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ABSTRACT

Spectral and power characteristics of QD stripe lasers operating in two-state lasing regime have been studied in a wide
range of operation conditions. It was demonstrated that neither self-heating nor increase of the homogeneous broadening
are responsible for quenching of the ground-state lasing beyond the two-state lasing threshold. It was found that
difference in electron and hole capture rates strongly affects light-current curve. Modulation p-type doping is shown to
enhance the peak power of GS lasing transition. Microring and microdisk structures (D = 4-9 um) comprising 1.3 um
InAs/InGaAs quantum dots have been fabricated and studied by p-PL and NSOM. Ground-state lasing was achieved
well above root temperature (up to 380 K). Effect of inner diameter on threshold characteristics was evaluated.

Keywords: Quantum dots, semiconductor laser, microring resonator, two-state lasing

1. INTRODUCTION

For various applications, including optical data transmission, pumping of Raman amplifiers, aesthetic laser surgery, etc,
efficient lasers operating around 1.3 pm are requested. Lasers based on self-organized InAs/InGaAs quantum dots (QDs)
offer an attractive combination of the required wavelength with extremely low threshold current density and high
characteristic temperature. However, at sufficiently high currents a shorter-wavelength (A ~ 1.2um) band caused by the
first excited-state (ES1) transition appears in the spectrum'. Such a behavior is now referred to as two-state lasing. For a
majority of applications two-state lasing has to be suppressed whereas the GS spectral component of the lasing spectrum
has to be maximized. Analysis of QD laser behavior based on rate’ and master’ equations predicts that optical power of
the GS component reaches its maximal value at threshold of the two-state lasing and then persists. However a number of
experimental facts revealed that the GS component declines down to its complete quenching® due probably to laser self-
heating in CW regime* and/or increase of homogeneous broadening® have been proposed. To clarify possible reasons of
the GS lasing quenching we studied spectral and light-current characteristics of broad-area QD lasers.

Microdisks and microrings optical resonators comprising a III-V active region are promising candidates for light emitters
to be integrated with silicon photonic circuits. Owing to a combination of a compact size and a high Q-factor, which can
be achieved in such structures, ultralow threshold operation is expected. Although the majority of whispering gallery
mode (WGM) resonators has been contained quantum-well active region composed of InP-based materials’, QDs may
have certain advantages. These include attainability of 1.3 pum emission in GaAs-based structures with high refractive
index contrast, low temperature sensitivity, suppressed sidewall recombination rates’, making it possible to achieve
lasing in resonators of small diameter. Since the first report® on QD microdisk laser capable of operating at 77K,
significant progress has been made toward high-temperature lasing. In particular, room-temperature lasing has been
reported to date for microdisks of few microns in diameter’, whereas for relatively large microrings (35-85 um) lasing
has been recently extended up to 50°C'. In the present work we demonstrate ground-state lasing up to 107°C for
optically pumped microring lasers (MRLs) having an outer diameter as small as 6-7 pm.

*zhukale@gmail.com; phone 7 812 4488594; fax 7 812 4486994; www.spbau.ru

Semiconductor Lasers and Applications V, edited by Ning Hua Zhu, Jinmin Li, Frank H. Peters, Changyuan Yu,
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2. TWO-STATE LASING AND ITS SUPPRESSION IN QD LASERS

2.1 Quenching of GS spectral component

Epitaxial structures comprising a single plane or multiple planes of InAs/InGaAs QDs were grown by molecular beam
epitaxy. Stripe lasers of various cavity lengths were tested in pulse regime (300ns @ 2 kHz) on temperature-stabilized
heatsink. An evolution of the lasing spectrum with increasing the pump current is shown in Figure 1,a for a 4-mm-long
single-QD-plane laser at 17°C. The corresponding light-current characteristics (total output power and optical power of
GS and ES1 spectral components of the spectrum) are presented in Figure 1,b. The ES1 band (around 1.18 pum) appears
in the spectrum at approximately 3 A whereas the GS component reaches its maximum at SA, well beyond the onset of
two-state lasing. A complete quenching of the GS lasing is observed at 12 A.

