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ABSTRACT  

We present a review of the contributions by students, staff, faculty and alumni to the Nation’s space program over 
the past 50 years. The balloon polariscope led the way to future space optics missions. The missions Pioneer Venus 
(large probe solar flux radiometer), Pioneer 10/11 (imaging photopolarimeter) to Jupiter and Saturn, Hubble Space 
Telescope (HST), and next generation large aperture space telescopes are discussed.  
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1. INTRODUCTION  
The successful development of rocket engines during WW2 inspired the image of space telescopes and the 
exploration of the solar system. The May 29, 1944 issue of Life Magazine (p. 78) shows the first science based 
drawings of what a man walking on a planetary surface might see. Made by Chesley Bonestell these images inspired 
generations of astronomers, geologists and the general public.  In 1946 Professor Lyman Spitzer of Princeton 
University proposed the construction of a space telescope for astrophysics.  Thus were planted the seeds of modern 
space telescopes for planetary science and astrophysics.   

The Optical Science Center was founded only 6 years after the Russians orbited Sputnik. In the fall of 1958 
President Eisenhower established the civilian space agency: National Aeronautics and Space Agency (NASA). 
NASA was formed by combining scientific and engineering centers (Ames, Goddard and Lewis) from the National 
Advisory Committee for Aeronautics (NACA) and the U. S. Army military research labs at JPL in Pasadena and at 
Redstone Arsenal in Huntsville, Ala.  In Alabama, Werner von Braun and his team were developing launch vehicles.  
The NASA’s optics interests include research and engineering in both aeronautics optics and space optics.  The 
agency was chartered to be civilian, not military and placed under Housing and Urban Development, where it 
resides today.  The scientific exploration of space was and remains to this day a major part of its charter.   

Shortly after the founding of the agency, NASA created a program for the unmanned exploration of the solar 
system.  Innovative imaging systems, radiometers, spectrometers and image processing became an important part of 
the space program.  In January 1961, President Kennedy challenged the Nation to send a man to the moon! Scientist 
faced questions like: what is the environment like on the surface of the moon. The Ranger Program had 2 launch 
failures, three spacecraft failures and a failure of the return beam Vidicon (Television) Camera. Finally, the seventh 
Ranger spacecraft made it with the cameras running impacted the surface of the moon.  Ranger 7, 8 and 9 were 
successes. Images of the surface of the moon just before impact were sent back.  The technologist who built these 
vidicons for an early balloon-imaging program at OSC/LPL moved to JPL to build these vidicons for the Ranger 
program.  
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By 1964 it had become clear that there were four National needs that required innovative optical system design 
and engineering for aeronautics and space exploration.  
 

• Airborne mapping systems, reconnaissance cameras and airborne imaging spectrometers for intelligence 
gathering required new technologies, engineering & methodologies and calibration techniques.  Cameras 
developed for manned airplanes could not be used for unmanned spacecraft. 

• Astronomers realized that new astronomy required new telescopes and instruments. Instruments on rockets 
and balloons had shown astronomers a whole new universe. 

• The earth remote sensing communities had visions to use satellite cameras for land management, crop 
assessment, atmospheric science, watershed management, forestry and many others. 

• The public expressed great interest in planetary exploration. Optical instruments, imagers and 
spectrometers were needed to explore the solar system from the UV through the IR. 

 
Throughout the 60’s the space race was very real.  After the US successful moon landing in 1969 and the additional 
Apollo missions to explore the moon, the space race continued. In the 1970’s the manned program to the moon was 
replaced by the successful space shuttle program. Remote sensing of the solar system with the vision, in some 
people’s minds of someday colonizing other planets in our solar system was and is today very real.  

