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classification. Machine learning is applied to the dataset of monostatic lidar unidirectional
reflectivity and passive longwave infrared degree of linear polarization features for material
classification. The hybrid sensor technique can classify materials with 91.1% accuracy even with
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1 Introduction

Many applications such as autonomous driving, surveillance, reconnaissance, and target engage-
ment require the capability to accurately classify objects. Both active (e.g., sonar, radar, and lidar
systems) and passive imaging (e.g., visible and infrared cameras) are popular solutions for object
classification. Active imaging sensors operating in the optical spectrum, such as lidar, actively
transmit light and detect backscattered light to characterize material properties, shape, and size.'
Lidar offers several advantages over other sensing modalities, including ranging (enabling point-
cloud rendering), pulse separation (enabling foliage penetration for hidden object classification),
directional material reflectance, and invariance to lighting.> Similar to lidar, passive infrared
sensors also capture material properties such as spectral reflectance as well as spatial informa-
tion; however, passive sensors rely on external sources to illuminate or emit radiance (e.g., the
sun illuminating the material or the material self-emitting due to body temperature). Both lidar
and passive infrared imaging have demonstrated excellent performance in object classification,
assuming sufficient pixel coverage of the object is obtained via imaging in order to infer spatial
information of the object (e.g., template matching).>* However, spatial-based recognition is only
successful if a significant portion of the object is visible. For scenarios where only a small frac-
tion of a surface on an object is imaged (e.g., hidden by obscuration), spatial information is of
limited utility. In this scenario, only spectral information is available for object classification
(this nonspatial classification can be considered material classification).

Polarization-sensitive passive infrared imaging has been employed and demonstrated to
improve discrimination between natural and manmade classes.>® This two-class discrimination
is typically based on contrast enhancement of a spatial area in the scene with the surrounding
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background. More sophisticated material classification techniques using passive polarimetric
imagers have also been investigated to classify material types.””'! In order to obtain successful
results, the techniques must make several assumptions such as a known orientation of the
material surface and a single illumination source. These assumptions may not be valid in actual
remote sensing applications utilizing passive sensors alone. In related work, the authors suggest
utilizing lidar to obtain object orientation and measurement geometry;'® however, no further
research has been presented regarding this suggestion.

In recent years, significant advancements have been made in machine learning techniques for
classification, specifically in the field of deep learning.'>'® A recently published survey'”
reviews deep learning-based hyperspectral image classification publications and compares sev-
eral strategies for this topic. The survey includes networks designed to only use the spectral
content of a single pixel, which is ideal for material classification. Unfortunately, material clas-
sification in passive imaging is difficult due to significant signal variability from the fluctuation
in external sources such as temperature, cloud cover, and diurnal c:ycle.17 This issue has been
demonstrated with a deep belief network trained using longwave infrared (LWIR) hyperspectral
imagery collected over multiple diurnal cycles.'® Results showed that a multiday augmented
deep network had a significant drop in performance when tested on a single day, demonstrating
a lack of generalization for the specific dataset utilized. In other work, a deep transfer learning
method has been proposed to improve the hyperspectral image classification performance in the
situation of limited training samples.'* The deep network design consistently demonstrates supe-
rior performance over other popular machine learning techniques. However, the design requires
spatial features which may be limited if an object is partially hidden. Similar work utilizes deep
learning techniques to combine hyperspectral imagery with visible'® and lidar'® modalities.
These publications suggest that combining information using machine learning techniques will
greatly enhance classification performance.

In this paper, we present a hybrid passive polarimetric LWIR imager and lidar combination
for material classification. Lidar is commonly paired with hyperspectral imagery to leverage
height and shape features of lidar with spectral characterization obtained by passive sensors
operating at many wavelengths.'®*° Similarly, polarimetric imagery also is typically fused with
hyperspectral imagery.”'>* In contrast to the aforementioned research, which relies on the hyper-
spectral characterization of materials to distinguish material types, we combine passive polari-
metric and active reflectivity features of the dual imaging architecture. The specific imaging
capabilities we use include degree of linear polarization (DoLP) from passive polarimetric
imaging, monostatic unidirectional reflectance (f,) from lidar imaging, and viewing orientation
(0, ¢). Viewing orientation is assumed to be available using lidar three-dimensional (3-D) point-
cloud ranging. Very limited research has been published on the combination of lidar with passive
polarimetric imaging to improve classification performance, which we believe is an important
aspect in machine learning applications for infrared imaging.>* The innovation of our work
includes (1) the architecture of utilizing 0, ¢, and f, from lidar in combination with DoLP mea-
sured by a passive polarimetric imager, (2) a unique dataset of 34 diverse material types imaged
the hybrid system at eight observation angles, and (3) material classification results from com-
bining the measurements, viewing angle, and training data. Therefore, the emphasis of this paper
is the introduction and demonstration of the proposed hybrid sensing technique for material
classification. We believe advanced classification methods could be designed for specific appli-
cations based on this work.