7 = : : :
L GS 4

=

=i |

& 12A | |

3 10A f

= 8A

E e SA |

1160 1180 1200 1220 1240 1260 1280
Wavelength, nm

Optical power, W

Current, A

Figure 1. Lasing spectra at different currents (a); laser power (b): dashed-dotted curve — total (GS+ES1), solid curve —
ground-state component (GS), dashed curve — first excited-state component (ES1).

As it is seen in Figure 1,a the GS band is split into two peaks (~1.254 and ~1.262 nm). According to M. Sugawara et al’
this splitting can be attributed to the homogenous broadening of the QD optical transition. They also suggested that the
GS lasing quenching at high currents could be explained by increase of the homogenous broadening. In spite of this we
found that the splitting is practically unchanged (6.5% 0.4 meV) as current increases up to 12 A. Therefore, the
quenching can not be associated with the aforementioned reason. Moreover, spectral positions of the both GS peaks also
remain very stable so that the current-induced red shift is only 0.4 nm. Such a shift corresponds to a negligible
temperature increment of about 1°C which can not itself lead to suppression of the GS lasing because in this particular
laser diode the GS lasing at low currents can be observed up to 68°C. Thus, the GS lasing quenching at high currents can
not be attributed to self-heating of the active region as well.
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2.2 Effect of difference in electron and hole relaxation rates

More sophisticated model that does not imply either the homogeneous broadening or self-heating effect is based on
assumption of the asymmetry in charge carrier distribution in a QD''. Energy separation of ground- and excited-state
energy levels of holes is much smaller than &7 that leads to a nearly equal probability of occupation of the hole levels. As
a result, there is a competition for the “joint holes” between electrons of the ground-state and the excited-state levels.
Because the ES1 electron level has a higher degeneracy as compared to the GS level, in the regime of two-state lasing
the holes are effectively swept out from QDs because of their recombination with ES1 electrons. In its turn this leads to
the quenching of the GS lasing as the pump current grows.
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Figure 2. L-I curves for ground-state component (a): circles — experiment; lines — calculation for different ratio of hole-to-
electron relaxation rates (4). Operation diagram of QD laser: heavy lines separates regions of different lasing regimes (NL —
no lasing, GS — pure ground-state lasing, GS+ES1 — two-state lasing, ES1 — pure excited-state lasing); thin lines correspond
to different /4 values.

However, we found that the observed experimental data can not be quantitatively described if one takes into account
only the above-mentioned asymmetry. Reasonable agreement between modeling results and experiment was achieved
under assumption that electron and hole relaxation rates into QDs are different. More precisely, we assumed that the hole
capture is slower than the electron one which makes the competition for holes more pronounced and leads to complete
quenching of the GS lasing at lower pumps. Figure 2,a shows the calculated evolution of the GS power with the pump
current. The results are shown for different ratio of the hole-to-electron relaxation rates # which is assumed to be
independent of the injection rate. The best agreement of the model results with the experiment is found for # =0.75.
Lower rate of the hole relaxation is probably associated with their slower velocity in the matrix/wetting layer. Using the
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extracted value of 7 we can also reproduce fairly well temperature dependences of the two-state lasing threshold and the
current of the GS-lasing quenching.

Using the proposed model we are capable of calculating the operation diagram of QD laser as shown in Figure 2,b. The
diagram depicts different regimes of the laser operation as a function of electron (g.c) and hole (gnc) capture rates:
subthreshold regime of no lasing (NL), regime of lasing via GS optical transition (GS), two-state lasing regime
(GS+ES1), regime of lasing via ES1 transition only (ES1). Depending on the ratio of hole-to-electron relaxation rates
(h = gnc/gec) and the total optical loss various scenarios of laser behavior can be realized. In particular, in case of
sufficiently fast hole capture (4 =1 in Figure 2,b) the two-state lasing can persist so that the GS lasing peak is not
completely suppressed even at very high injection levels.

