The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510619517

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org
Copyright © 2018, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/18/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE Digital Library
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B … 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

UV I

<table>
<thead>
<tr>
<th>Proc. no.</th>
<th>Title</th>
<th>Conference proceedings-no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10699 02</td>
<td>Ultrathin protective coatings by atomic layer engineering for far ultraviolet aluminum mirrors [10699-1]</td>
<td></td>
</tr>
<tr>
<td>10699 04</td>
<td>New far-UV instrumentation enabled by recent advances in mirror coating processes [10699-3]</td>
<td></td>
</tr>
<tr>
<td>10699 05</td>
<td>HabEx ultraviolet spectrograph design and DRM [10699-4]</td>
<td></td>
</tr>
</tbody>
</table>

UV II

<table>
<thead>
<tr>
<th>Proc. no.</th>
<th>Title</th>
<th>Conference proceedings-no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10699 06</td>
<td>POLLUX: a UV spectropolarimeter for the LUVOIR space telescope project [10699-5]</td>
<td></td>
</tr>
<tr>
<td>10699 09</td>
<td>High-energy astrophysics with CETUS: a UV space telescope concept [10699-8]</td>
<td></td>
</tr>
</tbody>
</table>

UV III

<table>
<thead>
<tr>
<th>Proc. no.</th>
<th>Title</th>
<th>Conference proceedings-no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10699 0C</td>
<td>The Colorado ultraviolet transit experiment (CUTE): final design and projected performance [10699-11]</td>
<td></td>
</tr>
<tr>
<td>10699 0D</td>
<td>Conceptual design of a wide-field near UV transient survey in a 6U CubeSat [10699-12]</td>
<td></td>
</tr>
<tr>
<td>10699 0F</td>
<td>Monitoring the high-energy radiation environment of exoplanets around low-mass stars with SPARCS (Star-Planet Activity Research CubeSat) [10699-14]</td>
<td></td>
</tr>
</tbody>
</table>

UV IV

<table>
<thead>
<tr>
<th>Proc. no.</th>
<th>Title</th>
<th>Conference proceedings-no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10699 0H</td>
<td>The EUI flight instrument of Solar Orbiter: from optical alignment to end-to-end calibration [10699-15]</td>
<td></td>
</tr>
<tr>
<td>10699 0J</td>
<td>Stray and scattered light properties of the Juno ultraviolet spectrograph [10699-17]</td>
<td></td>
</tr>
<tr>
<td>10699 0K</td>
<td>The fourth flight of CHESS: spectral resolution enhancements for high-resolution FUV spectroscopy [10699-19]</td>
<td></td>
</tr>
</tbody>
</table>
DECADAL STUDY OVERVIEWS: JOINT SESSION WITH CONFERENCES 10698 AND 10699

OPTICS I

10699 0O	Astronomical x-ray optics using mono-crystalline silicon: high resolution, light weight, and low cost [10699-22]
10699 0P	Fabrication of lightweight silicon x-ray mirrors for high-resolution x-ray optics [10699-23]
10699 OS	Metrology for quality control and alignment of CAT grating spectrometers [10699-26]

OPTICS II

10699 0U	Sub-arcsecond imaging with multi-image x-ray interferometer module (MIXIM) for very small satellite [10699-29]
10699 OV	Small satellites with MEMS x-ray telescopes for x-ray astronomy and solar system exploration [10699-30]
10699 OW	Microchannel plate x-ray optics on the Mercury imaging x-ray spectrometer [10699-31]

OPTICS: ATHENA + LYNX

10699 OX	Development of the ATHENA mirror [10699-32]
10699 OZ	Results of silicon pore optics mirror modules optical integration in the ATHENA telescope [10699-34]
10699 O10	Integration of the ATHENA mirror modules: development status of the indirect and direct x-ray methods [10699-35]

LYNX

10699 12	The high definition x-ray imager (HDXI) instrument on the Lynx X-ray Surveyor [10699-37]
10699 14	An x-ray transmission grating spectrometer for Lynx [10699-39]
10699 17	Toward fast low-noise low-power digital CCDs for Lynx and other high-energy astrophysics missions [10699-42]
TIMING AND PROGRAM

10699 19	STROBE-X: a probe-class mission for x-ray spectroscopy and timing on timescales from microseconds to years [10699-44]
10699 1B	Current progress of x-ray multilayer telescope optics based on thermally slumping glass for eXTP mission [10699-46]
10699 1C	The Large Area Detector onboard the eXTP mission [10699-47]

ATHENA I

10699 1E	ATHENA: system studies and optics accommodation [10699-49]
10699 1F	Development of the Wide Field Imager instrument for ATHENA [10699-50]
10699 1G	The ATHENA X-ray Integral Field Unit (X-IFU) [10699-51]

ATHENA WFI

10699 1H	First tests of large prototype DEPFET detectors for ATHENA’s wide field imager [10699-52]
10699 1I	Evaluation of the ATHENA/WFI instrumental background [10699-53]
10699 1J	The ATHENA WFI science products module [10699-54]
10699 1K	ATHENA WFI optical blocking filters development status toward the end of the instrument phase-A [10699-55]

ATHENA X-IFU

10699 1M	Development of TiAu TES x-ray calorimeters for the X-IFU on ATHENA space observatory [10699-57]
10699 1Q	Estimates for the background of the ATHENA X-IFU instrument: the cosmic rays contribution [10699-61]
10699 1R	ATHENA X-IFU thermal filters development status toward the end of the instrument phase-A [10699-62]
Two decades of Chandra high-resolution camera operations: lessons learned and future prospects [10699-64]
The insight-HXMT mission and its recent progresses [10699-65]
Effective area calibration of the nuclear spectroscopic telescope array (NuSTAR) [10699-67]