The remainder of this paper is organized as follows. In Sec. 2, we describe the sensing modal-
ities used in this work, including the sensor data representation. Then, Sec. 3 presents a solution
for material classification focused on the joint usage of passive polarimetric and lidar infrared
imaging. The proposed multisensor architecture utilizes observation angle as well as multiple
measurements taken from each sensor to classify material type. A demonstration of an example
application is also presented. In Sec. 4, we demonstrate the feasibility of material classification
with the proposed multisensor architecture by training and testing six popular machine learning
techniques. The measurement and processing of the dual modality dataset is explained.
Classification accuracy of the multisensor architecture is compared to the performance of each
sensor operating independently. Finally, we conclude our work and future research direction in
the last section.
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2 Sensors and Data Representation

The machine learning application presented in this paper utilizes a hybrid imaging architecture
consisting of lidar and passive polarimetric sensors to capture f, and DoLP features, respec-
tively. The independent sensing modalities present distinct characteristics of a material; however,
both depend on the same description of the interaction of the electromagnetic field with materi-
als. Consider the scenario of an optical signal with wavelength A (nm) incident on a surface from
the direction described by #; and ¢;, and reflecting into the direction of 8, and ¢,. The reflected
radiance L, (Wm™2sr™!) carries information about polarimetric interactions of the incident
irradiance E; (Wm™2), and is expressed as

Li(0,.¢,.2) = M,(0;.9:.0,.¢,. )E;(6;. ;. 2). ey

where M, (sr™!) is the polarimetric bidirectional reflectance distribution function which is a
4 x 4 Mueller matrix.*>” L, and E; are 4 x 1 column matrices in Stokes notation, described as

S=1[so s1 s s3], 2

where S represents the polarimetric state of the signals described by Stokes parameters sg, 57, 5,
and s5. Stokes notation allows s, to represent total signal intensity, s; to represent horizontal and
vertical linear polarizations, s, to represent linear polarization oriented at 45 deg and 135 deg,
and s to represent circular polarization.’® Equation (1) is the general representation of an optical
signal interacting with a material surface. The data representation of signals captured by lidar and
passive polarimetric imaging is further discussed in the following sections.

2.1 Lidar

The lidar features utilized in our machine learning technique include unidirectional reflectivity
and range. Reflectivity is used to characterize the material, and range is used to estimate the
observation angle of the material surface. The direct detection pulsed lidar sensor utilized in
this work operates at the 1.55-ym wavelength and uses a linear mode avalanche photodetector.
The system transmits a 5-ns full-width at half-maximum laser pulse which strikes and scatters
opaque surfaces. The intensity of the backscattered laser energy is captured by the photodetector
and digitized by a receiver. The time elapsed between the transmitted and reflected pulses is used
to calculate range. Multiple range measurements across a fraction of a surface can be used to
estimate angle of incidence. The peak of the backscattered pulse is used to estimate reflectivity.

As shown in Fig. 1(a), active sensors are typically dominated by unidirectional radiance
represented by Eq. (1) with 8, = 6; and ¢, = ¢;, which we denote as 6 and ¢, respectively.
However, the receiving detector is polarization insensitive; therefore, only the s, component
of L, is measured. Furthermore, we assume nondiagonal elements in the first row of the
Mueller matrix for our data to be zero. This assumption is supported by experimental
measurements”>*’ of diverse materials which show that nondiagonal Mueller matrix elements
of most opaque surfaces that might be observed in a remote sensing application are approxi-
mately zero. Using the stated simplifications, Eq. (1) is approximated for our lidar system as

Active Passive
Unidirectional Specular / Emission ‘
FrOr by = ,00) O = 0y = &y +m) o SeOr @)

Diffuse

fr(6i, 0y, by, &)
(a) (b)

Fig. 1 Depiction of common geometries for radiometric sources in (a) active (unidirectional) and
(b) passive (specular, diffuse, and self-emission) imaging.
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Lr(e’ ¢7’1) :fr(ev ¢5/1)E1(97 ¢7l)7 (3)

where L, and E; are the scalar s, elements of L, and E;, and f, (sr™!) is the top-left element
of M which represents the scalar monostatic bidirectional reflectance distribution function
(mBRDF).

Due to practical complications in measuring E; in Eq. (3), f, is defined in alternative form as

P,

fr(0.9.4) = PO cos 0 “4)

which describes the scattered power P, (W) per unit solid angle Q (sr) normalized by the
incident power P; (W) and the cosine of the detector zenith angle € measured relative to
the material surface.’® Theoretically, an active imaging system could be calibrated to have a
known P; by measuring direct output power and estimating range and atmospheric attenuation.
Likewise, @ could be estimated by calculating surface orientation using lidar 3-D point-cloud
data, and Q is calculated from range and aperture size. Therefore, f, could be calculated
and utilized for material classification. An alternative method to calculate f, in experimentation
utilizes a reference material with a known directional-hemispherical reflectivity ppygr, such as
Spectralon, in addition to P, and 6. This is a favorable method because P; can be difficult to
calibrate, however, ppyr can be accurately measured using laboratory instruments. Since
Spectralon is manufactured to closely approximate ideal Lambertian diffuse reflectors, the

Spectralon f, is assumed to be pD“TR(ﬂ) which has been supported by laboratory measurements.

Finally, mBRDF is calculated as

P, cos & ppyr(4)
Picosd =&

[r(0.¢.2) = ; ®)

where Pj is the power measurement (or backscatter pulse peak) of the Spectralon, P, is the
power measurement of the sample, and the incident power is characterized to be constant
for each measurement (Spectralon and sample).’*! In this paper, a database of material f,
is collected using the technique described in Eq. (5).

