 

image segmentation platform. In response to the constraint of limited data samples in medical imaging, Valanarasu et al. 

introduced a gated axial-attention model10. Drawing inspiration from the groundbreaking performance of the Swin 

Transformer11, Swin-U-Net12 established the precedent for an entirely Transformer-based U-shaped architecture, 

leveraging the Swin Transformer to substitute convolutional blocks in U-Net. Nevertheless, these methodologies primarily 

focus on rectifying the deficiencies of convolutional operations, neglecting the intrinsic restrictions of the U-Net 

architecture itself, which could potentially lead to structural inefficiencies and heightened computational expenses. 

The mechanism of skip connections, initially conceived in UNet2, endeavors to span the semantic divide between the 

encoder and decoder, demonstrating its proficiency in restoring intricate details of targeted objects13. As U-Net’s influence 

grows, a plethora of innovative models have surfaced, including UNet++14, Attention U-Net15, DenseUNet16, r2e-net17, 

and UNet3+18, each tailored to excel in medical image segmentation and exhibiting exceptional performance. UNet++ 

emphasizes the semantic disparities among feature maps of identical scale from encoder and decoder, presenting a nested 

configuration known as UNet++, which captures multi-scale attributes to further narrow the gap. Attention U-Net 

introduces a cross-attention module, harnessing coarse-grained features as gating cues to mitigate uncertainties stemming 

from distracting and noisy responses within skip connections. MultiResUNet19 acknowledges the potential semantic 

discrepancy between corresponding encoder and decoder features bypassed, integrating residual architectures to fortify 

skip connections. 

Semantic feature extraction in histopathological images, attempted through traditional image processing techniques, proves 

inadequate due to their inability to manually discern such features. Conversely, deep convolutional networks, 

unencumbered by handcrafted features, adeptly extract the most pertinent and descriptive feature information during model 

training, enabling more judicious decisions. Block-based classification networks, though compromising on boundary 

smoothness, achieve WSI image segmentation with minimized computational overhead. Among these, U-Net is a 

preeminent choice for block-based pathological image segmentation, leveraging its prowess in capturing global features 

during contraction and precise localization during expansion. Nevertheless, U-Net’s oversight of local pixel dependencies 

necessitates enhancements. In this regard, a fusion framework has been devised to bolster tumor edge segmentation 

accuracy14. Conditional random fields offer a means to model long-range dependencies, serving as a post-processing tool 

for semantic segmentation predictions. However, this method is computationally demanding and necessitates a substantial 

amount of expert annotations for effective training. 

3. METHOD 

3.1 Overall architecture 

In the realm of medical image segmentation, acquiring multi-scale features holds paramount importance for tackling 

intricate scale variations. Given these challenges, there arises a necessity to bridge the semantic comprehension gap 
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between the encoder and decoder, achieved by fusing multi-scale channel information that encapsulates non-local semantic 

dependencies. This research introduces a Transformer-based multi-scale cross-fusion U-Net architecture, designated as 

MSF-TansUnet, tailored for gastric cancer pathological image segmentation. Its objective lies in ameliorating the feature 

connectivity issue between the encoder and decoder. Channels often prioritize distinct semantic features, and the adaptive 

fusion of an ample number of channel features facilitates more intricate medical image segmentation. We commence by 

presenting the Multi-Scale Cross-Fusion Transformer (MST), which integrates multi-scale contexts and cross-attention 

from a channel-centric perspective. This architecture endeavors to discern local cross-channel interactions and accomplish 

the effective fusion of multi-scale channel features, possibly harboring semantic disparities, via multi-scale learning as 

opposed to isolated connections. 

Furthermore, we introduce a Multi-head Cross-Attention (MCA) module, which incorporates the converged multi-scale 

features with those from the decoder stage, aimed at resolving semantic inconsistencies. This MCA module, by examining 

multi-scale global contexts, fosters relationships between the encoder and decoder, thereby augmenting the original skip 

connections to bridge the semantic gap and elevate segmentation proficiency. Both of these presented modules can 

seamlessly integrate into U-shaped networks tailored for medical image segmentation endeavors. The comprehensive 

framework of this investigation is depicted in Figure 1. 

 

Figure 1. Overall structure of MSF-TransUNet. 

3.2 Transformer multi-scale fusion on U-Net (MSF-TransUNet) 

Figure 1 illustrates a U-Net-based Multi-head Cross-Attention (MCA) segmentation model that excels in the task of 

segmenting lesion regions in pathological images. Within this framework, the skip connections effectively preserve the 

original lesion areas, while the MCA module facilitates comprehensive segmentation of lesion regions by fusing multi-

scale information while retaining contextual semantic information. 

