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ABSTRACT. The analysis of budget link and free space optical system performances requires the
calculation of several metrics of the atmospheric turbulence-affected collected light.
In this work, assuming the collected light is focused into an optical fiber or over a
sensor positioned in the focal plane, we use the ABCD ray-matrix representation to
calculate the impact of atmospheric turbulence on the power in the fiber or power
over the sensor. Calculation of such metrics requires the knowledge of the trans-
mitted average power that enters the receiver aperture (power in the bucket) and
the long-term beam spread in the focal plane, from which the Strehl ratio can be
obtained.
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1 Introduction
The parameter that characterizes the mean radius of a Gaussian beam after propagation through
optical turbulence over a distance L from the source or transmitter is referred to as the long-term
beam spread.1–3 This parameter holds significance in various applications, particularly in directed
energy scenarios. In the realm of free-space optical communications, it becomes essential to
extend the theoretical modeling of the long-term beam spread to the focal plane, where an optical
detector or an optical fiber is commonly positioned.4

This paper extends the analysis of the long-term beam spread and Strehl ratio (SR) in the
focal plane, as explained in Ref. 4, to conduct an examination of other optical power-related
important metrics for budget link calculations. In particular, we calculate the average power
in the bucket (PIB) captured by the receiver aperture and, depending on the presence of a fiber
or a sensor in the focal plane, the average power into the fiber (PIF) or the average power over the
sensor (POS).

We perform this analysis for Gaussian beams with general geometries, encompassing
focused, collimated, and divergent configurations. Our methodology relies on the ABCD matrix
representation1 and accommodates scenarios where turbulence can deviate from the assumptions
of the Kolmogorov model.2
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2 Kolmogorov and Non-Kolmogorov Turbulence
Let us focus on the following power law-dependent non-Kolmogorov power spectrum:2

EQ-TARGET;temp:intralink-;e001;114;543Φnðκ; αÞ ¼ AðαÞ · C̃2
n · κ−α with 3 < α < 4; (1)

where AðαÞ ¼ Γðα−1Þ
4π2

cosðα π
2
Þ, ~κ ≡ ðκx; κy; κzÞ is the spatial wavenumber vector, α is the power

law, ~C2
n ¼ βðαÞ · C2

n is the generalized structure parameter with units ½m3−α�, βðαÞ is a constant
depending on α and has units ½m11∕3−α�, and symbol ΓðxÞ denotes the Gamma function. When
power law assumes value α ¼ 11∕3, the generalized structure parameter reduces to the structure
parameter C2

n with units ½m−2∕3� and Eq. (1) reduces to the Kolmogorov power spec-
trum, ΦnðκÞ ¼ 0.033 · C2

n · κ−11∕3.
The schematic of a free space optical communication system is shown in Fig. 1. A Gaussian

beam with spot radius W0 exits the transmitter aperture with geometry defined by a couple of
beam parameters ðΘ0 ¼ 1 − L

F0
;Λ0 ¼ 2L

kW2
0

Þ.
Here L is the path length, F0 is the radius of curvature of the wavefront at the transmitter, and

k is the wavenumber. After propagation, the beam is captured at the receiver aperture by a col-
lecting lens of diameter DG. The beam on the collecting lens has geometry described by Θ1 ¼
Θ0

Λ2
0
þΘ2

0

;Λ1 ¼ Λ0

Λ2
0
þΘ2

0

and it is focused at distance Lf behind the lens, where a detector or an optical

fiber is located.
Note that here we consider a hard aperture with diameter DG related to the soft aperture

Gaussian lens of radius WG by the known expression D2
G ¼ 8 · W2

G (see Ref. 1). The beam
in the focal plane has the geometry ðΛ2 ¼ L

Lf
· 1
Λ1þΩG

;Θ2 ¼ 0Þ, where ΩG ¼ 2L
kW2

G
and

FG ¼ Lf is the focal length of the collecting lens. The diffraction-limited beam spot radius,

W2 in the focal plane is related to the diffraction parameter Λ2 ¼ 2Lf

kW2
2

, therefore, W2 ¼
ffiffiffiffiffiffi
2Lf

kΛ2

q
.

