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ABSTRACT The x-ray computed tomography (CT) images with low dose are noisy and may 

contain photon starvation artifacts. The artifacts are location and direction dependent. Therefore, 

the common shift-invariant denoising filters do not work well. The state-of-the-art methods to 

process the low-dose CT images are image reconstruction based; they require the raw projection 

data. In many situations, the raw CT projections are not accessible. This paper suggests a method 

to denoise the low-dose CT image using the pseudo projections generated by the application of 

a forward projector on the low-dose CT image. The feasibility of the proposed method is 

demonstrated by real clinical data. 

INDEX TERMS Image processing, Image reconstruction, Biomedical imaging, Computed 

Tomography, Filters

I. INTRODUCTION 

An immediate negative effect of using a low dose in CT imaging is that the images become noisy. The 

conventional denoising methods are based on the shift-invariant assumption. They can be implemented either in 

the spatial-domain as convolution methods or in the Fourier-domain as multiplication methods.  

Shift-invariant filters can also be nonlinear. The nonlinear filters may outperform the linear filters in terms of 

sharp edge preservation.  

Convolutional neural network (CNN) based methods can be very effective in removing noise from the images 

provided a large amount of noisy/noiseless image pairs are available to train the neural network.  

This paper presents an effective nonlinear shift-variant procedure that does not need any image pairs to train. 

This proposed procedure blends the concepts of linear filtering, shift-variant filtering, and tomography. The 

feasibility and effectiveness of the proposed procedure are illustrated by its application to real clinical data. 

 
II. METHODS 

In this paper, we assume that the image x is already somehow reconstructed, for example, by the analytical 

filtered backprojection (FBP) algorithm. The image is noisy and contains photon starvation artifacts. The original 

measured projections are NOT available anymore. 

 

A. The proposed algorithm 

The proposed artifact reduction algorithm is introduced as follows.  

 

Step 1. For a given image xold, generate simulated pseudo projections as 

𝑝𝑖 = 𝑎𝑖
𝑇𝑥𝑜𝑙𝑑  (1) 

for all i. 

Step 2. Select a threshold value T. 

Step 3. Loop through all projections 𝑝𝑖 . 
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 If 𝑝𝑖 < 𝑇, do nothing. 

If 𝑝𝑖 ≥ 𝑇, replace 𝑝𝑖  by its filtered version using a one-dimensional moving-average filter along the detector 

direction. 

Step 4. Apply the filtered backprojection (FBP) algorithm to the processed pseudo projections, to obtain the final 

image xnew. 

 

The threshold value T is a user-selected parameter, and we used T as the 75% of the maximum projection value 

in our study in this paper. 

We now explain what motivates this algorithm. We do not choose any shift-invariant filters, because the artifacts 

are location and direction dependent. Since the state-of-the-art denoising algorithms are image reconstruction based, 

we choose an image reconstruction-based algorithm.  

Our biggest obstacle is that we do not have an access of the original measurements in the projection domain. We 

only have a noisy reconstruction xold. The simulated pseudo forward projection 𝑎𝑖
𝑇𝑥𝑜𝑙𝑑  is not the same as the 

originally measured projection.  

The original projections due to noise are inconsistent. The inconsistency carries the noise information. The 

inconsistency information is lost in the forward projection 𝑎𝑖
𝑇𝑥𝑜𝑙𝑑 . The objective function is already at its minimum 

with the pseudo projections because 𝑝𝑖 = 𝑎𝑖
𝑇𝑥𝑜𝑙𝑑 . Therefore, the strategy of selecting a set of weights to minimize 

the objective function does not help. 

Realizing that the re-projected pseudo measurements do not carry the same information and do not have the 

same values as the original raw measurements, our novel strategy of this paper is to use the transmission data noise 

model to estimate the noise variance in the re-projected pseudo measurements. The FBP algorithm is selected to 

reconstruct the final image, because it is fast and easy to implement. 

