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Abstract: The ABCD  matrix formalism, the Collins formula and the
complex amplitude distributions on two spherical surfaces of given
curvature and spacing are adapted to the mathematical expression of
fractional order Fourier transform. This result provides a general expression
as a tool for analyzing complicated systems involving several lenses and
mirrors separated by arbitrary distances; for this class of system it is
sufficient to specify the ray transfer matrix and the order of fractional
Fourier transform to characterize the system completely.
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1. Introduction

The fractional Fourier transform, which is an extension of the conventional Fourier  transform
to the fractional order has been introduced into the mathematics literature by Namias[1] in
1980; recently, Mendlovic, Ozaktas and others authors [2-6]   introduced a new tool for image
analysis in optics; since then, its properties, optical implementation and applications have
been studied extensively. An operational definition of fractional Fourier transform in optics
and the interpretation of fractional order Fourier transform as the mathematical representation
of Fresnel diffraction was stated. Lohmann gave a different definition of the fractional Fourier
transform that is based on the Wigner distribution functions. The purpose of this paper is to
formulate the fractional order Fourier transform operator; this formula gives the direct
relationship between input and output of multi-element optical system.
The study of the ray transfer matrix is particularly useful to simplify the analysis of optical
situations; the Collins formula, is a diffraction integral formula for complicated optical system
and establishes a bridge between the ray optics and wave optics under paraxial approximation.
We show how the combinations of the ray transfer matrix, the Collins formula and the
fractional order Fourier transform,  result in a new approach suitable for the study of optical
structures, where the propagation of light can be viewed as a process of continual fractional
Fourier transformation.

2. Ray transfer matrix

Under paraxial conditions the properties of rays in optical system can be treated with the
elegant formalism of the ray transfer matrix; a paraxial ray in a given cross section of an
optical system is characterized by its distance of x from the optic axis and slope x'. If this
slope is assumed small, the ray path through any given structure depends on the structure’s
optical properties, of the structure and on the input conditions. In this situation the relation
between the input and output parameters is given for:
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The ABCD matrix is called the ray transfer matrix and generally speaking the determinant is
unity.

3.  The fractional Fourier transform and the Collins formula

From plane ( )ηξ ,AU  to ( )vuU P , , the diffraction field amplitude can be written in Collins
diffraction integral equation; the Collins formula in space-domain which gives the relationship
between the input complex amplitude ( )ηξ ,AU   and the output one ( )vuU P , can be
rewritten as:
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Illuminating the input plane ( )ηξ ,AU  with the spherical wave of the radius 0>
A
R1 , after a

little algebra; the equation (2) can be written in a considerably simpler manner in terms of the
fractional order Fourier transform given by:
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Where:
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A fractional Fourier transform relation αℑ  of order  αn  between the output field complex

amplitude ( )vuUP ,  and the input field complex ( )ηξ ,AU , can be obtained with  
α

π
α n

2
= ;

(α  real parameter) .

The phase factor it is a quadratic phase factor representing a quadratic approximation to a
spherical wave, therefore the  field complex amplitude over the output ( )vuU P ,  is over

spherical surface with the radius 2R  and proportional to the  Fractional Fourier Transform of

order α  of the input field complex amplitude ( )ηξ ,AU , Where:
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Then it can be concluded that any ABCD optical system satisfying the relation (5) can implement a fractional order

Fourier transform between spherical surfaces with 1R  and 2R  radius.

4.  General optics system analyzed as fractional order Fourier transform.

Equation (5)  implies that the condition for a fractional order Fourier transform is that 0≠B ;
in this situation the field amplitude ( )vuU P ,  represents the fractional order Fourier

transform of the field amplitude ( )ηξ ,AU , note that, just as with the wave optics operators,
the ray transfer matrices should be applied in the sequence in which the structures are
encountered if light propagates first through a structure with ray transfer matrix 1M , then

through a structure with ray transfer matrix 2M  , etc, with a final structure having ray

transfer matrix nM , then the overall ray transfer matrix for the entire system is

12.... MMMM n= .

4.1.  Fractional order Fourier transform relation between the amplitude distributions of light
on two spherical surfaces of given radii and ray transfer matrix.