Note that all the geometric parameters, Θ0;Λ0; Θ1;Λ1 and Θ2;Λ2 are free space parameters,
however they enter the equation describing the change in the on-axis mean irradiance in the focal
plane after propagation in turbulence, Eq. (8).

3 Long Term Beam Spread Analysis in the Focal Plane
The long-term beam spread is the parameter that physically describes the mean radius of the
Gaussian beam after its propagation in optical turbulence. The long-term spot radius in the focal
plane can be defined as in Refs. 1, 2, and 4

EQ-TARGET;temp:intralink-;e002;114;146WLT;f ¼ W2 ·
�
1þ Tfocal

�3
5; (2)

where Tfocal describes the change in the on-axis mean irradiance in the focal plane and character-
izes the beam spread due to turbulence on a long-term average. Indeed, such a term includes the
spread due to beam wander and small-scale turbulence cells diffraction.

Fig. 1 Free space optical communication scheme.
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As previously introduced, to calculate Tfocal we use the ABCD ray-matrix representation
shown in Ref. 1, and we neglect the effect of turbulence on the beam behind the lens (beam
path from the lens to the detector). Under this condition, we use two statistical terms1

EQ-TARGET;temp:intralink-;e003;117;700E1ð0;0Þf ¼ −2π2k2L ·
Z

∞

0

κ · ΦnðκÞ · dκ; (3)

and

EQ-TARGET;temp:intralink-;e004;117;653E2ð0;0Þf ¼ 4π2k2L ·
Z

1

0

Z
∞

0

κ · ΦnðκÞ · exp
�
−i

κ2

2 k
½γ1B1ðξÞ − γ�1B

�
1ðξÞ�

�
dκ dξ; (4)

where k ¼ 2π∕λ is wave number, λ is the wave length, ξ ¼ 1 − z∕L is the normalized z-distance.
For a beam focused on the photodetector/optical fiber we impose1

EQ-TARGET;temp:intralink-;e005;117;591

L
Lf

−
L
FG

þ 1 − Θ1 ¼ 0; (5)

and γ1 and B1ðξÞ reduce to [see Eq. (9), page 398 in Ref. 1 for details]

EQ-TARGET;temp:intralink-;e006;117;543

�
γ1 ¼ − L

LfðΛ1þΩGÞ ½Λ1ξþ ið1 − Θ1ξÞ�
B1ðξÞ ¼ Lfð1 − Θ1ξþ iΩGξÞ;

(6)

where Θ1 ¼ 1 − Θ1. Therefore, the exponential term can be expressed as

EQ-TARGET;temp:intralink-;e007;117;489−i
κ2

2 k
½γ1B1ðξÞ − γ�1B

�
1ðξÞ� ¼ −

Lκ2

kðΛ1 þ ΩGÞ
½ð1 − Θ̄1ξÞ2 þ Λ1ΩGξ

2�; (7)

and we obtain
EQ-TARGET;temp:intralink-;e008;117;439

Tfocal ¼ −2 · E1ð0;0Þf −E2ð0;0Þf
¼ 4π2k2L ·

Z
1

0

Z
∞

0

κ ·ΦnðκÞ ·
�
1− exp

�
−

Lκ2

kðΛ1 þΩGÞ
½ð1− Θ̄1ξÞ2 þΛ1ΩGξ

2�
��

dκ dξ:

(8)

Note that if Lf ¼ FG,
L
Lf

− L
FG

þ 1 − Θ1 ¼ 0 gives Θ1 ¼ 1, which means collimated beam

incidents the collecting lens. For the general case of a beam not arriving collimated on the lens
ðΘ1 ≠ 1Þ, to insure the focusing on sensor/optical fiber, the distance behind the lens has to be
Lf ¼ FG·L

LþðΘ1−1Þ·FG
. We remark that Eq. (3) diverges using the spectrum of Eq. (1) because outer

scale is supposed to be infinite. However, it can be shown that such a singularity is removed in
Eq. (8) and a finite result is found.