ART-XC / SRG overview [10699-69]
How eROSITA was made [10699-70]
SVOM: a French/Chinese cooperation for a GRB mission [10699-71]
MXT instrument on-board the French-Chinese SVOM mission [10699-72]
Concept of the X-ray Astronomy Recovery Mission [10699-73]

Soft x-ray imaging telescope (Xtend) onboard X-ray Astronomy Recovery Mission (XARM) [10699-74]
Einstein Probe: a lobster-eye telescope for monitoring the x-ray sky [10699-76]

The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) [10699-78]
Super DIOS: future x-ray spectroscopic mission to search for dark baryons [10699-79]
AXIS: a probe class next generation high angular resolution x-ray imaging satellite [10699-80]
The FORCE mission: science aim and instrument parameter for broadband x-ray imaging spectroscopy with good angular resolution [10699-84]

DETECTORS I

X-ray hybrid CMOS detectors: recent development and characterization progress [10699-85]

DETECTORS II

Large x-rays high impedance μ-calorimeters matrices: status and prospects [10699-89]

GAMMA-RAY I

The e-ASTROGAM gamma-ray space observatory for the multi-messenger astronomy of the 2030s [10699-90]

The polarimetric performance of the Compton Spectrometer and Imager (COSI) [10699-91]

GAMMA-RAY II

The advanced energetic pair telescope for gamma-ray polarimetry [10699-93]

The continued development of a low energy Compton imager for GRB polarization studies [10699-95]

CAMELOT: Cubesats Applied for MEasuring and LOcalising Transients mission overview [10699-96]

SAGE: using CubeSats for gravitational wave detection [10699-98]

POSTER SESSION

COS2025: a strategy to extend the lifetime of the FUV detector on the Cosmic Origins Spectrograph [10699-100]

Opto-mechanical assembly and ground calibration of LUCI [10699-101]

Optical alignment of the high-precision UV spectro-polarimeter (CLASP2) [10699-102]
Part Two

10699 33 Reflectometry of surfaces of 1.7-m mirror of WSO-UV space telescope [10699-110]

10699 34 The solar orbiter Metis and EUI intensified CMOS-APS detectors: concept, main characteristics, and performance [10699-111]

10699 35 The new field camera unit imaging instrument onboard WSO-UV [10699-112]

10699 36 Rosetta-Alice II: an upgraded UV spectrograph for a Rosetta-type mission [10699-113]

10699 38 Instrument prototypes of miniature near-UV imaging spectro-polarimeters for observations of solar magnetism [10699-115]

10699 39 UV capabilities of the CETUS multi-object spectrometer (MOS) and NUV/FUV camera [10699-116]

10699 3A Planning operations in Jupiter's high-radiation environment: optimization strategies from Juno-UVS [10699-117]

10699 3B The science case for POLLUX: a high-resolution UV spectropolarimeter onboard LUVOIR [10699-118]

10699 3D Theoretical study of filter design for UV-bandpass filters for the CETUS probe mission study [10699-120]

10699 3E PIONS: a CubeSat imager to observe variable UV sources [10699-121]

10699 3G World Space Observatory ultraviolet mission: instrumentation and the core program [10699-123]

10699 3H Microchannel plate detectors for future NASA UV observatories [10699-240]
10699 3I Progress in the realization of the beam expander testing x-ray facility (BEaTriX) for testing ATHENA's SPO modules [10699-124]

10699 3J The Geant4 mass model of the ATHENA Silicon Pore Optics and its effect on soft proton scattering [10699-125]

10699 3K Performance and stability of mirror coatings for the ATHENA mission [10699-126]

10699 3L Silicon pore optics manufacturing plan and schedule for ATHENA [10699-127]

10699 3P Oxide-bonded molecular-beam epitaxial backside passivation process for large-format CCDs [10699-203]

10699 3R Development of a lightweight x-ray mirror using thin carbon-fiber-reinforced plastic (CFRP) [10699-132]

10699 3S The McXtrace AstroX toolbox: a general ray tracing software package for end to end simulation of x-ray optics for astronomical instrumentation [10699-133]

10699 3T AHEAD joint research activity on x-ray optics [10699-134]

10699 3U Optical design of the off-plane grating rocket experiment [10699-135]

10699 3X Evaluation of x-ray reflectors by optical diffraction patterns [10699-138]

10699 3Y The effect of nitrogen incorporation in boron carbide and iridium thin films [10699-139]

10699 3Z The finite element analysis modeling of micro pore optic plate [10699-140]

10699 40 Alignment and bonding of silicon mirrors for high-resolution astronomical x-ray optics [10699-141]

10699 41 Reflective coatings for the future x-ray mirror substrates [10699-142]

10699 42 Thermal oxide patterning method for compensating coating stress in silicon x-ray telescope mirrors [10699-143]

10699 43 X-ray telescope mirror mounting and deformation reduction using ThermoYield actuators and mirror geometry changes [10699-144]

10699 48 The wide field monitor onboard the eXTP mission [10699-149]

10699 4A Design of the charged particle diverter for the ATHENA mission [10699-151]

10699 4B A magnetic electron repeller to improve the ATHENA/WFI background level [10699-152]