2.2 Passive Polarimeter

The polarimetric feature, DoLP, is captured using a cooled Polaris 640 LWIR Imaging
Polarimeter, manufactured by Polaris Sensor Technologies, Inc.*” The sensor has an operating
wavelength of 7.5 to 11.1 ym and up to a 120-Hz frame rate. The Polaris 640 system is equipped
with a fixed polarizer and rotating retarder imaging polarimeter, which takes measurements
of linear polarization oriented at 0 deg, 45 deg, 90 deg, and 135 deg such that L geg, L4s deg-
Log geg» and L35 4, are scalar measurements of L. The measurements are combined using
the modified Pickering’s method® described as

s L degt+Las deg+Loo deg TL135 deg
0 2
N L - L
L= _ 0 deg 90 deg i (6)
52 Lys geg — L135 deg
53 0

to obtain a polarimetric Stokes column matrix. Since circular polarization emitted from an object
is extremely uncommon, most passive polarimeters (including the one utilized in our experi-
ments) do not capture s4;°° therefore, the s; element is set to zero.

A common characterization of polarization in passive polarimetric imaging is DoLP, which is

calculated from L as

/2 2
DoLP = S17+s2 7

So
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and describes the fraction of the power that is linearly polarized. Due to the nature of the quan-
tities involved, DoLP ranges from zero to one (i.e., zero indicates no polarization is detected,
and one indicates the signal is completely polarized). As depicted in Fig. 1(b), passive sensors
capture the sum of specular and diffuse reflected signals as well as self-emitted radiance.**
Emitted radiance L, (Wm~2sr™!) is described as

Le(0.¢.2) =M, (0.¢.1)[E,(4) 0 0 0], ®)

where E, (Wm™2) is the intensity of radiance derived from the surface body temperature,
M, (sr™!) is the directional polarimetric emittance, which is a 4 x4 Mueller matrix,”’ and
0, ¢ is the observation angle relative to normal. The specular and diffuse reflected radiance are
each described by Eq. (1). We assume the emitted radiance is significantly larger than diffuse and
specular reflectance within the LWIR waveband. Through experimentation, it has been shown
that this is a valid assumption when imaging objects heated to ~100°C with a cold sky.*
Therefore, the experiments in this paper are conducted on heated samples in a controlled indoor
laboratory. Passive polarimetric measurements of an object are taken with the retarder waveplate
at angles 0 deg, 45 deg, 90 deg, and 135 deg so that the column matrix in Eq. (6) can be con-
structed. Finally, DoLP is calculated using Eq. (7).

The fundamental properties of polarization suggest that polarimetric measurements could be
useful features for material classification, specifically in discriminating rough and smooth
surfaces.”® This is typically explained by representing the texture of the surface as multiple
microfacets with orientations following a random distribution. The angle-dependent polarization
from each microfacet is incoherently summed when simultaneously observing multiple micro-
facets of a rough surface, resulting in an unpolarized signal. Conversely, smooth surfaces main-
tain a consistent orientation across the surface and therefore preserve the polarimetric signal.

2.3 Data Representation

This paper advances material classification by utilizing the feature set consisting of measure-
ments of lidar and passive polarimetric sensors both characterized over a well-defined set of
observation angles. The number of unique observation angles and the specific angles utilized
are expected to significantly affect classification performance. For example, from Fresnel reflec-
tance theory, DoLP is known to increase as observation angle relative to normal increases.’’
Concerning the mBRDF angle dependence, perfectly diffused Lambertian surfaces have uniform
f, for all angles; however, realistic surfaces typically have specular components with higher
values within the normal incidence specular lobe.** We assume the observation angle can be
determined by estimating surface orientation relative to normal using lidar 3-D point-cloud
imagery. The observation angle is represented as € and is restricted to be in the monostatic plane
of incidence such that ¢ = 0 deg. Furthermore, in many applications, multiple observation
angles can be measured on a single material surface, due to a moving platform or moving object.
The features are jointly represented by feature vector X as

[ fr(el) 1"
fr(HZ)

(0
X(0,,0,,....0y) = D{)L(szg) | N
1

DoLP(6,)

| DoLP(6y) |
where N represents the total number of observation angles at which the measurements are taken.
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3 Hybrid Sensor Architecture for Material Classification

In this section, we establish the first-ever implementation of hybrid passive polarimetric imager
and lidar combination for material classification. While we believe the combination of these
modalities offers several benefits, this paper is focused specifically on the classification of
material type. Material classification could be extremely useful for detecting partially hidden
objects or could assist spatial-based object classification. As discussed in the previous section,
the hybrid sensing architecture we propose uses f, and DoLP features measured by the lidar and
the passive polarimeter sensors, respectively, which are simultaneously captured at a colocated
observation geometry. The proposed hybrid sensing architecture requires a state-of-the-art
linear-mode lidar capable of obtaining high-resolution 3-D point-cloud and reflectivity measure-
ments for each pixel. The point-cloud data are used to estimate surface orientation and thus
observation angle 0 relative to the surface normal. Both lidar and passive polarimetric infrared
intensity values are utilized to calculate f, and DoLP. The required processing steps are shown in
Fig. 2. First, lidar and passive polarimetric measurements are captured to form 3-D point-cloud,
intensity, and Stokes data. Measurements could be repeated to capture multiple observation
angles. The features are combined to form X from Eq. (9), and material classification is imple-
mented. Details of the classification process are presented next, and the training and parameter
optimization of the classifier is discussed in Sec. 4.4. If the proposed architecture is utilized in
applications where long ranges or adverse weather conditions are present, the measurements
must be corrected to compensate for environmental effects. In Sec. 3.2, as a notional hybrid
sensing system, which represents one of several applications benefiting from this progressive
technology is presented, and solutions to potential obstacles of utilizing the proposed technology
in a tactical environment are discussed.