2.3 Effect of p-type doping

Modulation p-type doping of QDs may noticeably improve temperature stability of the threshold current'>. We found
that p-doping affects the two-state lasing behavior as well. Temperature dependences of the two-state lasing threshold
current as well as the ground-state lasing threshold current are presented in Figure 3 for two 0.6-mm-long diodes of
similar design (10 planes of InAs/InGaAs QDs): one with undoped active region and another with modulation doping
(~10 acceptors per QD). The GS-lasing thresholds measured at room temperature are nearly equal in both structures
(~0.35 A). At the same time, the onset of the two-state lasing is significantly shifted to higher currents in the p-type
doped laser (~5.5 A) as compared to its undoped analogue (~1.1 A). Light-current curve (insert of Figure 3)
demonstrates that the maximum optical power of the GS spectral component reaches 3.6 W in the laser with p-type
doping, while it is about 2.4 W in the undoped counterpart. Another finding is that the temperature interval, where GS
lasing can be achieved, extends to higher temperatures in the p-doped structure (from 55 to 100°C).
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Figure 3. Threshold vs temperature for ground-state lasing (solid symbols) and two-state lasing (open symbols) in lasers
with undoped (circles) and p-type doped (squares) QDs. Insert: power of the GS-line vs current.

2.4 Comparison of lasing and spontaneous emission spectra

Spontaneous emission spectra may provide additional information on peculiarities of the two-state lasing. We studied
QD lasers having 4 cleaved facets where both lasing and spontaneous emission can be simultaneously detected as shown
in Figure 4. At least five peaks of different origin are easily resolved: two narrow peaks of lasing emission via ground-
state (1264.3 nm) and first excited-state (1179.8 nm) transitions and three broad peaks of spontaneous emission via
ground-state (1264.0 nm), first excited (1172.0 nm) and second excited-state (1108.4 nm) transitions. The characteristic
feature is that the GS lasing peak nearly coincides with the peak position of GS spontaneous emission. This implies that
the GS lasing arises from QDs of the most probable (mean) size. At the same time ES1 lasing peak is noticeably red-
shifted with respect to the peak position of ES1 spontaneous emission indicating that QDs, which size is larger than the
mean one, are chiefly responsible for the ES lasing. Similar behavior was observed in a wide interval of current density.
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Figure 4. Emission spectrum: squares — experiment, solid curves — lasing emission, dotted curves — spontaneous emission.
Insert: peak position vs current density: solid circles — GS lasing, open circles — ES1 lasing, solid curve — GS spontaneous
emission, dotted curve — ES1 spontaneous emission.

3. MICRORING STRUCTURES

3.1 Experiment

An epitaxial structure was grown by molecular beam epitaxy on semi-insulating GaAs(100) substrate. An active region
comprises five layers of InAs/Ing 15GaggsAs QDs separated by 30-nm-thick GaAs spacers. The active region was inserted
into a 220-nm-thick GaAs waveguiding layer confined by 20-nm-thick Aly;Gag;As barriers. A 400-nm-thick
AlyosGag gpAs cladding layer was grown beneath the waveguiding layer. Microrings were defined by photolithography
and Ar'-etching. The outer diameter was varied in different structures from D =4 to 9 pm. The inner diameter ranges
from d=0 (microdisks) to d=0.8D. Finally, the cladding layer was selectively oxidized into (AlGa),O,. Typical
microphotograph of the resonator structure is shown in Figure 5.

(AlGa),0,

Figure 5. SEM image of QD microring laser (D =6 um, d = 2 pm).

For optical experiments a CW-operating YAG:Nd laser (A =532nm) was used together with a cooled Ge pin-diode.
Measurements at elevated temperatures were performed with the structures mounted onto a heated holder equipped with
a temperature controller. Low temperature measurements were done in a flow cryostat.
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3.2 Low-temperature measurements

An example of luminescence spectrum taken at 77 K from 6um-ring with 2um inner diameter is shown in Figure 6. Four
series of whispering gallery modes of different radial order are clearly observed. All modes presented in the optical
spectrum were identified by means of 2D-axisymmetric analysis. The dominant modes are of n=2 and 3 order.
Significant overlap of many modes exists (e.g. around 1190.8 nm where 3 modes are close together).
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Figure 6. Low-temperature luminescence spectrum of the microring. Estimated mode orders TE,,, are indicated near the
peaks.

3.3 Near-field scanning optical microscopy.

Spatial distribution of light intensity inside the microresonators was studied by means of near-field scanning optical
microscopy (NSOM). Several typical NSOM images are presented in Figure 7. Characteristic WGM patterns are clearly
seen. Depending on spectral position of the luminescence peaks, NSOM images reveal modes of different radial and
azimuthal order.