3.3 Scale affine layer (SAL) 

The encoder and decoder are responsible for capturing fundamental image features, comprising four downsampling or 

upsampling blocks. The previous sampling blocks consisted of a single convolutional and pooling layer, aimed at altering 

the size of data features. However, this approach was insufficient for extracting sufficient semantic and contextual 

information. Inspired by spatial feature transformation (SFT)20, this study introduces an innovation in convolutional neural 

networks. We have decided to incorporate a Scale Affine Layer (SAL) between two adjacent convolutional layers, as 

depicted in Figure 2. This SAL primarily consists of two 1×1 convolutional layers, where we specifically introduce a 

GELU activation function to enhance the model’s nonlinear processing capabilities. The design of this layer involves 

inserting a scale affine layer with a GELU activation function between convolutional layers to optimize network 

performance. 

 

Figure 2. Structure diagram of the scale affine layer (SAL) module. 
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3.4 Multi-head cross-attention block (MCA) 

To mitigate the problem of contextual semantic loss encountered in skip connections, this research endeavors to devise a 

Transformer-based multi-head cross-attention module, with the objective of overcoming the deficiency of contextual 

semantic information in pathological image segmentation endeavors. Figure 3 showcases the architecture of this innovative 

module. 

 

Figure 3. MCA block. 

The input sequence for the MCA block comprises downsampled features F1, F2, F3, and F4. Initially, these tokens are 

subjected to a multi-head cross-attention module, which captures the interplay of information across various channels. 

Following this, the tokens undergo refinement through a multi-layer perceptron (MLP) equipped with a residual 

architecture, further embedding the associations and interdependencies among channels. After encoding by the MLP, we 

utilize the outputs of these MLPs to extract multi-scale features from each U-Net encoder level, refining the representation 

of the features. Ultimately, we leverage these multi-scale features to optimize and enhance the expression of features, 

thereby improving the model’s performance. The entire process is designed to fully utilize the channel information of 

tokens and enhance the model’s feature representation capabilities through the fusion of multi-scale features. The model 

takes five inputs, including F_i, and Formula (1) expresses the relationship between 𝐹𝑖 and K, V: 

𝑄𝑖 = 𝐹𝑖𝑊𝑄𝑖
, 𝐾 = 𝐹Σ𝑊𝐾 , 𝑉 = 𝐹Σ𝑊𝑉                                                           (1) 

where W represents weights, 𝑄𝑖 ∈ ℝ
𝐶𝑖×𝑑 , 𝐾 ∈ ℝ𝐶𝑖×𝑑 , 𝑉 ∈ ℝ𝐶Σ×𝑑 . Through the cross-attention (CA) mechanism, a 

similarity matrix 𝑀𝑖 is generated and used to weight the values V, as shown in Equation (2): 

𝐶𝐴𝑖 = 𝑀𝑖𝑉
𝐹 = 𝜎 [𝜓(

𝑄𝑖
𝐹𝐾

√𝐶Σ
)] 𝑉𝐹 = 𝜎 [𝜓(

𝑊𝑄𝑖
𝐹 𝐹𝑖

𝐹𝐹Σ𝑊K

√𝐶Σ
)]𝑊𝑉

𝐹𝐹Σ
𝐹                                      (2) 

where 𝜓(⋅) and 𝜎(⋅) represent instance normalization and softmax functions, respectively. 

The model employs instance normalization on the similarity map to allow gradients to propagate smoothly. In the context 

of N-head attention, the computation of the output subsequent to the multi-head cross-attention process is performed as 

demonstrated in Equation (3), with the results being determined in a passive manner. 

𝑀𝐶𝐴𝑖 = (𝐶𝐴𝑖
1 + 𝐶𝐴𝑖

2+,⋯ ,+𝐶𝐴𝑖
𝑁)/𝑁                                                            (3) 

The number of input heads is represented by N, and the ultimate output of the MCA module is formulated as shown in 

Equation (4), with the expression being presented in a passive voice structure. 

𝑂𝑖 = 𝑀𝐶𝐴𝑖 +𝑀𝐿𝑃(𝑄𝑖 +𝑀𝐶𝐴𝑖)                                                                (4) 

Outputs 𝑂1, 𝑂2, 𝑂3, 𝑂4 from the downsampling layers are reconstructed through upsampling operations and convolutional 

layers, and concatenated with the decoder features accordingly. 