3.1 Material Classification

Since both f, and DoLP are expected to have consistent and repeatable measurements in most
situations, a supervised learning algorithm is considered for the hybrid sensor material classi-
fication in this paper. In supervised machine learning, labeled sample data is used offline to
model the mapping between input examples and the known output classes.*® We utilize features
measured against laboratory data of a diverse material dataset to train the supervised classifier in
identifying material type. The key idea of supervised learning is to estimate a decision boundary,
which separates each class from one another based on the training data. We propose using a
support vector machine (SVM) for classifying material type due to the proven success of this
classifier in similar applications such as hyperspectral imaging for land cover classification and
target detection.** However, we believe advanced classifiers could be designed, based on the
proposed technique (i.e., hybrid sensing with known viewing orientation), that optimize perfor-
mance for a specific application. The SVM presented in this paper demonstrates the general
application of material classification.

The SVM classifier tries to find the optimal separating hyperplane that maximizes the margin
between the closest training samples of each class. The hyperplanes are typically formed in high-
dimensional space using kernel transformation functions;*' and boundary pixels (i.e., support
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vectors) are utilized to create a decision surface.*’ Therefore, SVM classifiers are inherently
binary classifiers designed to solve two-class problems. A collection of SVM classifiers must
be implemented to separate multiple classes. Multiclass designs include one-versus-all (one
SVM classifier for each class) and one-versus-one (one SVM classifier for each pair of classes).
The SVM classifier is a particularity popular solution for machine learning when there are a
limited number of training samples available,*> which is typically the case in nonconventional
imaging, such as hyperspectral, polarimetric, and lidar. The implementation, parameter selection,
and classification accuracy of material classification for our proposed hybrid sensing system are
presented in Sec. 4.

3.2 Notional System

The proposed hybrid sensing architecture is beneficial to a multitude of machine learning appli-
cations, such as automatic target detection, land cover classification, autonomous driving, and
machine vision in manufacturing. The actual system parameters of the lidar and passive polari-
metric sensors should be carefully selected to optimize the performance for the specific appli-
cation. For example, commercially available lidar systems designed for autonomous driving
currently utilize high scanning rates and a large field-of-view, requiring high repetition rate lasers
with moderate power and ~200-m maximum distance.**~*¢ In contrast, scanning linear-mode
lidar in 3-D mapping remote sensing applications typically requires a higher power laser and
operates at an altitude of ~1000 to 5000 ft,*® with operating ranges of ~1 km or greater. In this
section, we demonstrate the feasibility of the proposed architecture by presenting a notional
implementation for a remote sensing application.

To support our notion of hybrid sensing, a tactical demonstrator is fully assembled using
the commercially available passive polarimetric imager manufactured by Polaris Sensor
Technologies, Inc. as described in Sec. 2.2, and a custom lidar system owned and operated
by the Air Force Research Laboratory (AFRL) at Eglin Air Force Base. Parameters for the dem-
onstration are shown in Table 1. The system is operated to capture imagery at ~1.5 km from a
25-m tower. A flat white painted aluminum 1.22 m X 1.52 m panel is placed in a predominately
natural scene at a 1.469-km slant range and 40-deg observation angle. Example imagery from
the demonstration is shown in Fig. 3. At this range, there are ~88 and 12 pixels on the panel
with the lidar and passive systems, respectively. For this application, the passive system is
designed to have a larger field-of-view to locate possible objects-of-interest, and the lidar is
cued to image specific areas with high resolution. The presented notional hybrid system dem-
onstrates the feasibility to capture imagery using a tactical system in a relevant application.

Table 1 Parameters of hybrid passive polarimetric and lidar demonstrator system.

Passive system parameters Lidar system parameters
Sensor Polaris Vela 640 Sensor AFRL Custom
Wavelength 7to 11.1 um Wavelength 1.55 um
Polarization 0 deg, 45 deg, Detector InGaAs LmAPD

90 deg, and 135 deg

Pixels 640 x 480 Scanner X-Y galvanometers
FOV 8 degx6 deg FOV 0.9 degx0.9 deg
IFOV 220 urad Laser divergence 60 urad
Integration time 52.267 us Laser power 270 mW
Frame rate 120 Hz Laser rate 30 kHz
Max range measured 5 km (100°C blackbody) Max range measured 2 km (10% Spectralon)
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@ S

Fig. 3 Imagery from the hybrid sensor demonstration showing (a) f, from the lidar system and
(b) DoLP from the passive polarimetric imager, with the flat white painted aluminum panel circled
in red.

If the proposed architecture is utilized in applications where long ranges or adverse weather
conditions are present, the lidar measurements must be corrected to compensate for atmospheric
attenuation and signal loss using a radiometric model. The first technique to mitigate this issue is
choosing an operating wavelength of the laser to be within a high transmission window. In addi-
tion, we suggest utilizing a popular radiometric model, such as MODTRAN*’ or LEEDR,* as
well as current meteorological data, to correct for atmospheric effects. The passive polarimetric
signal DoLP is not altered due to signal attenuation, but sources of noise such as diffuse reflected
LWIR radiance could affect the polarimetric signal. In this paper, we do not attempt to correct
measurements taken in adverse conditions and long ranges. Instead, we limit our measurements
in this paper to close range under ideal conditions and then introduce a generic error source into
the test database when evaluating the classification accuracy (discussed in Sec. 4.4). The error
term represents effects of long range imaging and atmospheric conditions (or possible errors
resulting from the correction of those effects). Adding error to our data alters the signal-to-ratio
(SNR), which is varied to represent multiple degrees of accuracy that may be expected. Basically,
longer ranges and more difficult imaging environments are expected to reduce the SNR, and
we evaluate performance against varying amounts of SNR.