A=1279.8 nm, TE1,32 A=1291.3 nm, TE2,29

Figure 7. NSOM images demonstrating WGM modes of different orders in the microring resonator.

3.4 Room-temperature measurements.

A representative room-temperature p-PL spectrum taken under low excitation is shown in the left insert of Figure 8. Full
width at half maximum for resonant peaks varies from 0.143 to 0.234 nm giving the quality factor of about 9000.

The threshold power for the microring/microdisk structures was estimated from a light-light curve of the dominant mode.
An example is presented in Figure 8 where a characteristic knee is clearly seen. In this particular case (D=7 pm,
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d = 3.4 um) the threshold power is 0.37 mW. No correction was made to take into account partial light reflection from
the surface or waste of the excitation power in the inner area of microring structures. Overall the threshold power at
room temperature in different structures ranges from few tenths of mW to few mW. From one to three modes were
usually observed in room-temperature lasing spectra (see right insert of Figure 8).
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Figure 8. Intensity of the dominant mode against excitation power (symbols). Curve is a guide to the eye. Insert:
luminescence spectrum below threshold (left) and above threshold (right).

Room-temperature threshold characteristics of the microstructures with different inner diameters were compared. In most
cases the threshold power (absolute value) decreases by approximately 30-40% as the inner diameter increases from 0
(disk) to 0.3-0.6 D, see Figure 9. Further ring thinning results in rapid growth of the threshold. As for the effect of the
outer diameter, the lowest threshold of 0.37-0.4 mW was found in microrings having an outer diameter of 67 pm. Both
larger and smaller microrings demonstrate higher threshold power as shown in the insert of Figure 9.
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Figure 9. Room-temperature threshold (normalized to the threshold of the microdisk structure) as a function of inner
diameter. Insert: the lowest threshold against the outer diameter.

3.5 High-temperature measurements

Threshold power increases super-exponentially with temperature. Around room temperature the characteristic
temperature was estimated to be ~60-75 K. In most cases, lasing can be observed up to 80-90°C whereas the highest
temperature of lasing was found to be as high as 107°C, Figure 10. To the best of our knowledge this is the highest
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temperature ever reported for 1.3um QD MRLs. Below room temperature the threshold is nearly unchanged or even
slightly increases. Temperature variation of the lasing wavelength is summarized in Figure 10. Spectral position of the
ground-state optical transition of quantum-dot luminescence is also shown for comparison. It is seen that the lasing
wavelength is quite stable (~0.05 nm/K) within relatively wide temperature intervals (e.g. from 20 to 40°C and then from
50 to 90°C) where a certain WGM mode remains the dominant one. Abrupt changes of the lasing wavelength (e.g.
around 40-50 °C) are due to hopping of the dominant mode.
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Figure 10. Temperature dependences of the threshold power (solid symbols) and wavelengths of the dominant mode (open
symbols). QD ground-state optical transition against temperature (dashed curve) is also shown. Solid curve is exponential fit
with T3=65 K.

4. CONCLUSIONS

Quantum dot lasing structures of two sorts both emitting around 1.3 pm were studied: broad-area diode lasers and
optically pumped microresonators.

Broad-area lasers were used for detailed investigation of the two-state lasing phenomenon and, in particular, quenching
of the ground-state lasing emission that observed at high currents. It was demonstrated that the most probable reason for
the GS lasing quenching is asymmetry of electrons and holes carrier distributions. Additionally, difference in capture
rates of electrons and holes has to be taken into consideration. We also found that the GS-component reaches its
maximum beyond the threshold of the two-state lasing and that different groups of QDs are responsible for GS- and ES1-
lasing in the two-state lasing regime. Finally, we demonstrated that p-type modulation doping of QDs leads to noticeable
suppression of the ES1-lasing thereby resulting in enhancement of peak power of the GS spectral component.

Microrings and microdisks of few micrometers in diameter were made by ion etching and selective oxidation with Q-
factor of about 9000. Whispering gallery modes of second and third radial orders dominate the luminescence spectrum.
Nearly single-mode lasing was observed at elevated temperatures. The lowest threshold (around 0.4 mW at RT) was
found in microdisks of intermediate diameter (6-7 um) with approximately 50% inner aperture. The highest temperature
was found to be 107°C and the threshold was in mW-range.
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