4. EXPERIMENTAL SETUP 

4.1 Dataset 

Gastric cancer cells typically feature enlarged nuclei, irregular shapes, and reduced cytoplasm, raising nucleus-to-

cytoplasm ratios. These traits are key to identifying diseased regions in pathological images. Our study evaluates GasHis-

Transformer1’s segmentation performance using the H&E-stained HRCF dataset. H&E stains nuclei purple-blue and 

cytoplasm red, distinguishing features. The dataset contains 560 cancerous and 140 normal images in 2048×2048 

resolution PNG format. Figure 4 contrasts normal (ordered nuclei, low nucleus-to-cytoplasm ratio) and abnormal (large, 

irregular nuclei) gastric histopathological images. 

Proc. of SPIE Vol. 13395  133951S-4



 

 
 

 

 

 

 

(A) Diseased images                                                (B) Non-diseased images 

Figure 4. Pathological images of gastric cancer. 

4.2 Training, validation, and test data setup 

The NVIDIA RTX 4090 GPU, equipped with 24 GB of memory, is utilized in this experiment, and the algorithmic models 

are implemented utilizing PyTorch. Specifically, the training process involves 280 images, while 140 images are 

designated for testing purposes. To mitigate the risk of overfitting, the training data is enriched through the application of 

various data augmentation strategies, including horizontal and vertical flipping, as well as random rotation. Notably, the 

proposed model is trained from scratch, without relying on any pre-trained weights. Furthermore, to expedite the 

convergence process, the Adam optimizer is adopted, with an initial learning rate initialized at 0.001. Our network’s 

training employs a hybrid loss function, which combines cross-entropy loss and dice loss. 

Given the substantial size of the original images, which poses the risk of a significant increase in model parameters, we 

adopt a sliding window technique with dimensions of 512×512 to segment both the original images and their corresponding 

mask images into locally overlapping segments, which are subsequently normalized. To bolster the model’s generalization 

capabilities and mitigate overfitting, the training images undergo augmentation processes such as 90° and 270° rotations, 

horizontal flipping, and vertical flipping, effectively multiplying the training set by a factor of five, resulting in a total of 

56,000 512×512 training images. As outlined in Table 1, 44,800 of these images, inclusive of 8,960 images allocated for 

validation, are utilized for training purposes, while the remaining 11,200 images are designated for testing. 

Table 1. The establishment of training, validation, and test sets. 

Dataset Training Validation Test Sum 

Insulator images 35840 8960 11200 56000 

4.3 Evaluation metrics 

The segmentation performance of the proposed model is assessed through a comparative analysis of the experimental 

outcomes, incorporating both subjective and objective evaluations. Subjectively, the emphasis is placed on visually 

assessing the overall segmentation quality of the images, along with the delineation of intricate edges. Objectively, the 

evaluation is carried out utilizing Accuracy, Intersection over Union (IoU), and Dice Score as the quantitative metrics. The 

formulas utilized for calculating these metrics are outlined as follows: 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                            (5) 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
=

|𝑋∩𝑌|

|𝑋∪𝑌|
                                                                        (6) 

𝐷𝑖𝑐𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
=

2|𝑋∩𝑌|

|𝑋|+|𝑌|
                                                                     (7) 

Wherein, TP, TN, FP, and FN signify the counts of accurately categorized cell pixels, accurately categorized background 

pixels, erroneously categorized background pixels, and erroneously categorized cell pixels, respectively. X and Y denote 
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the ground truth and predicted values, respectively. Acc, being the fundamental metric, represents the fraction of accurately 

segmented pixels within the total pixel count. IoU, a benchmark metric for semantic segmentation, quantifies the 

proportion of intersection to the union of the ground truth and predicted values, with a value of 1 indicating perfect 

concordance. Dice, a crucial metric in medical image segmentation, assesses the degree of similarity between the ground 

truth and predicted values, with a higher value indicating a stronger resemblance. 