10699 4C Structural modelling and mechanical tests supporting the design of the ATHENA X-IFU thermal filters and WFI optical blocking filter [10699-153]
Energy response of ATHENA WFI prototype detectors [10699-156]
Characterizing particle background of ATHENA WFI for the science products module: swift XRT full frame and XMM-PN small window mode observations [10699-157]
Reducing the ATHENA WFI background with the science products module: lessons from Chandra ACIS [10699-158]
Studies of operation modes for the ATHENA WFI detectors [10699-159]
The performance of the ATHENA X-ray Integral Field Unit [10699-161]
Simulating x-ray observations of galaxy clusters with the x-ray integral field unit onboard the ATHENA mission [10699-162]
Energy scale calibration and drift correction of the X-IFU [10699-163]
Reproducibility and monitoring of the instrumental particle background for the x-ray integral field unit [10699-164]
Testing the X-IFU calibration requirements: an example for quantum efficiency and energy resolution [10699-165]
Development of the WFEE subsystem for the X-IFU instrument of the ATHENA Space Observatory [10699-166]
Performance of a state-of-the-art DAC system for FDM readout [10699-167]
Radio frequency shielding of thin aluminized plastic filters investigated for the ATHENA X-IFU detector [10699-168]
ATHENA X-ray Integral Field Unit on-board event processor: analysis of performance of two triggering algorithms [10699-169]
The cryogenic anticoincidence detector for ATHENA X-IFU: preliminary test of AC-S9 towards the demonstration model [10699-170]
First results of the ATHENA/X-IFU digital readout electronics prototype [10699-172]
Numerical simulation and validation of ATHENA/X-IFU/digital readout electronics [10699-173]
Thermal modelling of the ATHENA X-IFU filters [10699-177]
Initial jitter analysis of Lynx, a proposed future large astrophysics facility [10699-178]
Analysis of the NGXO telescope x-ray Hartmann data [10699-179]
10699.54	**Ultrafast laser micro-stressing for correction of thin fused silica optics for the Lynx X-Ray Telescope Mission** [10699-181]
10699.57	**Adjustable x-ray mirrors based on plastic electroactive polymer actuators for the Lynx mission** [10699-184]
10699.59	**Compensating film stress in silicon substrates for the Lynx x-ray telescope mission concept using ion implantation** [10699-186]
10699.5A	**Performances of the gas pixel detector to a continuum and highly polarized x-ray beam** [10699-187]
10699.5B	**Dependence on temperature of the response of a gas pixel detector to polarized radiation** [10699-188]
10699.5C	**Calibration of the IXPE instrument** [10699-189]
10699.5D	**Overview of the detector and its readout on board the imaging x-ray polarimetry explorer** [10699-190]
10699.5E	**On-ground calibration of the ART-XC/SRG instrument** [10699-191]
10699.5F	**eROSITA system functionality and operation** [10699-192]
10699.5G	**eROSITA ground operations** [10699-193]
10699.5H	**eROSITA mated with SRG** [10699-194]
10699.5J	**Calibration of the spectral response of the SVOM/ECLAIRs detection plane** [10699-196]
10699.5K	**Status of technological development on ECLAIRs camera onboard the SVOM space mission** [10699-197]
10699.5N	**Background simulations of WXT aboard the Einstein Probe mission** [10699-200]
10699.5O	**Developments of scientific CMOS as focal plane detector for Einstein Probe mission** [10699-201]
10699.5Q	**Exploring fine subpixel spatial resolution of hybrid CMOS detectors** [10699-204]
10699.5R	**The effects of charge diffusion on soft x-ray response for future high-resolution imagers** [10699-205]
10699.5S	**BlackCAT CubeSat: a soft x-ray sky monitor, transient finder, and burst detector for high-energy and multimessenger astrophysics** [10699-206]
10699.5T	**High impedance transition edge sensors with classical readout electronics: a new scheme toward large x-ray matrices** [10699-207]
The gamma-ray transient monitor for ISS-TAO: new directional capabilities

Modeling and development of soft gamma-ray channeling

SMILE-2+: the 2018 balloon flight and the instrument design of the electron-tracking Compton camera

The Advanced Scintillator Compton Telescope (ASCOT) balloon payload

Kanazawa-SAT3: micro-satellite mission for monitoring x-ray transients coincide with gravitational wave events

Development of focal plane x-ray detector aboard a microsatellite for monitoring supermassive blackholes

CAMELOT: design and performance verification of the detector concept and localization capability

Simulating modulated x-ray calibration sources for future x-ray missions using GEANT4

In-orbit calibration status of the Insight-HXMT

The complicated evolution of the ACIS contamination layer over the mission life of the Chandra X-ray Observatory

Automating the Swift scheduling pipeline

Blazed transmission grating technology development for the Arcus x-ray spectrometer explorer