Over the past 50 years research and development at the College of Optical Sciences has paved the way for 
new instruments, telescopes and techniques.  Here we will review OSC’s contributions in planetary exploration and 
astrophysics within the framework of several activities: 1. The balloon polariscope program led by Tom Gehrels; 2. 
The first spacecraft to Jupiter and Saturn, Pioneer 10 and 11 imaging photopolarimeter led by T. Gehrels and M. 
Tomasko; 3. The Pioneer Venus solar flux radiometer, led by Bill Wolf and Jim Palmer; 4. Hubble Space Telescope 
failure review board and wavefront correction.  Aden Meinel was one of the pioneers in large space telescopes for 
astronomy.  Over the past 50 years more than 150 OSC alumni are estimated to have spent their careers designing 
and building space optics for astrophysics, earth, planetary and now exoplanetary science.  

2. BALLOON TELESCOPES - BALLOON POLARISCOPE 
The cost of space missions both in dollars and the extreme length of time it took before scientific results were 
obtained. The value to science above the Earth’s atmosphere and of space missions needed to be demonstrated. 
Princeton astronomers launched several balloon borne telescopes (Stratoscope project) to operate in the dry 
excellent seeing provided by the upper stratosphere to demonstrate the value of space science.  The optics for this 
telescope were developed by a faculty member before he came to OSC and the designs became the subject of class-
room examples. 

OSC had its own balloon project led by Tom Gehrels who had a joint appointment across OSC and the 
Lunar and Planetary Laboratory.  Between 1965 and 1970 a 71-cm Cassegrain reflecting telescope system, called 
the Balloon Polariscope was flown to altitudes up to 36.6 km four times for polarimetry at wavelengths between 0.2 
and 0.3 microns of stars and planets. At this altitude, residual Ozone absorption was discovered to be on the order of 
1 magnitude per air-mass. The gondola weighed 730 kg at lift off and it carried, in addition to the telescope, two 
vidicons cameras, command and telemetry rf equipment and a star tracker.  Polarization measurements were made at 
225 nm-wavelength. The Balloon Polariscope measured the polarization at Venus, at a 97.9-degree phase angle to 
be 22%. For Mars the system discovered that at 25.4-degree phase angle Mars showed 6% polarization. Balloon 
Polariscope discovered that the cause of interstellar polarization is not metallic or graphitic grains, but some 
undefined phenomenon.  This pioneering work demonstrated the value of polarization measurements from above the 
atmosphere and supported OptSci graduate students in a variety of roles. 

3. PIONEER 10/11 IMAGING PHOTOPOLARIMETER 
Faculty and students at the College pioneered the use of photo-polarimetry to identify surface materials on the 
Earth’s moon, the surface of other satellites in the solar system and the atmospheres of Venus, Jupiter and Saturn 
using the TBD cm telescope on MT. Lemon.  It was this broad experience that led NASA to assign the College to 
design, build, calibrate, operate and interpret the data from an Imaging Photo Polarimeter (IPP) at Jupiter and 
Saturn.  The IPP had begun many years before under the guidance of Dr. Tom Gehrels, who later became the 
Principal Investigator.  He had been studying the polarization of light reflected from solar system objects and 
realized that much of noise on his signal came from the Earth’s atmosphere. In addition important measurements 
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Figure 7 shows the highest resolution image recorded by the IPP of the planet Saturn with its satellite 
Titan shown in the lower right. Figure from NASA publication SP 282 
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Many discoveries were made using the IPP instrument A few of these are listed in table 1, below.  

Table 1 provides a list of the discoveries made by Pioneer 11 IPP during its encounter with 
Saturn.  
• New ring discovered which has an optical depth of less than 2 x 10-3 and is located at RSaturn of 2.33.  
• Measured the width of the Encke Gap to be 876 km 
• The mean particle size in the rings is less that 15 meters 
• New satellite designated 1979S1 was discovered  
• The equatorial radius of the planet was measured to be 60,000 +- 500km. 
• Ratio of the polar to the equatorial radius is 0.912.  

 

These images appear rather primitive by today’s standards given the results of the Voyager and Galileo imaging and 
imaging spectrometry missions. But it must be remembered that the Pioneer flybys predated Voyager by over 6 
years and Galileo by about 24 years.  Without the very exciting scientific data and IPP images from the Pioneer 
10/11 spacecraft there may have been no Voyager and Galileo.  The College of Optical Sciences contribution to 
imaging the giant planets provided inspiration to future generations of planetary scientists and space optics scientists 
and engineers.   