B. Image evaluation 

The most common way to determine the effectiveness of artifact removal algorithms is by visual inspection or 

human observer studies. A quantitative evaluation metric adopted in this paper is the Sum Square Difference (SSD), 

defined as 

𝑆𝑆𝐷 =
∑ [𝑋𝑔𝑜𝑙𝑑(𝑖, 𝑗) − 𝑋(𝑖, 𝑗)]2

𝑖,𝑗

√∑ [𝑋𝑔𝑜𝑙𝑑(𝑖, 𝑗)]2 ∑ [𝑋(𝑖, 𝑗)]2
𝑖,𝑗𝑖,𝑗

, (2) 

where 𝑋𝑔𝑜𝑙𝑑  is the gold standard image, which is the FBP reconstruct from the regular-dose projections, and X is 

another image to compare with. The SSD essentially is the normalized distance between two images 𝑋𝑔𝑜𝑙𝑑  and X.   

III. RESULTS 

In this section, the methods are labeled with A – G. We point out that methods A and F use the ‘unavailable’ 

projections. In Figs. 1, the following labels are used for the images: (A) the gold standard image FBP reconstructed 

from the regular-dose x-ray projections; (B) the raw FBP reconstruction image reconstructed from the measured 

low-dose x-ray data; (C) the processed image using the proposed algorithm in the paper using the pseudo data; 

(D) the image is FBP reconstructed with a linear Hanning filter applied to the pseudo data; (E) the image is FBP 

reconstructed with a nonlinear bilateral filter applied to the pseudo data; (F) the image is post processing result of 

image from (B) with a BM3D filter in the image domain; (G) almost the same as (C) except that the ‘unavailable’ 

low-dose x-ray data is used instead of the pseudo data.  

The numerical results of the Sum Square Difference (SSD) values are listed in Table 1. The SSD is a non-

negative quantity, the smaller value the better. The ideal SSD value is 0. In all these cases, the proposed method 

gives the smallest SSD values, indicating the best performance.  

The projection-domain images (also known as the sinograms) are displayed in Fig. 2. The images are (a) the 

‘unavailable’ regular-dose projections, (b) the difference between the raw ‘unavailable’ low-dose projections and 

the ‘unavailable’ regular-dose projections, (c) the difference between the pseudo forward projections from the 

low-dose FBP reconstruction and the ‘unavailable’ low-dose projections, and (d) the difference between the 

processed version of the pseudo forward projections from the low-dose FBP reconstruction and the unprocessed 

version, respectively. It is observed from Fig. 2d that the proposed method only alters a very small portion of the 

projections. 
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The proposed algorithm is effective in reducing the streaking artifacts and keeping the image resolution. As 

a comparison, the images produced by a linear Hanning filter, a nonlinear bilateral filter, or a BM3D filter are 

unable to to keep small details while the streaking artifacts are still severe. 
 

 
(1A) Standard dose image. The yellow line segment indicates the path that the line profiles are taken along in Fig. 14. 

 

 
(1B) Low-dose image 

 

 
(1C) Low-dose image processed by proposed algorithm 
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(1D) Low-dose image processed by FBP-Hann 

 

 
(1E) Low-dose image processed by a bilateral filter 

 

 
(1F) Low-dose image processed by a BM3D filter 
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(1G) Low-dose image processed by proposed algorithm using the ‘unavailable’ measured projections 

Figure 1. Processed and unprocessed images. The standard-dose image in (1A) is the gold standard. The image with the 

proposed method (1C) gives the best result among all images using the low-dose raw image (1B). 

 

 

 

 

 

 

 
Table 1. Full width at half maximum value comparison 

Method FWHM 

(pixels) 

Severe 

Artifacts? 

