Aspheric lenses help meet the most demanding optical requirements while the precision injection molding technique hits the target for precision and cost. We developed a method of analyzing aberration terms in the transmitted “wavefront measurement,” determined by Shack–Hartmann wavefront sensing to estimate the fabrication errors of injection-molded aspheric elements. Considering aspheric element fabrication using a small training data set and F-measure fuzzy cluster analysis, an unsupervised learning method was applied to extract typical aberration terms from the wavefront polynomial. The experimental results suggest that these aberration terms, which are related to spherical (third-, fifth-, and seventh-order) and coma (third-order) aberration terms in the transmitted wavefront polynomial expansion, can be employed to estimate the surface error and decenter, respectively, of a lens from a specific mold cavity. The sampling lenses evaluated in the proposed measuring process were collected from different mold cavities according to their total working performance in the modulated transfer function measurement for the whole camera module. The performances of the typical aberration terms were discussed by comparing to the ones obtained from an interferometer and a profilometer. The proposed method could provide high detection efficiency and can thus be applied for the quality control of aspheric elements for mobile phones, where the existing errors are mainly spherical, coma, and astigmatism aberrations. |
CITATIONS
Cited by 1 scholarly publication.
Wavefronts
Aspheric lenses
Monochromatic aberrations
Error analysis
Optical engineering
Photovoltaics
Zernike polynomials