4 Experiment Results

In this section, the proposed architecture is evaluated for material classification. We present a
unique common dataset for polarimetric LWIR and lidar measurements against a diverse set of
materials. Next, the dataset is analyzed and trends from each class are discussed. Then, the
implementation of supervised learning is fully described. Finally, a comprehensive evaluation
of material classification performance for the machine learning algorithms is presented.

4.1 Dataset

To our knowledge, there are no lidar datasets with LWIR passive polarimetric imagery available
to evaluate the performance of material classification algorithms. Therefore, an experiment is
conducted to obtain a unique characterization of a diverse set of materials with both active and
passive polarimetric infrared imaging systems. The experiment is conducted to collect f, and
DoLP of 34 materials imaged at eight observation angles. The sample materials consist of
painted aluminum panels (of various colors and gloss), painted tile thinset (of various colors
and texture), naturally occurring objects (e.g., leaves, pine needle, and bark), asphalt, concrete,
brick, rubber, metal, roof shingle, plywood, plexiglass, and cardboard, as shown in Fig. 4.
The diverse set of materials are categorized into 19 classes, which are labeled as classes a
through s. Measurements of each material are analyzed in Sec. 4.2, and class groupings are
used for classification in Sec. 4.4.
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Fig. 4 Materials utilized in experiments separated into 19 classes labeled a through s. For each

material, a picture and name are shown (there are two green and two black painted aluminum
samples made by different paint vendors).

Each sample is placed on a rotation stage controlled by an articulating tripod which has the
ability to pan and tilt via computer-controlled instruction. Samples are imaged at angles 0 deg to
70 deg in 10-deg increments where 0 deg is normal incidence (as determined by a mirror) and
¢ is held constant at O deg. The entire scene remains static for each iteration of imaging. The
scanning lidar system captures pulse intensity at each pixel of the image by measuring the peak
power of the backscattered pulse. A region of interest (ROI) is manually selected in the lidar
imagery to represent approximately the same portion of the material for all angles, as shown in
Fig. 5. The ROl is selected to include all of the sample surfaces except for areas near the edge.
The ROI consists of at least 1800 pixels at normal and 250 pixels at 70 deg. The measurements
are taken in a controlled laboratory setting at a distance of ~9 m. Measurements are also taken
against calibrated Spectralon panels with ppyr accurately measured at the 1.55-um wavelength.
Using the mean power measurements of the materials and Spectralon panels, f, is calculated
using Eq. (5).

The entire experiment process is repeated using an LWIR polarimeter in place of the lidar
system. In order to capture the emissive properties of the material, a heating element is utilized to
maintain an ~100°C surface temperature. The passive polarimeter measures the Stokes column
matrix, as described in Eq. (6) (example imagery is shown in Fig. 5). ROIs are manually selected
and consist of at least 3000 pixels at normal observation angle and 650 pixels at 70 deg. Finally,
DoLP is calculated using Eq. (7). More details of the experiment setup and methodology have
been recently published.?*

The sample mean X and standard deviation cgy of the pixel values within each ROI are
calculated to statistically represent the experiment measurements as random variables. For sim-
plicity, both f, and DoLP are approximated as Gaussian distributions. The feature set of Eq. (9)
is formed using the experiment measurements of each material described as

(b)

Fig. 5 Experiment setup showing sensor measurements of (a) lidar normal to material surface,
(b) lidar at 70 deg, (c) LWIR intensity at normal, and (d) LWIR intensity at 70 deg. ROls are shown
in blue for the active system.
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Fig. 6 Lidar f, mean measurement (within ROI) versus observation angle for materials in classes
(a) a-c, (b) d-f, (c) gand h, (d) i-k, (e) I-n, and (f) o—s. Standard deviation is shown as error bars for
each data point.

X(91,92, e ,QN) = X(Ql,ﬁz, . ,91\/) +7’]S\/(01,02, . ,QN), (10)

where 61, 0,, . .., 8y are observation angles 0 deg, 10 deg, 20 deg, 30 deg, 40 deg, 50 deg, 60 deg,
and 70 deg. The vector X contains the calculated sample mean at observation angles one through
N. The vector gy contains random numbers representing sample variance due to surface texture.
The Gaussian distributions used to generate 75y are zero mean and the angle-dependent standard
deviations for each element of 7gy are represented by the vector oy (0, 65, . .., 0y), which con-
tains the calculated standard deviation at observation angles one thorough N. The statistics X and
ogy of lidar and passive polarimetric measurements for each of the 34 materials is presented in
Figs. 6 and 7, respectively. Each curve represents a material measured against observation angle.
Data points on the curves represent the mean and error bars on each curve represent one standard
deviation of the measurements within the ROI. The classes are separated into six figures with
different y axis limits to better view the data in the charts.