Ray-tracing Arcus in phase A

The Off-plane Grating Rocket Experiment (OGRE) system overview

Grating design for the Water Recovery X-ray Rocket

Optical instrument design of the High-Energy X-ray Probe (HEX-P)
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Aboudan, A., 2J
Abramov, Reuven, 5U
Aggarval, V. K., 3E
Ahangarianabhari, Mahdi, 1C
Aicardi, Corinne, 1G
Ajello, M., 2J
Akamatsu, Hiroki, 1M, 22
Akimov, V., 1Y, 5E
Allen, Lynn, ON
Allen, Steven, 1J, 4G, 4H
Allgood, Kim D., 0O, 0P
Allured, Ryan, 27
Ambily, S., 2V, 3E
Ambrosi, Giovanni, 1C, 2J
Ambrosino, Filippo, 1C, 48
Amici, Fabrizio, 5C
Amman, M., 2K
Amoros, C., 5K
Anderson, Tyler, 2E
André, Jérôme, 1G
Andrífuchske, Robert, 4F, 4I
Angelini, Lorella, 22
Arai, Yoshitaka, 22
Ardila, David, 0F
Arefiev, V., 1Y, 5E
Arenberg, Jonathan, ON
Argan, Andrea, 1C, 1Q, 2J, 48, 4T
Animoto, Makoto, 62
Arzoumanian, Zaven, 19
Asakura, Kazunori, 0U, 23
Atteia, J.-L., 5J, 5K
Attina, Primo, 5C
Auchère, Frédéric, 0H, 2W, 30
Austin, Gerald, 1T
Awaki, Hisamitsu, 0U, 22, 2D, 3R
Ayre, Mark, 0X, 1E, 3L, 4A
Aznar Cuadrado, Regina, 0H, 34
Babyk, Lurl, 22
Bacavsky, J., 4A
Badin, V., 4A
Bajat, A., 5J, 5K
Balasubramanian, Kunjithapatham, 02
Baldini, Luca, 5B
Ball, Kevin, 0Y
Ballantyne, David R., 19
Bamba, Aya, 22
Bancroft, C. M., 5X
Bandler, Simon R., 1G, 28, 4K, 4O, 4S
Barbay, J., 0H
Barbera, Marco, 1C, 1G, 1K, 1R, 4C, 4K, 4O, 4R, 50
Barcons, Xavier, 1G
Barlaknecht, Peter, 22
Barman, Travis, 0F
Barnstable, Kim, 22
Barret, Didier, 1G, 1R, 4K, 4L, 4N, 4O, 4V
Barrière, Nicolas, 0X, 0Y, 10
Basso, S., 3I
Baulista, L., 5K
Bautz, Marshall W., 12, 17, 1J, 4G, 4H, 5R
Bavdaz, Marcos, 0X, 0Y, 0Z, 10, 1E, 3I, 3K, 3L, 4A
Bayer, Joerg, 1C
Beasley, Matthew, 0F
Behar, Ehud, 5U
Behtrens, Annika, 1H, 4F, 4I
Beljersbergen, Marco W., 0Y
Beillimaz, Cyril, 4P
Belkacem, I., 5K
Bellutti, Pierluigi, 1C, 48
Berghmans, D., 0H
Berman, Travis, 0F
Bernard, D., 2J
Bernardini, E., 2J
Bertrand, Bernard, 4V, 4W
Bertucci, Bruna, 1C
Beruccio, Giuseppe, 1C
Betancourt-Martinez, Gabriele, 4O
Biasotti, Michele, 4T
Biffi, Veronica, 4L
Bilgi, Pavan, 0D
Biskach, Michael P., 0O, 0P, 3U, 40, 6H
Blackwood, Gary, 0N
Blagojevic, Branimir, 22
Blomer, Peter F., 2O, 5V, 5X
Blum, Steffen, 10
Bogdan, Akos, 6B
Boggs, S., 2K
Bolkhovsky, V., 3P
Boller, T., 5G
Bolton, S. J., 3I
Bonafe, Joseph, 22
Bonford, B., 31
Bonholzer, Michael, 1H, 4F, 4I
Bonvicini, V., 2J
Booysen, Karin, 0X, 0Y
Bordon, S., 5K
Borgani, Stefano, 4L
Borghi, Giacomo, 1C, 48
Boris, David R., 2X
Bornemann, Walter, 5F, 5H
Boufracha, Nadjis, 21
Bouret, Jean-Claude, 06, 3B
Bourget, P., 2R
Boutelier, Martin, 21
Bowman, Judd, 0F
Boyce, Kevin, 1G
Bozzo, Enrico, 19, 1C, 1G, 48
Brachet, Frank, 06
Brambora, Clifford, 22
Branchesi, M., 2J
Brandt, Søren, 19, 48
Branduardi-Raymont, Graziella, 0V, 1G, 1K, 1R
Brauneck, U., 3D
Bräuninger, Heinrich, 5H
Bray, Evan, 2E, 5Q
Brenneman, Laura W., 19, 22
Broadway, D., 6M
Brogna, A., 2J
Brosch, Noah, 2V
Brown, Greg, 22
Brown, Kimberly, 22
Bruccoleri, Alexander R., 0S, 27, 43, 6D
Bruijn, M. P., 1M
Brunner, Hermann, 5G, 5H
Budau, B., 5F
Budtz-Jorgensen, C., 2J, 48
Bulbul, Esra, 1G, 11, 1J, 1T, 4G, 4H
Bulgarelli, Andrea, 2J, 3J
Bunce, Emma J., 0W
Butcher, Gillian L., 0W
Buttacavoli, Antonino, 1R, 4C, 50
Bykov, A., 2J
Cackett, Edward, 19
Cadeaux, Franck, 1C
Calandra, Enrico, 4R
Camp, Jordan, 5U
Campagna, Riccardo, 1C, 2J, 48
Campos Garcia, Gonzalo, 1G
Camus, Thierry, 4V
Canavan, Edgar, 22
Candido, Roberto, 1K, 1R
