25 November 2021 Single image super-resolution reconstruction of remotely sensed images using MRF-2D phase congruency model
Shashikant Deepak, Dipti Patra, S. Manthira Moorthi
Author Affiliations +
Abstract

Recently, the deep learning (DL)-based solution for single image super-resolution reconstruction has been extensively used. Though these methods have shown exceptional results, the computational requirement is very high and requires high-end graphic processors. Motivated to establish an efficient method without such requirement, we propose a modified Markov random field (MRF) model and two-dimensional (2D) phase congruency-based single-image super-resolution reconstruction method for remote sensing images. The 2D phase congruency-based feature extraction method is used to compute features such as edge and texture maps to achieve higher accuracy in finding similar example patches in feature space. To address an essential aspect of successful texture reconstruction, we have incorporated a texture prior for the computation of joint probability in our work. Image Euclidean distance (Ieuc) is integrated to achieve higher accuracy in finding the similarity between image patches in feature space and modeling compatibility functions. The experimental results demonstrate that the results of the proposed method are at par with the DL-based methods and outperform other state-of-the-art methods in perceptual quality as well as peak signal-to-noise ratio and structural similarity index parameters. Moreover, it shows significant improvement in the texture regions while reconstructing sharper edges for ×4 upscaling.

© 2021 Society of Photo-Optical Instrumentation Engineers (SPIE) 1931-3195/2021/$28.00 © 2021 SPIE
Shashikant Deepak, Dipti Patra, and S. Manthira Moorthi "Single image super-resolution reconstruction of remotely sensed images using MRF-2D phase congruency model," Journal of Applied Remote Sensing 15(4), 046507 (25 November 2021). https://doi.org/10.1117/1.JRS.15.046507
Received: 14 May 2021; Accepted: 26 October 2021; Published: 25 November 2021
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Super resolution

Image quality

Lawrencium

Remote sensing

Magnetorheological finishing

Volume rendering

Feature extraction

Back to Top