3.1 Kolmogorov Turbulence Case
Introducing Eq. (1) in Eq. (8) with α ¼ 11∕3, we obtain the Kolmogorov turbulence case result
for Gaussian beams

EQ-TARGET;temp:intralink-;e009;117;238Tfocal ¼ 1.33 · σ2R · ðΛ1 þΩGÞ−5
6 ·

8

3
·
Z

1

0

�
ð1 − Θ̄1ξÞ2 þ Λ1ΩGξ

2

�5
6

dξ; (9)

where σ2R is the Rytov variance.
For a beam arriving collimated on the collecting lens, Θ1 ¼ 1, the integral in Eq. (9) can be

expressed in closed form using the hypergeometric function 2F1ða; b; c; xÞ as

EQ-TARGET;temp:intralink-;e010;117;163Tfocal ¼ 1.33 · σ2R · ðΛ1 þ ΩGÞ−5
6 ·

8

3
· 2F1

	
−
5

6
;
1

2
;
3

2
;−Λ1ΩG



: (10)

For a plane wave incident on the collecting lens, ðΛ1 ¼ 0;Θ1 ¼ 1Þ we obtain

EQ-TARGET;temp:intralink-;e011;117;113Tfocal;pl ¼ 1.33 ·
8

3
· σ2R · Ω−5

6

G ¼ 3.55 · σ2R · Ω−5
6

G : (11)
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Finally, for a spherical wave incident on the collecting lens, ðΛ1 ¼ 0;Θ1 ¼ 0Þ we obtain the
same result as in Ref. 1

EQ-TARGET;temp:intralink-;e012;114;712Tfocal;sph ¼ 1.33 · σ2R · Ω−5
6

G ¼
	

DG

r0;sph


5
3

; (12)

where r0;sph ¼ ð0.1623 · C2
n · k2 · LÞ−3∕5 is the spherical Fried parameter.

For this specific spherical wave beam geometry, Andrews1,3 modified Eq. (12) to include
also the case when tip and tilt Zernike modes are both removed from the wavefront.

He introduced the coefficient 0.28 in the equation obtaining Tfocal;sph½tip-tilt corrected� ¼
0.28 · ðDG∕r0;sphÞ53.

3.2 Non-Kolmogorov Turbulence Case
Using the non-Kolmogorov turbulence power spectrum, Eq. (1) we obtain

EQ-TARGET;temp:intralink-;e013;114;570TfocalðαÞ ¼
1

4

α

sinðα · π
4
Þ · σ̃

2
RðαÞ · ðΛ1 þ ΩGÞ1−α

2 ·
Z

1

0

�
ð1 − Θ̄1ξÞ2 þ Λ1ΩGξ

2

�α
2
−1
dξ; (13)

where ~σ2RðαÞ ¼ −8π2 · Γð1 − α
2
Þ · 1α · sinðα · π

4
Þ · AðαÞ · ~C2

n · k3−
α
2L

α
2 is the non-Kolmogorov

Rytov variance defined in Ref. 2.
For a beam arriving collimated on the collecting lens, Θ1 ¼ 1

EQ-TARGET;temp:intralink-;e014;114;494TfocalðαÞ ¼
1

4

α

sinðα · π
4
Þ · σ̃

2
RðαÞ · ðΛ1 þ ΩGÞ1−α

2 · 2F1

	
1 −

α

2
;
1

2
;
3

2
;−Λ1ΩG



: (14)

For a plane wave incident on the collecting lens, ðΛ1 ¼ 0;Θ1 ¼ 1Þ and we obtain

EQ-TARGET;temp:intralink-;e015;114;443Tfocal;plðαÞ ¼
1

4

α

sin
�
α · π

4

� · σ̃2RðαÞ · Ω1−α
2

G : (15)

For a spherical wave incident on the collecting lens, ðΛ1 ¼ 0;Θ1 ¼ 0Þ and we obtain

EQ-TARGET;temp:intralink-;e016;114;386Tfocal;sphðαÞ ¼
1

4
·

1

α − 1

α

sin
�
α · π

4

� · σ̃2RðαÞ · Ω1−α
2

G : (16)

Although we found expressions also for the non-Kolmogorov case, we show only results for
Kolmogorov turbulence, α ¼ 11∕3.