Cao, X. L., 1U
Cappi, Massimo, 1G, 1R, 3J, 4O
Car, Christophe, 4S
Cardillo, M., 2J
Carnahan, Tim, 22
Carver, Alexander G., 02
Casini, R., 38
Ceballos, Maria Teresa, 1G, 4S
Centrone, Mauro, 5C
Ceraudo, Francesco, 1C
Ceriale, Valentina, 4T
Chakrabarthy, Deepa, 19
Chalifoux, Brandon D., 42, 43, 54, 59
Champey, Patrick, 27
Chan, Kai-Wing, 00, 3U, 40, 41, 42, 52, 6H
Chan, Kuo Kwan, 4P
Chang, H.-K., 2K
Chang, Y.-C., 2K
Charles, Ivan, 1G
Charlot, Stéphane, 3B
Charmeau, Marie Claire, 21
Charvolin, T., 2I
Chatbi, Abdel, 0Y
Chattopadhyay, Tanmoy, 2E, 5S
Chaufray, Jean-Yves, 3B
Cheimets, Peter N., 27, 6D
Chen, Si, 4P
Chen, Tianxiang, 1C, 48
Chen, X., 3P
Chen, Y. P., 1U
Chen, Yong, 1U, 25
Cheng, T. X., 48
Chequer, Ian, 0Y
Chiao, Meng, 22
Chiu, J.-L., 2K
Christensen, Finn E., 0X, 0Y, 3K, 3S, 3Y, 6M
Chu, C.-Y., 2K
Churazov, E., 1Y
Cibik, Levent, 10, 3K
Ciprini, S., 2J
Criollo, Mario, 5A
Cirimicione, Daniela, 1C
Clark, H. R., 3P
Clenet, Antoine, 1G, 4V, 4W
Clerc, Nicolas, 1G, 4L
Cobo, Beatriz, 1G, 4S
Collon, Maximilien J., 0X, 0Y, 0Z, 10, 3K, 3L
Collura, Alfonso, 1K, 1R, 4C, 4R
Comber, Brian, 22
Cook, Walter, 1W
Cooper, M. J., 17, 3P
Coppi, P., 2J
Coppolani, Xavier, 5T
Cordier, B., 5K
Corrales, Llo, 22
Costantini, Elisa, 1G, 22
Costeraste, Josiane, 06
Coutinho, Diogo, 5F, 5G, 5H
Craig, D., 17
Crum, Ryan, 2E
Cucchetti, Edoardo, 1G, 4K, 4L, 4M, 4N, 4O
Cui, Wei, 25
Cumani, P., 2J
Curado da Silva, R. M., 2J
Curtis, T., 3H
Cuttaia, Francesco, 1R, 4R
Czajka, Elizabeth, 2Z
Dadina, Mauro, 1G, 3J
Dalampiras, P., 3Y
Damery, Jean-Charles, 1G
D’Anca, Fabio, 1K, 1R, 4C, 4R, 50
Danchi, William, 39
D’Andrea, Matteo, 1Q, 4T
Daniel, Christophe, 1G
Darling, N., 3H
Dauser, Thomas, 1G, 4K, 4S, 5G
David, L., 2R
Davis, Michael W., 0J, 2Z, 31, 36, 3A
De Angelis, A., 2J
Debnath, A., 57
DeCicco, Nicholas, 0C
Decourchelle, Anne, 1G
Deich, Alex, 6C
Dekelier-Douchin, Françoise, 1G
de la Broïse, Xavier, 2I, 5T
del Hoyo, Javier, 22
Della Monica Ferreira, Desirée, 0X, 0Y, 3K, 3S, 3Y, 6M
del Monte, Ettore, 1C, 4B, 5B, 5C
Delmotte, F., 0H
De Martino, D., 2J
den Hartog, Roland, 1G, 1R, 4K, 4Q
den Herd, Jan-Willem, 1G, 1R, 22, 4K, 4Q, 65
Dennler, Konrad, 5G, 5H
De Pioa, Jelle, 1G
Dercksen, Johannes, 22
DeRoo, Casey, 6D, 6F
De Rosa, Alessandra, 19, 1C
de Rosa, Giisela, 2U
Descalle, M., 6M
DeTienne, Michael D., 43
de Vries, C. P., 1M, 22, 4M, 65
Diaz-Trigo, Maria, 22
Di Cicca, Gaspare, 1R
Di Cosimo, Sergio, 1C, 5C
Diebold, Sebastian, 1C
Diehl, R., 2J
Di Lalla, Niccolò, 5B
Dillard, Tyrone, 22
Di Persio, Giuseppe, 5C
DiPirro, Michael, 1G, 22
Dittrich, Kurt, 4C
Dolag, Klaus, 4L
Dominguez, Alex, 51
Dominguez, Alexandra, 0N
Dondero, Paolo, 1Q
Done, Chris, 22
Donnarumma, L., 2J
Donovan, Benjamin D., 3U, 6H, 6K
Doro, M., 2J
Dotani, Tadayasu, 22, 23
Doly, John P., 63
 Drozdova, T., 1Y
Drumm, Paul, 21
Duband, Lionel, 1G
Dumesnil, C., 0H
Dumoulin, Louis, 5T
Duval, Jean-Marc, 1G
Dwelly, T., 5G
Dwivedi, Vivek, 2X
Ebisawa, Ken, 22
Eckart, Megan E., 1G, 22, 28, 4M, 4O
Eden, Joseph, 1Z, 5H
Edison, Mark, 22
Egan, Arika, 0C, 0K
Eigenraam, Alexander, 0Y
Ela, N., 38
Elsner, Ronald F., 1T
Emberger, Valentin, 1H, 4F, 4I
Enokuchi, Akito, 0D
Enoto, Teruaki, 22, 2P, 64
Eraerds, Tanja, 1I
Erley, Julia, 1J
Errando, M., 57
Ertley, C., 3H
Etcheverry, Christophe, 1G
Ettori, Stefano, 1G
Evangelista, Yuri, 1C, 4B, 5C
Evans, Chris, 3B
Ezoe, Yuichiro, 0V, 22, 28, 63
Fabiani, Sergio, 5A, 5B, 5C
Fairbend, Ray, 0W
Falcone, Abraham D., 12, 1J, 2E, 5Q, 5S