A. Regular-dose FBP 2.54 No 

B. Low-dose FBP, using the 

‘unavailable’ low-dose measurements 

2.34 yes 

C. Low-dose FBP using proposed 

method 

2.96 No 

D. Low-dose FBP using linear Hann 

filter 

3.76 Yes 

E. Low-dose FBP using nonlinear 

bilateral filter 

7.00 Yes 

F. Measured Low-dose using BM3D 

filter 

2.55 Yes 

G. Low-dose FBP using proposed 

method, but using the ‘unavailable’ 

low-dose measurements 

2.34 No 

H. Low-dose FBP, using the pseudo 

data  

2.98 No 

 

 
a. The sinogram for the regular-dose projections 
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b. The difference between the low-dose projections and the regular-dose projections  

 
c. The difference between the low-dose projections and the forward projections of the FBP reconstruction from the 

low-dose projections 

 
d. The difference between the forward projections of the FBP reconstruction from the low-dose projections and the 

processed projections by using the proposed algorithm  

Figure 2. Sinogram domain images.  

 

 
Figure 3. A sensitivity study of the SSD with respect to the threshold value T.  

IV. DISCUSSION 

When a noisy reconstructed image is available while the original projection measurements are no longer available, 

the pseudo re-projected line integrals are not helpful to reduce noise if a conventional iterative image 

reconstruction algorithm is to be used. The conventional iterative image reconstruction algorithms work in the 

principle of reducing the data fidelity term. By using the pseudo re-projected line integral data, this data fidelity 

term is already at its minimum value, which is zero. 
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One way of denoi

sing is to stop the iterations early. This approach is equivalent to lowpass filtering, which is almost shift 

invariant. As we demonstrated in the Results section, shift-invariant denoising smooths the images but still cannot 

reduce the streaking artifacts. 

A filter is referred to as shift-invariant if the filter operation is the same everywhere. In our proposed filter, 

the filter operation is only applied to a small amount of selected pseudo projections. Therefore, our proposed filter 

is shift variant. 

Our proposed algorithm is NOT an iterative image reconstruction algorithm; it is an analytic FBP algorithm 

with a nonlinear pre-filter. In the FBP algorithm, a ramp filter (which is a high-pass filter) must be used to cancel 

the bachprojection blurring. The purpose the low-pass filter is to reduce the noise in the image. The application of 

a low-pass filter is optional in FBP, only when image denoising is necessary. The main goal of this paper is photon-

starvation artifact reduction, we do not apply a linear low-pass filter in the FBP algorithm. In the proposed 

algorithm, there is a threshold value T; any pseudo projection data value that is less than this threshold value is 

not affected. Most of the pseudo projections are less than this threshold. Thus, the image resolution degradation 

is kept to its minimum. 

The proposed algorithm contains a user-determined hyper parameter T. This hyper parameter T is determined 

by trial and error. In fact, parameter T is not very sensitive. As shown in Fig. 3, the SSD vs T curve has a flat 

valley, which means that a wide range of the parameter T can give the optimal solution. 

Three noise-reducing filters have been used to compare with the proposed shift variant filter in the task of 

photon starvation artifact reduction. Those three noise-reducing filters do not perform well for this task. If the 

filters are adjusted to remove the artifacts, many image details are removed as the price to pay. The message of 

our paper is that the noise reduction task is different from the artifact reduction task. For artifact reduction, where 

to filter (or equivalently, where not to filter) is far more important than what filter to use. Once the region to be 

filtered is identified, many filters are effective as long as the filters have enough smoothing power. We choose the 

simplest linear moving-average filter with a large enough kernel size. Other noise reduction filters such as bilateral 

and BM3D filters will work just fine when applied only in the specified region.  The critical point is that we do 

not apply the lowpass filter to the entire image or the entire sinogram. 

V. CONCLUSIONS 

We have developed an effective method to reduce the photon starvation streaking artifacts in low-dose x-ray CT 

images. The proposed method is shift-variant; it only applies lowpass filtration for some pre-determined 

measurement values in the sinogram domain. 

We assume that the raw, low-dose measurements are not available, and the noisy reconstruction is available. A 

set of pseudo re-projections are generated from noisy reconstruction. A threshold value T is selected by the user using 

a trial-and-error method. The pre-determined measurements are selected if the pseudo 

measurement value is greater than T. The pre-selected pseudo measurements are filtered in the sinogram domain 

by a simple moving-average lowpass filter along the detector direction. The FBP algorithm is performed to generate 

a final image using the selectively filtered pseudo measurements. 
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