4.2 Data Analysis

Next, we analyze the dataset obtained with the hybrid sensor experiment. Inspection of f, in
Fig. 6 shows the sample mean of materials with semigloss or glossy paint have extremely large
f, near normal (due the specular lobe of the lidar geometry) and low diffuse f, at other angles.
The f, of all other materials tends to vary slowly with observation angle because the backscatter
energy is mostly diffused reflectance. Dark color paints (i.e., green, black, and camouflage) have
much lower f, than light colors (i.e., tan, white, and gray) because the darker colors absorb some
of the laser energy. Additional groups of materials with considerably low reflectance include
asphalt, rubber, and rusted steel. Materials painted light colors and brick have the overall highest
f - The natural materials, roof, concrete, cement block, cardboard, plywood, and plexiglass have
similar f, that is typically more than dark paints but less than light paints.

According to Fresnel polarization theory,?® the magnitude of linear polarization is zero at
normal observation angle and increases as a function of angle and refractive index of the
material. For rough surfaces, the polarization is degraded as the signal from each microfacet
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Fig. 7 Passive polarimeter DoLP mean measurement (within ROI) versus observation angle for
materials in classes (a) a-c, (b) d-f, (c) g and h, (d) ik, (e) I-n, and (f) o-s. Standard deviation is
shown as error bars for each data point.

is incoherently summed.** In our dataset, DoLP is approximately zero near normal observation
angle and increases with angle for almost all materials (resulting in a —s; and +DoLP). The only
exception is plywood which has a reflected component that is prevalent at observation angles less
than 20 deg (+s; and +DoLP). Aluminum with light or dark paint color has the highest DoLP
due to very smooth surfaces. Natural materials have the lowest DoLP, due to rough surfaces.
Likewise, the smooth, medium, and rough textured thinset has DoLP inversely proportional to
the surface roughness. Many of the measurements within a class maintain very similar signa-
tures. For example, all materials of the semigloss light painted aluminum class (class ¢) have
approximately the same polarimetric signal for all angles [as shown in Fig. 7(b)]. However, in
comparison to the f, measurements, DoLP appears to be less diverse between classes. For exam-
ple, class e is very similar to classes d and f. Therefore, classification may be more difficult with
DoLP. Overall, the combined dataset is seen to agree with reflectance and polarization theory.

As previously discussed, the standard deviation represents material variation due to surface
texture. In lidar imagery, standard deviation is relatively small compared to the mean, with the
exception of the glossy and the camouflage painted aluminum panels. The glossy paints have a
nonuniform specular spot at the center of the material near normal observation angles. The cam-
ouflage sample has three different paint colors within the ROI which causes a high standard
deviation. As anticipated, the standard deviation of DoLP is highly correlated with the surface
roughness (i.e., rough and smooth surfaces have high and low standard deviation, respectively)**
and mixed material types. For example, thinset with rough texture has higher standard deviation
than the smooth thinset. Similarly, oak leaves and rusted steel have significantly higher variance
due to the diverse materials within the ROI (i.e., colors of leaves, rust deposits on steel, etc.).

4.3 Implementation of Supervised Learning

The complete dataset which is composed of sample mean and standard deviation presented in
Figs. 6 and 7 is utilized to generate a database for supervised machine learning and classification
performance evaluation. The initial database contains 34 row vectors, where each 1 X 16 row
vector contains f, and DoLP measured at eight observation angles, as described in Eq. (9).
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For each of the 34 material samples, 100 observation vectors are generated using the sum of
sample mean X and randomly distributed Gaussian noise 5gy characterized by the material’s
variance ogy, as described in Eq. (10). The entire database is organized as a 3400 X 16 matrix,
to represent an ensemble of measurements of the material. Class labels are assigned to each
observation following the class grouping a through s as indicated in Fig. 4. The generated data-
base represents intrinsic variation due to surface texture and inconsistent material properties
across the sample surface with no measurement noise added (e.g., rust, discoloration, grain,
nonuniform mixtures, etc.). To address measurement noise, we introduce a separate noise com-
ponent, which is described in Sec. 4.4.2.

We propose the use of SVM to implement material classification, as discussed in Sec. 3.1;
however, we emphasize the hybrid sensing architecture is prevailing over single modality sens-
ing while using any one of an assortment of supervised machine learning techniques. Therefore,
in addition to SVM we also implement decision tree,*® discriminant,*’ Naive Bayes,® k-nearest
neighbors (KNN),%! and neural network> to prove the benefit of hybrid sensing. All classifiers
are implemented using either the Statistics and Machine Learning or Deep Learning toolboxes
from MATLAB.> First, the database is loaded into the Classification Learner tool in MATLAB
and the option to partition into five disjoint folds is selected. This option utilizes four folds for
training and one fold is used for testing. To reduce classification variability, five rounds of cross-
validation are performed using different partitions, and the validation results are averaged to
obtain the final classification accuracy. Next, each of the six classifier techniques is individually
selected within the tool. Parameters of each classification method are iteratively adjusted as
shown in Table 2. All combinations of the parameters are exhaustively exercised, and the
optimal result is utilized in the final accuracy metric for each implementation. Please note:
best-performing parameters within the listed parameter-space change depending on the number
of viewing angles (i.e., features), SNR, and classes of the dataset. Furthermore, future imple-
mentations could utilize automatic selection of the parameters via optimization tools provided by
MATLAB to optimize the classifier for specific applications. Finally, the classification learner
tool allows the user to select a subset of the features in the database to utilize in training and

Table 2 Parameter space explored for each classification technique.