Fan, Qingmei, 1C
Favre, Yannick, 1C
Feigenboim, Amir, 5U
Fei, Torsten, 2Y
Feldman, Charlotte H., 0W, 21
Feroci, Marco, 19, 1C, 48
Ferrando, Philippe, 1G
Ferrari, C., 3I
Ferrari, Marc, 06
Ferrazoli, Riccardo, 5A, 5C
Ferreira, Desiree D. M., 3S, 3Y, 6M
Ferreira, Ivo, 0X, 1E, 3I, 3L, 3S, 4A
Ferligno, Carlo, 22
Ferruglio Bonura, Salvatore, 1R, 4C, 4R, 50
Ficorella, Francesco, 1C, 4B
Finoguenov, Alexis, 1G
Fiore, Fabrizio, 1G
Fioretti, Valentine, 11, 1Q, 2J, 3J, 65
Fiorini, M., 3I
Fitzgerald, Michael, 0F
Flajšman, L., 4A
Fleming, Brian T., 04, 0C, 0K, 32
Forster, Karl, 1W
Fort, Stanislav, 1J
Fossati, Luca, 0C, 32, 3B
Foster, Richard, 17, 5R
Fox, Derek B., 5S
France, Kevin, 02, 04, 0C, 0K, 32
Fransen, Sebastiaan, 0X, 0Y, 1E
Frei, Zsolt, 2P, 64
Freyberg, M., 5A
Frezouls, Benoit, 1G
Friedrich, Peter, 5H
<table>
<thead>
<tr>
<th>Name</th>
<th>Code(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nobukawa, Masayoshi</td>
<td>22, 23</td>
</tr>
<tr>
<td>Noda, Hirofumi</td>
<td>22</td>
</tr>
<tr>
<td>Noterdaeme, Pasquier</td>
<td>3B</td>
</tr>
<tr>
<td>Nowak, M.</td>
<td>2R</td>
</tr>
<tr>
<td>Nulsen, Paul</td>
<td>1J, 1T, 4G, 4H</td>
</tr>
<tr>
<td>Numata, Ai</td>
<td>0Q, 0P, 40, 41</td>
</tr>
<tr>
<td>Nunomura, K.</td>
<td>28</td>
</tr>
<tr>
<td>Oakley, P. H. H.</td>
<td>38</td>
</tr>
<tr>
<td>Oberlack, U.</td>
<td>2J</td>
</tr>
<tr>
<td>O'Brien, Paul</td>
<td>21</td>
</tr>
<tr>
<td>Odaoka, Hirokazu</td>
<td>22, 2P, 64</td>
</tr>
<tr>
<td>O'Dell, Stephen L.</td>
<td>1T, 1Y</td>
</tr>
<tr>
<td>Ogawa, Mina</td>
<td>22</td>
</tr>
<tr>
<td>Ohashi, Takaya</td>
<td>0V, 22, 28</td>
</tr>
<tr>
<td>Ohno, Masanori</td>
<td>22, 2P, 64</td>
</tr>
<tr>
<td>Ohta, Masayuki</td>
<td>22</td>
</tr>
<tr>
<td>Ohtsuka, K.</td>
<td>28</td>
</tr>
<tr>
<td>Okajima, Takashi</td>
<td>19, 22, 23, 3X, 41, 6M</td>
</tr>
<tr>
<td>Okamoto, Atsushi</td>
<td>22</td>
</tr>
<tr>
<td>Okamoto, Takenori J.</td>
<td>2W, 30</td>
</tr>
<tr>
<td>Okazaki, Koki</td>
<td>0J, 23</td>
</tr>
<tr>
<td>Okon, Hiromichi</td>
<td>23</td>
</tr>
<tr>
<td>Oleinikov, V.</td>
<td>5E</td>
</tr>
<tr>
<td>Oliveira, Cristina</td>
<td>2U</td>
</tr>
<tr>
<td>Oliver, Paul</td>
<td>0X, 0Y</td>
</tr>
<tr>
<td>Olsen, Lawrence G.</td>
<td>41</td>
</tr>
<tr>
<td>Olsen, P.</td>
<td>48</td>
</tr>
<tr>
<td>Omatsu, Maki</td>
<td>3R</td>
</tr>
<tr>
<td>Onishi, Satomi</td>
<td>23, 63</td>
</tr>
<tr>
<td>Onizuka, Michitaka</td>
<td>22</td>
</tr>
<tr>
<td>Onozuka, K.</td>
<td>28</td>
</tr>
<tr>
<td>Orleánski, Piotr</td>
<td>1C, 1G, 2J, 48</td>
</tr>
<tr>
<td>Osato, K.</td>
<td>28</td>
</tr>
<tr>
<td>Osborne, Julian</td>
<td>21</td>
</tr>
<tr>
<td>Osovízky, Alon</td>
<td>5U</td>
</tr>
<tr>
<td>Ota, Kaichi</td>
<td>62</td>
</tr>
<tr>
<td>Ota, Naomi</td>
<td>22, 28</td>
</tr>
<tr>
<td>Ottolini, M.</td>
<td>0Z</td>
</tr>
<tr>
<td>Oue, Chisato</td>
<td>3R</td>
</tr>
<tr>
<td>Ozaki, Masanobu</td>
<td>22, 23</td>
</tr>
<tr>
<td>Ozawa, Toshiki</td>
<td>0D</td>
</tr>
<tr>
<td>Özel, Fery</td>
<td>0N</td>
</tr>
<tr>
<td>Oziol, Christophe</td>
<td>4V, 4W</td>
</tr>
<tr>
<td>Paillet, Alexis</td>
<td>1G</td>
</tr>
<tr>
<td>Pajot, François</td>
<td>1G, 4K, 4L, 4M, 4N, 4O, 4W</td>
</tr>
<tr>
<td>Pál, Andráš</td>
<td>2P, 64</td>
</tr>
<tr>
<td>Palmer, David</td>
<td>5S</td>
</tr>
<tr>
<td>Paltani, Stéphane</td>
<td>1C, 1G, 22</td>
</tr>
<tr>
<td>Pan, Teng</td>
<td>1C</td>
</tr>
<tr>
<td>Paredes, J. M.</td>
<td>2J</td>
</tr>
<tr>
<td>Pareschi, Giovanni</td>
<td>0X, 0Y, 0Z, 3I, 3T</td>