Note that Eq (5) implies that BR >1  and 
D
BR >2 ;  0≠D ; then a fractional order

Fourier transform relation exist between two spherical surfaces of radii 1R  and 2R . We can
now write Eq (5) in the form:
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Then it can be concluded that any ABCD  optical system satisfying the relation (6) can
implement a fractional order Fourier transform, we now discuss the consequences of this
equation from five perspectives:

1. A fractional order Fourier transform relation exists between two spherical surfaces

of radii 1R and 2R  if and only 110 ≤
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2. Letting πα =  (the parity transformation) it is possible to show that Eq (6) implies
the well known imaging condition for multielement optical system.

3. Letting 
2
π

α =  (the usual Fourier transform) in Eq (6) we see that the complex

amplitude distribution of the field in the spherical surfaces of radii 2R is the standard

Fourier transform of the field on the spherical surface of radii 1R  .
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4. In Eq (6) we can easily find the confinement stability condition for multielement
resonator; which coincides with the result obtained by self – consistence method for
resonators. We can say that a fractional Fourier transform relation of order α
between spherical surfaces of radii 1R  and 2R  implies the confinement stability
condition for multielement spherical mirror resonator.

5. In accordance with Eq (3) and Eq (6) the diffraction integral evaluation of an
multielement optical system can be easily carried out in terms of the ABCD matrix.

In the particular situation when 
2
π

α =  the Eq (6) implies that
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to the usual Fourier transform. 

4.2.  Fractional order Fourier transform relation between planar surfaces.

We have seen that there exist a fractional order Fourier transform relation between two
spherical surface; in Eq (6) we now consider that ∞→1R  and ∞→2R  (fractional

Fourier transform between planar surfaces ) Eq (6) then becomes AD=α2cos . Letting
πα =  denote the order of transformation occurring from the input plane ( )ηξ ,AU  to the

output plane ( )vuU P , , we can write the imaging condition (for an inverted image) as

AD=1 . The usual Fourier transform corresponds to 
2
π

α =  and Eq (6) then becomes

AD=0 ; evidently when the matrix elements A  and D  are equal to zero we see that the
complex amplitude distribution of the field in the output plane ( )vuU P ,  is the Fourier

transform of the field in the input plane ( )ηξ ,AU .

4.3. Fractional order Fourier transform operator.

Fig. 1. Optical system between spherical emitter and spherical receiver. 

According to equation (3)  only one operator  is used to express field transfer by diffraction
for an optical system described by an ABCD matrix; the relationship between the input and
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output functions can be established by Eq (3). To understand how to use this operator,
consider an spherical emitter   ( )ηξ ,AU  of radii 1R  followed by section of free space 1d ,

followed by lens of focal length 1f , followed by section of free space 2d , followed by lens

of focal length 2f ,  followed by section of free space 3d , and spherical receiver ( )vuU P ,
of radii 2R  (Fig. 1) .  The corresponding ABCD matrix  reads as:
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According to operator in equation (3), the relationship between the complex amplitude
distribution on the spherical emitter  ( )ηξ ,AU  with radii 1R  and the complex amplitude

distribution on the spherical receiver ( )vuU P ,  with radii 2R   can be established as:
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Given 1R  and ABCD matrix;  if we wished to design a fractional Fourier transform system

with specific order α   using Eq (5) we can obtain 2R .

Given 1R , 2R  and ABCD matrix if we wish to design a fractional Fourier transform system
using Eq (6) we can obtain the specific order α  .

In fig 1. alternatively, let us consider an pair of planar surfaces with ∞→1R  and

∞→2R , it is now possible derived the well known Fourier transforming properties of

lenses by Goodmann ( 03 =d  and ∞→2f ) , the canonical assemblies by Lohmann,

( 0321 == ddd  , ff =1 , and ∞→2f   type-I setup) ;  (  031 == dd and

fff == 21    type-II setup), the imaging condition ( πα = , 03 =d   and ∞→2f  )
optical system as performing two consecutive fractional Fourier transform operations (

312 ddd += ); condition for   ( )vuU P ,  to be the coherent image of   ( )ηξ ,AU

( πα = )   and ( )vuU P ,  to be the standard Fourier transformation of  ( )ηξ ,AU  (
2
π

α = )

.

This result shows that the fractional order Fourier transform operator Eq (3) provide a
convenient and systematic technique for analysis of optical system described by an ABCD
matrix
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5. Summary 

In this paper using the Collins formula, the ray transfer matrix and the fractional order Fourier
transform we have derived the fractional order Fourier transform operator; in addition this
operator provide a new way of analyzing optical system involving several lenses and mirrors
separated by arbitrary distances.
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