PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Multiple surface-plasmon-polariton (SPP) waves at a single free-space wavelength can be guided by the interface of a metal and a chiral sculptured thin film (STF). Multilayers comprising a chiral STF of lanthanum fluoride deposited on an aluminum thin film deposited on a glass substrate were fabricated. In some chips, a 5-nm-thick layer of silver nanoparticles was deposited at one of two selected depths in the chiral STF. The chips were then deployed in a prism-coupled configuration in a custom-built machine for surface multiplasmonic resonance imaging (SMPRI), in order to observe the effects of the silver-nanoparticle layer on the multiple SPP-wave modes. The angular locations of the SPP-wave modes were found to be not greatly dependent on whether the silver-nanoparticle layer was deposited after the first or the second period of a three-periods-thick chiral STF. With aqueous solutions of sucrose as infiltrant fluids, the angular shifts of the SPP-wave modes were determined as the refractive index of the infiltrant fluid increased. The use of a charge-coupled devices camera and upgraded motion-control equipment for SMPRI was found to increase the sensitivity of the chip. The silver-nanoparticle layer was also found to enhance the sensitivity.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Stephen E. Swiontek, Akhlesh Lakhtakia, "Influence of silver-nanoparticle layer in a chiral sculptured thin film for surface-multiplasmonic sensing of analytes in aqueous solution," J. Nanophoton. 10(3) 033008 (9 March 2016) https://doi.org/10.1117/1.JNP.10.033008