</tr>
<tr>
<td>Parker, Joel Wm.</td>
<td>36</td>
</tr>
<tr>
<td>Parker, Linda N.</td>
<td>1T</td>
</tr>
<tr>
<td>Parker, Theodore</td>
<td>27</td>
</tr>
<tr>
<td>Parodi, Giancarlo</td>
<td>0Z, 1K, 1R, 3I, 4C</td>
</tr>
<tr>
<td>Pasquier, Pierre</td>
<td>21</td>
</tr>
<tr>
<td>Patnaude, Daniel</td>
<td>1T</td>
</tr>
<tr>
<td>Patricelli, B.</td>
<td>2J</td>
</tr>
<tr>
<td>Pavlinisky, M.</td>
<td>1Y, 5E</td>
</tr>
<tr>
<td>Paw U., C.</td>
<td>3H</td>
</tr>
<tr>
<td>Pearce, M.</td>
<td>2J</td>
</tr>
<tr>
<td>Pearson, James F.</td>
<td>0W, 21</td>
</tr>
<tr>
<td>Pellet, Philippe</td>
<td>1G, 1R, 4K, 4L, 4M, 4N, 4O, 4S</td>
</tr>
<tr>
<td>Pejchal, T.</td>
<td>4A</td>
</tr>
<tr>
<td>Pelliciari, Carlo</td>
<td>3I, 3T, 52, 6D</td>
</tr>
<tr>
<td>Penton, Steven</td>
<td>2U</td>
</tr>
<tr>
<td>Perinatì, Emanuela</td>
<td>1C, 1I, 1K, 4B</td>
</tr>
<tr>
<td>Perraud, Laurent</td>
<td>21</td>
</tr>
<tr>
<td>Persyn, Steve</td>
<td>1J</td>
</tr>
<tr>
<td>Petre, Robert</td>
<td>22</td>
</tr>
<tr>
<td>Peyré, J.</td>
<td>2J</td>
</tr>
<tr>
<td>Pfeffermann, Elmar</td>
<td>5H</td>
</tr>
<tr>
<td>Philippon, A.</td>
<td>0H</td>
</tr>
<tr>
<td>Piano, G.</td>
<td>2J</td>
</tr>
<tr>
<td>Piazzolla, Raffaele</td>
<td>5C</td>
</tr>
<tr>
<td>Picciotto, Antonino</td>
<td>1C, 48</td>
</tr>
<tr>
<td>Pike, Sean</td>
<td>1W, 6M</td>
</tr>
<tr>
<td>Pllich, Adam</td>
<td>1K, 4C</td>
</tr>
<tr>
<td>Pinchera, Michele</td>
<td>5B</td>
</tr>
<tr>
<td>Pinsard, Frédéric</td>
<td>21, 4S</td>
</tr>
<tr>
<td>Pinto, S. D.</td>
<td>6S</td>
</tr>
<tr>
<td>Piro, Luigi</td>
<td>1G, 1Q, 1R, 3J, 4K, 4N, 4T</td>
</tr>
<tr>
<td>Pivovaroff, M.</td>
<td>6M</td>
</tr>
<tr>
<td>Platten, Markus</td>
<td>1F</td>
</tr>
<tr>
<td>Plucinsky, Paul P.</td>
<td>22, 6B</td>
</tr>
<tr>
<td>Pohl, Martin</td>
<td>1C, 2J</td>
</tr>
<tr>
<td>Pointecouteau, Etienne</td>
<td>1G, 4L, 4M, 4N, 4O, 4V, 4W</td>
</tr>
<tr>
<td>Polak, Szymon</td>
<td>1K, 4C</td>
</tr>
<tr>
<td>Pons, R.</td>
<td>5K</td>
</tr>
<tr>
<td>Pontel, Bernard</td>
<td>1G</td>
</tr>
<tr>
<td>Porter, Frederick S.</td>
<td>1G, 22, 4M, 4S</td>
</tr>
<tr>
<td>Pottscheidt, Katja</td>
<td>22</td>
</tr>
<tr>
<td>Pradhan, Pragati</td>
<td>1J</td>
</tr>
<tr>
<td>Pradines, Alice</td>
<td>1G</td>
</tr>
<tr>
<td>Prakash, Ajin</td>
<td>2V</td>
</tr>
<tr>
<td>Pratt, Gabriel W.</td>
<td>1G, 4N</td>
</tr>
<tr>
<td>Predelh, Peter</td>
<td>12, 5F, 5G, 5H</td>
</tr>
<tr>
<td>Prêtele, Damiens</td>
<td>1G, 4P</td>
</tr>
<tr>
<td>Prigozhin, Gregory</td>
<td>17, 5R</td>
</tr>
<tr>
<td>Primicino, Leonardo</td>
<td>5C</td>
</tr>
<tr>
<td>Pucci, Federico</td>
<td>5B</td>
</tr>
<tr>
<td>Puccio, Elena</td>
<td>4R, 5O</td>
</tr>
<tr>
<td>Purcell, William</td>
<td>0N</td>
</tr>
<tr>
<td>Purves, Lloyd</td>
<td>39</td>
</tr>
<tr>
<td>Qiu, Yulei</td>
<td>5N</td>
</tr>
<tr>
<td>Qu, J. L.</td>
<td>1U</td>
</tr>
<tr>
<td>Quijada, Manuel A.</td>
<td>04, 2X</td>
</tr>
<tr>
<td>Rachevski, A.</td>
<td>4B</td>
</tr>
<tr>
<td>Rachmeier, Laurel A.</td>
<td>2W, 30</td>
</tr>
<tr>
<td>Rahin, Roi</td>
<td>5U</td>
</tr>
<tr>
<td>Rambaud, D.</td>
<td>5K</td>
</tr>
<tr>
<td>Ramon, P.</td>
<td>5K</td>
</tr>
<tr>
<td>Ramsey, Brian</td>
<td>1Y, 27</td>
</tr>
<tr>
<td>Rando, R.</td>
<td>2J</td>
</tr>
<tr>
<td>Ranganathan, Jagannathan</td>
<td>27</td>
</tr>
<tr>
<td>Rankin, John</td>
<td>5C</td>
</tr>
<tr>
<td>Rao, Divya A.</td>
<td>3E</td>
</tr>
<tr>
<td>Rashevskaya, I.</td>
<td>48</td>
</tr>
</tbody>
</table>
Conference Committee