4. PIONEER VENUS: THE LARGE PROBE SOLAR FLUX RADIOMETER 
The Venera series of probes were developed by the Soviet Union between 1961 and 1984 to gather data from the 
planet Venus. Ten probes successfully landed on Venus and transmitted data from the surface. Venera 7 was the first 
man-made device to make a soft landing on another planet on December 15, 1970 and transmit data from the 
surface. This lander found the atmospheric pressure to be ~90 atmospheres and a surface temperature of 465oC 
(869oF).  Planetary scientists in the US were eager to understand this very high surface temperature, given the extent 
of the cloud cover and, NASA issued a call for proposals for instruments on a proposed Pioneer Venus mission.  

Professor Bill Wolf and a team responded to the call with a plan to design, build, test and calibrate a solar 
flux radiometer instrument.  M. G. Tomasko was the science principal investigator. The scientific questions to be 
answered by the Pioneer Venus solar flux radiometer are given in Table 2 below. 
 
Table 2 gives a list of scientific questions for the Solar Flux radiometer.  

• Determine the deposition of solar energy in the atmosphere of Venus between 67 km and the surface  
• Measure upward and downward fluxes and radiances with altitude resolution of several hundred meters.  
• Where in the deep atmosphere is energy being absorbed? 
• Explain the very high surface temperatures (460oC @ 90-Atm) measured by the Russian Venus landers 

Venera 
 
Table 3 gives the attributes of the instrument 

• Size of a Grapefruit 
• Five channels using CdS detectors, quartz light pipes and spun as it fell through the atmosphere of Venus 
• Measured atmospheric radiance over a spectral range 400 to 1,800 nm in five windows as a function of 

altitude 
• Detectors maintained at 30oC with a phase change material. 
• Detector out puts were processed with logarithmic trans-impedance converters and digitized with an 11-bit 

A/D converter 
• The serial output data averaged 20 b/sec, including house keeping such as 

– Sync, spin period, sample timing and measurement mode 
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On December 9, 1978, the Pioneer Venus Large Probe entered the atmosphere of Venus.  First it decelerated 
using its aeroshell, thereupon, it deployed a parachute and slowly descended through the thick atmosphere to the 
superheated surface.  On board was an experiment named the Large Probe Solar Flux Radiometer (LSFR), an 
experiment developed at the UA jointly between the Lunar and Planetary Lab with Dr. Martin Tomasko as the PI 
and the Optical Sciences Center where co-investigator Prof. William Wolfe contributed to the optics and the 
calibration. 

The scientific goals of the instrument were to determine where in the deep atmosphere solar energy was being 
absorbed to explain the high temperatures that had been measured by Russian probes.  To accomplish this goal, 
three upward looking channels were spaced at specific Gaussian angles so that the downward solar flux could be 
integrated.  Two downward looking channels were used to retrieve the upward flux.  The difference between the up 
and down fluxes, or the net flux, was a measure of the total heating below the altitude of the measurement.  The 
slope of the net flux therefore constrained the altitudes where heating occurred.  Balancing the heating with the 
thermal radiative cooling was an additional calculation that explained the temperature profile and could constrain 
the mixing ratio of water in the atmosphere. 

The amazing result of the experiment is that globally only about 2.5% of the incident sunlight is absorbed in the 
ground.  Even so, the opacity of the atmosphere in the infra-red caused by CO2 plus a small amount of water 
combined with the thick clouds traps this heat and raises the temperatures near the surface to 462°C (863°F). 

Early in the development cycle in 1973-4, James Palmer filled the role of chief engineer working with the 
science team to finalize the opto-mechanical design.  This was no easy task given to extreme environmental 
conditions that Venus provides.  His work on the design and calibration of the LSFR under the guidance of Prof. 
Wolfe led to his dissertation that was completed in 1978. 