For a specific set of parameters, we plot in Fig. 2 the term Tfocal as a function of the dif-
fraction parameter, Λ0 ¼ 2L

kW2
0

. Note that in our plots we change the spot size radius at the trans-

mitter,W0 from 0.001 m to 0.5 m covering the whole range from the near field Λ0 ≪ 1 to the far

field Λ0 ≫ 1. The value Λ0 ¼ 1 corresponds to the value of W0 ¼
ffiffiffiffi
2L
k

q
¼

ffiffiffiffi
λL
π

q
, which is the

radius of the first Fresnel zone. Note also that for the case of a collimated beam, the value Λ0 ¼
1 corresponds to the Rayleigh distance, zR ¼ 1

2
kW2

0, which forms a separation line between the
near and far field. All the following plots will show only results for collimated and focused beams
because of their relevance to free space communications. In terms of the formalism used in this
paper, it should be clear that the collimated beam at the transmitter has a wavefront radius of
curvature F0 ¼ ∞; the focused beam has F0 ¼ L. Note furthermore that F0 ¼ ∞; Λ0 ¼ 0 is
equivalent to the plane wave case at the transmitter and F0 ¼ L;Λ0 → ∞ is equivalent to the
spherical wave case.

We deduce from Fig. 2 that for a collimated beam and for this set of parameters, the spread
term Tfocal is maximum in the near field. Note that in the region Λ0 ≪ 1 a collimated beam
(Θ0 ¼ 1) is essentially a plane wave. This explains why the spread is higher: the radial dimension
of the beam geometrically intercepts a higher number of turbulence cells along the path. The
minimum value of Tfocal is reached at about 2.5 times the Fresnel distance (Λ0 ¼ 1) and, for
Λ0 ≫ 1, Tfocal increases up to the saturation value double than unity (it approaches the spherical
wave case, Λ0 → ∞;Θ1 → 0). On the other hand, a focused beam shows a lower spread than a
collimated one all over the range from the near field to the far field, where it approaches again the
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spherical wave case Λ0 → ∞;Θ0 ¼ 0. As for the collimated beam case, this is physically
explained by the radial dimension of a focused beam, which intercepts a lower number of tur-
bulence cells along the path.

In Fig. 3, we plot, for the collimated beam case, two spot radii in the focal plane, respec-
tively, the long-term beam spread WLT;f and the diffraction limited spot radiusW2, both of them
as a function of the diffraction parameter, Λ0 ¼ 2L

kW2
0

. We deduce from Fig. 3 that in the near field

Λ0 ≪ 1 (where plane wave model holds well) the long-term beam spread in the focal plane is
higher than in the far field Λ0 ≫ 1, where the spherical wave model holds. This explains the
saturation of both plots as well. Note also that the maximum diffraction-limited (no turbulence)
spot radius W2 can be obtained when the receiver is located at Fresnel distance, Λ0 ¼ 1.

Fig. 3 Long-term beam spread termW LT;f (blue) and the diffraction limited spot radiusW 2 (red) as
a function of the diffraction parameter Λ0 for a beam collimated at the transmitter (Kolmogorov
turbulence case only). Distance is fixed to the value L ¼ 2 km.

Fig. 2 Spread term T focal as a function of the diffraction parameter Λ0 for a beam collimated at the
transmitter (blue) or focused on the receiver (red) (Kolmogorov turbulence case). Distance is fixed
to the value L ¼ 2 km.
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However, in turbulence it is more beneficial to locate the receiver in the far field to reduce the
long-term spot size of the beam.