Symposium Chairs

Allison A. Barto, Ball Aerospace & Technologies Corporation (United States)
Suzanne K. Ramsay, European Southern Observatory (Germany)

Symposium Co-chairs

Satoru Iguchi, National Astronomical Observatory of Japan (Japan)
Alison B. Peck, Gemini Observatory (United States)

Conference Chairs

Jan-Willem A. den Herder, SRON Netherlands Institute for Space Research (Netherlands)
Shouleh Nikzad, Jet Propulsion Laboratory (United States)
Kazuhiro Nakazawa, The University of Tokyo (Japan)

Conference Program Committee

Hisamitsu Awaki, Ehime University (Japan)
Didier Barret, Institut de Recherche en Astrophysique et Planétologie (France)
Marshall Bautz, Massachusetts Institute of Technology (United States)
Marcos Bavdaz, European Space Research and Technology Center (Netherlands)
Steven E. Boggs, University of California, Berkeley (United States)
Jin Chang, Purple Mountain Observatory (China)
Wei Cui, Tsinghua University (China) and Purdue University (United States)
Marco Feroci, INAF - Istituto di Fisica dello Spazio Interplanetario (Italy)
Luigi Gallo, Saint Mary's University (Canada)
Varoujan Gorjian, Jet Propulsion Laboratory (United States)
James C. Green, University of Colorado at Boulder (United States)
Walter M. Harris, The University of Arizona (United States)
Fiona Harrison, California Institute of Technology (United States)
Margarita Hernanz, Consejo Superior de Investigaciones Científicas (Spain)
Brian D. Jackson, SRON Netherlands Institute for Space Research (Netherlands)
Caroline A. Kilbourne, NASA Goddard Space Flight Center (United States)
Olivier Limousin, CEA Paris-Saclay (France)
Grzegorz M. Madejski, Kavli Institute for Particle Astrophysics & Cosmology (United States)
Hironori Matsumoto, Nagoya University (Japan)
Mark L. McConnell, The University of New Hampshire (United States)
Kirpal Nandra, Max-Planck-Institut für extraterrestrische Physik (Germany)
Takaya Ohashi, Tokyo Metropolitan University (Japan)
Stéphane Paltani, Observatoire de Genève (Switzerland)
Giovanni Pareschi, INAF - Osservatorio Astronomico di Brera (Italy)
Biswajit Paul, Raman Research Institute (India)
Mikhail N. Pavlinsky, Space Research Institute (Russian Federation)
Paul S. Ray, U.S. Naval Research Laboratory (United States)
Taro Sakao, Institute of Space and Astronautical Science (Japan)
Hiroyasu Tajima, Nagoya University (Japan)
Tadayuki Takahashi, Japan Aerospace Exploration Agency (Japan)
Vincent Tatischeff, Institut National de Physique Nucléaire et de Physique des Particules (France)
Hiroshi Tsunemi, Osaka University (Japan)
Sarah E. Tuttle, University of Washington (United States)
Martin C. Weisskopf, NASA Marshall Space Flight Center (United States)
Richard Willingale, University of Leicester (United Kingdom)
Jörn Wilms, Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany)
Shuangnan Zhang, Institute of High Energy Physics (China)
William W. Zhang, NASA Goddard Space Flight Center (United States)

Session Chairs
1 UV I
 Shouleh Nikzad, Jet Propulsion Laboratory (United States)

2 UV II
 Taro Sakao, Institute of Space and Astronautical Science (Japan)

3 UV III
 Shouleh Nikzad, Jet Propulsion Laboratory (United States)

4 UV IV
 Sarah E. Tuttle, University of Washington (United States)

5 Decadal Study Overviews: Joint Session with Conferences 10698 and 10699
 James C. Green, University of Colorado Boulder (United States)
6 Optics I
Marcos Bavdaz, European Space Research and Technology Center (Netherlands)

7 Optics II
William W. Zhang, NASA Goddard Space Flight Center (United States)

8 Optics: Athena + Lynx
Giovanni Pareschi, INAF - Osservatorio Astronomico di Brera (Italy)

9 Lynx
Marco Feroci, INAF - Istituto di Astrofisica e Planetologia Spaziali (Italy)

10 Timing and Program
Marshall W. Bautz, Massachusetts Institute of Technology (United States)

11 Athena I
Paul S. Ray, U.S. Naval Research Laboratory (United States)

12 Athena WFI
Brian D. Jackson, SRON Netherlands Institute for Space Research (Netherlands)

13 Athena X-IFU
Didier Barret, Institut de Recherche en Astrophysique et Planétologie (France)

14 Operational
Alexander Stefanescu, European Space Agency (Netherlands)

15 Approved I
Alexander Stefanescu, European Space Agency (Netherlands)

16 Approved II
Takaya Ohashi, Tokyo Metropolitan University (Japan)

17 Approved III
Mikhail P. Pavlinskiy, Space Research Institute (Russian Federation)

18 Proposed I
Mikhail P. Pavlinskiy, Space Research Institute (Russian Federation)

19 Proposed II
Roland H. den Hartog, SRON Netherlands Institute for Space Research (Netherlands)
20 Detectors I
Daniel Maier, CEA-Saclay (France)

21 Detectors II
Hiroki Akamatsu, SRON Netherlands Institute for Space Research (Netherlands)

22 Gamma-ray I
Mark McConnell, The University of New Hampshire (United States)

23 Gamma-ray II
Kazuhiro Nakazawa, The University of Tokyo (Japan)