Classifier Parameters
SVM Kernel Gaussian, linear, quadratic, cubic
Kernel scale 1, 4, 16
Box constraint 1, 10, 100
Multiclass method One-versus-one, one-versus-all
Decision tree Maximum splits 4, 20, 100
Split criterion Gini’s diversity index, Twoing rule,
maximum deviance reduction
Discriminant Type Linear, quadratic
Covariance matrix Full, diagonal
Naive Bayes Kernel Gaussian, Epanechnikov, triangle, box
kNN Number of neighbors 1, 10, 20, 100
Weight Equal, inverse, squared inverse
Distance metric Euclidean, Chebyshev, Minkowski,

Mahalanobis, cosine, city block
Neural network Number of neurons 10, 15, 20, 30, 50

Structure Feed-forward, cascade-forward
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testing. In the following section, we present results from the experiment using various combi-
nations of viewing angle measurements.

4.4 Performance Evaluation

To fully demonstrate the added benefit of multisensor material classification, supervised tech-
niques are utilized with features of individual sensors as well as the proposed hybrid system.
We also experiment with multiple combinations of observation angles. First, results of a single
observation angle using f, only, DoLP only, and hybrid features are evaluated without
measurement noise added. Then, performance using a single observation angle is evaluated with
varying levels of noise added. Finally, results using multiple observation angles with noise are
presented.

4.4.1 Single observation angle without measurement noise

Measurements at a single observation angle, f,(0;) and DoLP(0,), are utilized and 6, is varied
from O deg to 70 deg. Total classification accuracy, calculated as the number of observations
correctly classified out of the total number of observations, is determined for each angle.
As shown in Fig. 8(a), classification with f, has consistent performance for all angles and
DoLP improves as 6; increases. The result matches expected performance based on Fresnel
reflectance, where DoLP increases with angle and material classes become more distinct as
observation angle increases. The highest classification accuracy obtained in this experiment
is 83.6%, which occurs at 8; = 70 deg. By utilizing multiple features, classification accuracy
is increased by 44.5% compared to lidar only, and 32.3% compared to passive polarimetric only;
however, since a standalone passive polarimeter cannot determine observation angle without
lidar point-cloud information, the DoLP only classifier is still dependent on the ranging infor-
mation of the lidar ranging in a dual-sensor architecture. For evaluation purposes, we assume
perfect knowledge of € in this paper.

4.4.2 Single observation angle with measurement noise

Next, in order to comprehensively demonstrate the effectiveness of the hybrid architecture,
classification performance is evaluated with measurement noise added to the generated database.
The feature vector described in Eq. (10) is replaced with

X/(91’925'~"0N) :X(917925°"79N) +”SV(91792’°"ﬁ9N) +’7MN(915027"'?9N)7 (11)

Performance of x(6) Performance of x(0 = 70 deg) with noise

100 100
g 80 g 80
> >
Q (&)
o g
3 60 3 60
Q (&)
®© @
= - CLLLETIT) sunus c
S eI S
§ Al RN ’..""‘ T § 0 - —..TT..'.'....—-..:-\'-"'
= o = e TR
- . — 7 ovogar o E—
I 20 r & 20 r
o | e DoLP o | e DoLP

Hybrid Hybrid
0 0
0 20 40 60 4 6 8 10
Observation angle (¢ deg) SNR (dB)
(a) (b)

Fig. 8 Classification accuracy of f,, DoLP, and hybrid features with the SVM classifier using
fivefold cross-validation against the material database, showing (a) 94 varied from 0 deg to 70 deg
with no noise added and (b) Gaussian noise added to observations at 70 deg such that SNR is
varied from 3 to 10 dB.
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where nyN represents a vector containing Gaussian random numbers with zero mean and
omn Standard deviation. We analyze classification accuracy versus SNR (dB), which we
define as

X +ngy

OMN

SNR = 10 log (12)

where oy is the standard deviation of the generated noise. Therefore, Eq. (12) is solved for oy
and then evaluated with SNR varied from 3 to 10 dB for each observation X.

The X’(0;, = 70 deg) database, which includes sample variance, measurement noise, and
measurement mean at a single observation angle of 70 deg, is utilized with the SVM classifier
for the f, only, DoLP only, and hybrid (i.e., f, and DoLP) architectures. As shown in Fig. 8(b),
classification accuracy of all three architectures improves as SNR increases. The highest
classification accuracy is 73.3% at SNR = 10 dB. With SNR = 6 dB, which the signal is only
four times greater than the standard deviation of the noise, classification accuracy is 56.6% using
hybrid sensing.

4.4.3 Multiple observation angles with measurement noise

Finally, the classification accuracy for combinations of observation angles is examined, repre-
senting a scenario of a passively augmented lidar architecture imaging an object from multiple
viewpoints (e.g., 81,65, . .., 0y). In this experiment, the database of X’ from Eq. (11) is utilized
with SNR of 6 and 9 dB. In Table 3, the classification accuracy using imagery captured at all
0 deg, 10 deg, 20 deg, 30 deg, 40 deg, 50 deg, 60 deg, and 70 deg viewing angles is presented.
Results of SVM, decision tree, discriminant, Naive Bayes, kNN, and neural network classifiers
using the parameters listed in Table 2 are shown. Parameters of the individual classifiers are
optimized for each scenario. Results show that all classifiers follow the same trend versus
SNR (higher SNR increases accuracy).