5. RESULTS AND DISCUSSION 

5.1 Comparison of segmentation effects  

Figure 5 showcases examples of pathological images segmented by various models, where the last image in each row 

represents the Ground Truth (GT) of the segmented lesion area in the pathological image, and the five intermediate images 

are the segmentation results of different networks. As seen in the figure, the lesion areas of different gastric cancer 

pathological slices exhibit characteristics such as uneven contrast, blurred edges, and varying sizes and shapes. In the 

second and third images, FCN and U-Net utilize different-sized convolution kernels to extract features, resulting in a single 

receptive field size at each network layer. This inability to adequately capture the features contained in small lesion areas 

leads to missed segmentations. However, both R2U-Net and TransU-Net exhibit issues of over-segmentation, segmenting 

non-lesion areas of the model, and the accuracy of the segmentation results at the edges does not fully meet the needs of 

physicians for analysis. The reason lies in the multi-level changes in contrast near the lesion in the third image, which can 

easily lead the attention mechanism to partially learn the stronger contrast areas while ignoring the weaker contrast parts 

as background. Additionally, the similar morphological appearance of some lesion areas with adjacent healthy tissues can 

easily cause the network to misclassify the lesion areas as false positives or false negatives. This paper utilizes a cross-

attention guidance mechanism to mine spatial information from shallow features to alleviate the issue of inaccurate pixel 

localization in regions of interest during upsampling. The specificity outcomes reveal that the proposed method exhibits a 

superior capability in addressing the challenge of false-positive misclassification in comparison to alternative segmentation 

algorithms. 

 

Original                 FCN                  U-Net               R2U-Net         TransU-Net             Ours                   GT 

Figure 5. Segmentation results of various models. 

5.2 Comparison of segmentation results 

Visual inspection, though direct, is prone to subjective biases, highlighting the need for quantitative evaluation of 

segmentation models. Table 2 shows the proposed model outperforms others in Accuracy, IoU, and Dice Score, indicating 

its effectiveness and robustness in segmenting details. The FCN model struggles with detailed information recovery during 

upsampling, impacting its performance. In contrast, the U-Net and R2U-Net models enhance segmentation by 

compensating for lost details and leveraging recursive neural networks, respectively. The TransU-Net, with its transformer 

encoder, facilitates advanced feature extraction but may lose global features with deeper encoding-decoding. Compared to 

TransU-Net, the proposed model improves across metrics, excelling at segmenting low-contrast cells and faint edges while 

adapting better to brightness, noise, and other factors, resulting in superior segmentation. 
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Table 2. An analysis is conducted quantitatively to compare various segmentation models. 

Model Acc IoU Dice 

FCN 0.8921 0.6423 0.8064 

U-Net 0.9014 0.7985 0.8462 

R2U-Net 0.9119 0.8034 0.8739 

TransU-Net 0.9462 0.8441 0.9136 

Ours 0.9571 0.8672 0.9283 

5.3 Ablation study 

To assess the efficacy of MSF-TransUNet’s modules, ablation experiments were individually conducted on each, with 

outcomes detailed in Table 3. This study’s baseline is the U-Net model. Firstly, substitution of the encoder with the SAL 

module resulted in a 0.50% improvement in IoU over U-Net. Following this, integrating the MCA module between the 

encoder and decoder further bolstered IoU by 0.87% above U-Net. Lastly, implementation of TTA post-processing led to 

a 1.62% enhancement in IoU compared to U-Net. These findings affirm the proficiency of the proposed modules in 

augmenting segmentation accuracy. 

Table 3. Ablation experimental results of MSF-TransUNet. 

Method ACC IoU Dice 

U-Net 0.9014 0.7585 0.8462 

U-Net+SAL 0.9202 0.8296 0.9013 

U-Net+MCA 0.9286 0.8463 0.9085 

Ours 0.9571 0.8672 0.9283 

6. CONCLUSION 

This paper tackles the intricacies of segmenting lesion regions in gastric cancer pathological images, characterized by 

varied shapes, irregular sizes, and inconsistent contrasts, by introducing a cross-attention-based multi-scale U-Net 

segmentation model. Central to this model is the SAL (Scale-Attentive Layer) unit, which facilitates the extraction of 

lesion-specific features and endows each layer with the capability to access varied receptive field sizes, thereby enhancing 

the capture of lesion shape and size details. Furthermore, to mitigate the problem of contextual semantic loss in skip 

connections, an MCA (Multi-scale Context Attention) module is incorporated, effectively reducing false positives. The 

bridging stage employs a non-direct approach, further optimizing feature utilization. Comparative assessments against 

prevalent segmentation networks underscore the superiority of our approach, achieving noteworthy Dice and IoU 

coefficients of 92.83% and 86.72%, respectively, in gastric cancer pathological image segmentation. This advancement 

paves the way for more precise region delineation, facilitating enhanced analysis of gastric cancer pathological images. 
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