This conclusion also applies to a focused beam as shown in Fig. 4. Here we plot the same
parameters as in Fig. 3 but now for a beam focused on the receiver. Note how the value of the

long-term beam spread in the focal plane is essentially driven by the diffraction parameter Λ2 ¼
L
Lf

· 1
Λ1þΩG

¼ 2Lf

kW2
2

or, in other words, it is anchored on the diffraction-limited spot size W2.

To highlight the differences between the two beam geometries, we plot again in Fig. 5 the
long-term beam spread in the focal plane WLT;f as a function of the diffraction parameter Λ0 ¼
2L
kW2

0

for both a collimated and a focused beam (these two plots are the blue curves shown also in

Figs. 3 and 4). We deduce from Fig. 5 that in the near field a collimated beam shows a lower long-

Fig. 4 Long-term beam spread termW LT;f (blue) and the diffraction limited spot sizeW 2 (red) as a
function of the diffraction parameterΛ0 for a beam focused on the receiver (Kolmogorov turbulence
case). Distance is fixed to the value L ¼ 2 km.

Fig. 5 Long-term beam spread term W LT;f as a function of the diffraction parameter Λ0 for both
beam geometries: collimated and focused (Kolmogorov turbulence case). Distance is fixed to the
value L ¼ 2 km.
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term beam spread than a focused beam. However, they approach the same value when Λ0 ¼ 1

(Fresnel distance) or higher. In general, Fig. 5 suggests that independently from using a colli-
mated or focused beam, to obtain the smallest long-term spot size in the focal plane the receiver
should be located in the far field, Λ0 ≫ 1 (spherical wave model). We remark that in the far field
Eq. (12) for spherical wave model holds well.

4 Strehl Ratio Analysis
The SR as one of the most used metrics at the focal plane is defined as1

EQ-TARGET;temp:intralink-;e017;117;631SR ¼ Iturbð0Þ
Ið0Þ ; (17)

where Ið0Þ is the on-axis intensity in the focal plane of the beam after propagation in free space
(no turbulence) and Iturbð0Þ is the on-axis intensity of the beam in the focal plane after propa-
gation in turbulence (we remark here that turbulence acts only from the transmitter to the receiver
aperture, we neglect its effect behind the collecting lens). Using Eq. (9), the SR can be expressed
as1,3

EQ-TARGET;temp:intralink-;e018;117;535SR ¼ 1h
1þ TfocalðαÞ

i6
5

: (18)

For the spherical wave case ðΛ1 ¼ 0;Θ1 ¼ 0Þ and Kolmogorov turbulence, α ¼ 11∕3,
Eq. (18) reduces to the same result shown in Ref. 1 (see page 623)

EQ-TARGET;temp:intralink-;e019;117;465SRsph ¼
1h

1þ Tfocal;sph

i
6∕5 ¼

1h
1þ 1.33 · σ2R · Ω−5

6

G

i
6∕5 ¼

1h
1þ ðDG∕r0;sphÞ5∕3

i
6∕5 : (19)

We plot in Fig. 6 the SR as a function of the diffraction parameter Λ0 ¼ 2L
kW2

0

for the same

scenario of propagation as previous plots. We deduce from Fig. 6 that using a focused beam and a
receiver aperture located in the near field, Λ0 ≪ 1, is beneficial in terms of SR with respect to use
a collimated beam. Physical conclusions are the same as those of Fig. 2. (The beam geometry
defines the cross section of the beam while propagating through turbulence and focused beam
intercepts a smaller number of turbulence cells than a collimated beam.)