Others who contributed to the design and construction of the instrument were Dr. Arthur Clements, Arthur G. 
Bell, Charles Blenman, Lang Brod, Alan Holmes, Roger Kinnard and Even Rosen.  Supporting Dr. Tomasko were 
Dr. Lyn Doose and Peter Smith.  One of the major challenges facing the team was the design and construction of the 
5 light pipes that transferred the light deep within the instrument where the detector array was cooled by a phase 
change material.  These tiny glass tubes with field stops deposited on their ends were made in the OSC optics shop. 
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IMP and led by Peter Smith.  The proposal was accepted in 1993 and the mission returned data from the surface of 
Mars starting on July 4, 1997.  The public found this mission very exciting as a small rover called Sojourner was 
driven from rock to rock exploring the alien landscape. 
 
A series of missions to Mars led by Smith followed but there was little OSC participation.  One student, Brant Bos, 
received his PhD in Optical Sciences by analyzing the performance of a Robotic Arm Camera (RAC) that became 
the basis for his long career working with the James Webb Space Telescope at Goddard Space flight Center. 
 
Recently, after 2 failed proposal attempts, LPL, first led by Michael Drake and now led by Dante Lauretta after 
Drake’s passing, a third proposal won a New Frontiers mission to return a sample from an asteroid.  The mission, 
named OSIRIS-REx, is set to launch in 2016 and approach asteroid Bennu in 2019 grabbing a small sample and 
returning it safely to Earth in 2023.  The UA proposed to build the camera system (OCAMS) with the largest 
element an 8” telescope being designed and built at OSC.  Early in the partnership Jim Burge and Marty Valente led 
the OSC effort, now Rongguang Liang is taking over as science lead.  As of this writing, the telescope, called 
PolyCam, is being tested as an engineering model.  Soon the flight model design will be released for construction 
and testing before delivery in the summer of 2015. 

6. HUBBLE TROUBLE 
Several faculty and alumni were responsible for the successful repair of the Hubble Space Telescope. In 1990, when 
the failure was announced, Bob Shannon was appointed to the 5-person NASA failure review board along with OSC 
alumnus Jim Breckinridge in the role of technical advisor to Lew Allen (chair of the committee) and Bob Parks. 
Aden and Marjorie Meinel served on the science committee charged with creating innovative solutions. The 
construction of the new Wide Field / Planetary Camera and the COSTAR instrument had many alumni participating.  

7. THE EXOPLANET PROGRAM 
 
Aden Meinel, after a full career and retirement from the U of A, joined NASA’s Jet Propulsion Laboratory (JPL) in 
1983 to work on concepts for a 50-meter-diameter submillimeter, segmented space telescope. His work laid the 
foundation for today’s James Webb Space Telescope. In 1986 JPL director Lew Allen Jr. asked Aden for his ideas 
on future missions for NASA, we concluded that although extremely difficult, the characterization of exoplanets 
using space telescopes was feasible. Those efforts became the NASA exoplanet program today. 

Today, OSC faculty member Olivier Guyon and his group of students are leading both ground-based and space-
based efforts to characterize exoplanets. Prof Guyon, invented a new form of coronagraphic method to characterize 
exoplanets, called phase induced amplitude apodization (PIAA).  The PIAA system, implemented on the Subaru 
Telescope in Hawaii has revolutionized observational exoplanet science.  Prof Guyon currently serves on the AFTA 
WFIRST-2.4 coronagraph science definition team.  
  Many alumni of OSC are currently active in exoplanet science and technology.  

8. THE FUTURE OF LARGE SPACE TELESCOPES 
Both astrophysics and exoplanet science require very large aperture telescopes.  It is clear that to achieve larger 
telescopes in space will require multiple launches, robotic assembly, alignment and calibration in space. 
Technologies and missions to demonstrate these capabilities will occupy the next generation of space telescope 
optical engineers.  The image shown in the Figure 11 below shows a vision for one possible assembly architecture.  
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