Fig. 6 SR as a function of the diffraction parameter Λ0 for a beam collimated at the transmitter
(blue) or focused on the receiver (red) (Kolmogorov turbulence case only). Distance is fixed to the
value L ¼ 2 km.
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5 Power in the Bucket
The transmitted mean power of a Gaussian beam with peak intensity A2

0 and spot radius W2
0 is

PTx ¼ 1
2
πA2

0W
2
0 [Watt]. The fraction of the mean power entering the receiver aperture after propa-

gation (distance L) is the PIB.3 Considering a Gaussian lens (soft aperture) with radius WG

related to the hard aperture diameter, DG by WG ¼ DG

2
ffiffi
2

p and supposing the turbulence affected

beam still Gaussian,1 the average hPIBi can be expressed as

EQ-TARGET;temp:intralink-;e020;114;652hPIBi ¼ PTx ·

2
641 − e

−2
�

WG
WLT;pupil

�
2

3
75 ½Watt�; (20)

where we ignored the atmospheric transmission loss caused by aerosols, etc., and the receiver
optical element transmission loss.

For a large beam (close to a plane wave) incident on the lens, an approximation is3

EQ-TARGET;temp:intralink-;e021;114;562hPIBiWLTpupil
≫WG

≅ PTx ·

	
WG

WLT;pupil



2

¼ PTx ·

	
WG

W



2

·
1h

1þ TpupilðαÞ
i6
5

; (21)

where WLT;pupil ¼ W½1þ TpupilðαÞ�35 is the long term beam spread at the receiver aperture, W is
the diffraction limited spot radius at distance L; and TpupilðαÞ ¼ 1

4
α

α−1 ½sinðα π
4
Þ�−1Λα

2
−1σ̃2RðαÞ is the

analogous of TfocalðαÞ at the receiver (pupil) aperture (see Refs. 1 and 2). Note that for

Kolmogorov turbulence Tpupilðα ¼ 11
3
Þ ¼ 1.33 · σ2R · Λ5

6.
We plot in Figs. 7 and 8 the percentage of PIB scaled by the transmitted power, PTx as a

function of the diffraction parameter Λ0 for several distances of the receiver for a collimated
beam at the transmitter or focused on the receiver (Kolmogorov turbulence case only). We
deduce from Figs. 7 and 8 that the maximum PIB is reachable when the beam is focused on
the receiver (see Fig. 8) and the collecting lens is located in the near field. Also, when the receiver
is positioned in the far field the spherical wave model [please see Eqs. (12) and (19)] holds well
and there is essentially no difference in using either beam geometry.

Fig. 7 Percentage of PIB scaled by the transmitted power as a function of the diffraction parameter
Λ0 for several distances of the receiver for a collimated beam at the transmitter (Kolmogorov tur-
bulence case only).
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6 Power over the Sensor
Similar to the PIB but now on the focal (detector) plane, the fraction of transmitted mean power
illuminating the sensor/detector (POS) can be expressed as

EQ-TARGET;temp:intralink-;e022;117;435hPOSi ¼ hPIBi ·
2
41 − e

−2·
�

WS
WLT;f

�
2
3
5; (22)

where WS is the radius of the sensor (supposing it has a circular geometry) and, as previously
mentioned, we ignored any additional loss, such as circulator loss and optical loss.3

Supposing the beam illuminating the sensor is consistently larger than the sensor itself (the
Gaussian beam across the sensor is almost a plane wave), an approximated expression of Eq. (22) is

EQ-TARGET;temp:intralink-;e023;117;339

hPOSiWLT;f≫Wsensor
≅ hPIBi ·

	
WS

WLT;f



2

¼ hPIBi ·
	
WS

W2



2

·
1h

1þ TfocalðαÞ
i6
5

¼ hPIBi ·
	
WS

W2



2

· SRfocal½Watt�: (23)

We plot in Figs. 9 and 10, respectively, the percentage of POS scaled by the transmitted
power, PTx as a function of the diffraction parameter Λ0 for several distances of the receiver
for a collimated beam at the transmitter and for a beam focused on the receiver
(Kolmogorov turbulence case only).

We deduce from Figs. 9 and 10 that, for both geometries and for this specific set of param-
eters, the maximum POS is reachable when Λ0 assumes values in the interval from two to five
times the Fresnel distance ðΛ0 ¼ 1Þ, depending on path distances (note that the peak shifts
slightly to the left at shorter distances). Also, there is essentially no difference of using the two
different beam geometries (collimated or focused beam) in the far field (spherical wave model
holds well in such a case).

7 Power into the Fiber
Supposing an optical fiber positioned in the focal plane, the mean power coupled into the fiber
can be expressed as3

Fig. 8 Percentage of PIB scaled by the transmitted power as a function of the diffraction parameter
Λ0 for several distances of the receiver for a beam focused on the receiver (Kolmogorov turbulence
case only).
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EQ-TARGET;temp:intralink-;e024;114;212hPIFi ¼ hPIBi · η · SRfocal ¼ hPIBi · η · 1h
1þ TfocalðαÞ

i6
5

¼ hPIBi · ηturb ½Watt�; (24)

where ηturb ¼ η · SRfocal, ηturb is the fiber coupling efficiency including the turbulence-induced
beam spread (it includes the reduction of power due to turbulence effects in focal plane, SRfocal)
and η is the free space (defined without keeping into account the turbulence) fiber coupling
efficiency. In our analysis, as already mentioned, we ignored any additional loss such as circu-
lator loss and optical loss.3

We plot in Figs. 11 and 12 the PIF as a function of the diffraction parameter Λ0 for several
distances of the receiver for a collimated beam at the transmitter or for a beam focused on the
receiver (Kolmogorov turbulence case only). Similar to the POS in Fig. 9, we deduce from
Fig. 11 (collimated beam) that, for this specific set of parameters, the maximum PIF is reachable

Fig. 10 Percentage of POS scaled by the transmitted power as a function of the diffraction param-
eter Λ0 for several distances of the receiver for a beam focused on the receiver (Kolmogorov tur-
bulence case only).

Fig. 9 Percentage of POS scaled by the transmitted power as a function of the diffraction param-
eter Λ0 for several distances of the receiver for a collimated beam at the transmitter (Kolmogorov
turbulence case only).
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when Λ0 assumes values in the interval from two to five times the Fresnel distance ðΛ0 ¼ 1Þ,
depending on path distances (note that the peak shifts slightly to the left at shorter distances).

Also, when the beam is focused on the receiver, we deduce form Fig. 12 that the maximum
PIF (for this specific set of parameters) is reached mostly in the near field. Finally, similarly to
previous metrics, we note that when the receiver is located in the far field the spherical wave
model holds well and there is essentially no difference in using either beam geometry (collimated
or focused beam case).

8 Conclusion
In this paper, we used the ABCD matrix formulation to obtain the analytical expressions of the
main optical power-related metrics for a Gaussian beam after propagation through atmospheric

Fig. 12 Percentage of PIF scaled by the transmitted power as a function of the diffraction param-
eter Λ0 for several distances of the receiver for a beam focused on the receiver (Kolmogorov tur-
bulence case only).

Fig. 11 Percentage of PIF scaled by the transmitted power as a function of the diffraction param-
eter Λ0 for several distances of the receiver for a collimated beam at the transmitter (Kolmogorov
turbulence case only).
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turbulence. Specifically, these optical power-related metrics are: the long-term beam spread in the
focal plane, SR, PIB, POS, and PIF. We investigated those metrics as a function of the diffraction
parameter, Λ0 ¼ 2L

kW2
0

.

For a specific set of parameters, we found that both the maximum SR and PIB are reachable
when a beam focused on the receiver is used and the collecting lens is located in the near field. In
addition, we found that for a collimated beam the maximum POS and PIF are reachable when the
diffraction parameter Λ0 assumes values in the interval two to five times the Fresnel distance
ðΛ0 ¼ 1Þ depending on path distances (the POS and PIF peaks shifts slightly to the left at shorter
distances). However, when the beam is focused on the receiver, the maximum PIF is mostly
reached in the near field.

Finally, in the far field and for all metrics analyzed in this paper, the spherical wave model
holds well and there is essentially no difference of using the two different beam geometries
(collimated or focused beam). Our results can be useful for the budget link analysis for free
space optical communications.

Code and Data Availability
The data that support the findings of this study are available from the corresponding author upon
reasonable request.
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