Classification accuracy when using eight viewing angles from 0 deg to 70 deg is very impres-
sive. However, in many scenarios obtaining this diverse set of angles is impractical. Therefore,
we present additional experimentation utilizing combinations of only two to seven viewing
angles. Obtaining multiple viewpoints is most likely to occur as consecutive angles (e.g., a mov-
ing platform may have a clear view of an object’s surface for 30 deg to 50 deg observation angles
before losing sight of it due to obscuration). We examine combinations of observation
angles with consecutive angles. As shown in Table 4, the utilization of additional observation
angles generally improves performance. For example, the accuracy of X(50 deg, 60 deg,
70 deg) is 70.8%, a 5.4% increase from X(60 deg, 70 deg).

Table 3 Classification accuracy using measurements from all 0 deg, 10 deg, 20 deg, 30 deg,
40 deg, 50 deg, 60 deg, and 70 deg viewing angles.

SNR =6 dB SNR =9dB
Classification Accuracy (%) Classification Accuracy (%)
Classifier f, DoLP Hybrid f, DoLP Hybrid
SVM 64.3 52.4 91.1 73.7 65.4 94.4
Decision tree 53.0 39.5 69.4 62.6 50.2 83.8
Discriminant 56.6 46.4 82.1 65.1 58.7 90.7
Naive Bayes 57.3 46.9 83.2 66.6 55.5 92.4
kNN 62.9 46.4 82.6 71.6 58.2 92.0
Neural network 42.4 23.3 81.7 61.1 36.7 89.0

Optical Engineering 073106-14 July 2020 « Vol. 59(7)



Brown et al.: Hybrid passive polarimetric imager and lidar combination for material classification

Table 4 Classification accuracy of single modalities and the proposed hybrid technique

using SVM.

SNR =6 dB

SNR =9dB

Classification
Accuracy (%)

Classification
Accuracy (%)

Feature set f, DoLP Hybrid f, DoLP Hybrid
X(10 deg, 20 deg) 343 296 578 39.7 352 699
X(20 deg, 30 deg) 346 311 609 427 374 763
X(30 deg, 40 deg) 347 327 620 417 381 765
X(40 deg,50 deg) 334 325 623 428 392 775
X(50 deg, 60 deg) 324 331 641 428 407 779
X(60 deg, 70 deg) 302 339 654 430 415 804
X(0 deg, 10 deg,20 deg) 479 339 715 547 416 823
X(10 deg,20 deg, 30 deg) 376 341 67.7 470 421 82.5
X(20 deg, 30 deg, 40 deg) 36.3 336 692 494 410 834
X(30 deg, 40 deg,50 deg) 39.9 358 695 489 436 838
X(40 deg,50 deg, 60 deg) 39.2 357 695 510 423 839
X(50 deg, 60 deg, 70 deg) 403 372 70.8 486 465 86.5
X(0 deg, 10 deg,20 deg, 30 deg) 514 390 784 584 481 88.6
X(10 deg, 20 deg, 30 deg, 40 deg) 418 376 752 553 463 873
X(20 deg, 30 deg, 40 deg,50 deg) 442 387 76.0 554 472 881
X(30 deg,40 deg,50 deg,60 deg) 435 383 741 538 481 871
X(40 deg,50 deg, 60 deg,70 deg) 446 394 764 540 483 891
X(0 deg, 10 deg,20 deg, 30 deg,40 deg) 534 431 833 633 516 91.0
X(10 deg, 20 deg, 30 deg,40 deg,50 deg) 465 417 797 591 514 8938
X(20 deg, 30 deg,40 deg,50 deg,60 deg) 471 414 797 596 519 90.0
X(30 deg, 40 deg,50 deg,60 deg,70 deg) 484 410 796 577 531 90.7
X(0 deg, 10 deg,20 deg, 30 deg,40 deg,50 deg) 56.9 46.0 86.3 664 564 922
X(10 deg, 20 deg, 30 deg,40 deg,50 deg, 60 deg) 50.2 439 829 637 56.1 90.7
X(20 deg, 30 deg,40 deg,50 deg,60 deg, 70 deg) 53.6 437 839 643 567 921
X(0 deg,10 deg,20 deg, 30 deg,40 deg,50 deg,60 deg) 58.9 485 887 69.3 60.1 92.6
X(10 deg,20 deg, 30 deg,40 deg,50 deg,60 deg,70 deg) 549 463 859 67.6 61.1 92.2
X(0 deg, 10 deg,20 deg, 30 deg, 40 deg,50 deg, 643 524 911 737 654 944

60 deg,70 deg)

4.5 Discussion of Results

The classification accuracy of all scenarios evaluated on our dataset is greater than 20%. With
the 19 classes considered, a completely random guess would result in less than 5.3% chance
of correct classification. The performance is enabled by having a known observation angle.
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When considering a single known observation angle, results of f, and DoLP are very similar
[Fig. 8(b)]. However, when combinations of angles are considered (Tables 3 and 4) f, consistently
outperforms DoLP. In fact, the more angles utilized, the better the performance. This is because
the actual measurements (shown in Figs. 6 and 7) of most materials have signatures that vary
with observation angle. In all scenarios combining the features in a hybrid architecture signifi-
cantly improves performance. As previously mentioned, a standalone passive polarimeter is not
capable of obtaining observation angle without lidar point-cloud information. Therefore, utiliz-
ing only the DoLP feature would still require a lidar system. We believe 6 dB is a reasonable
evaluation point for SNR, based on our experience with lidar and infrared imaging systems.
At 6 dB, the proposed technique achieves 91.1% material classification accuracy using SVM.

When comparing classifier techniques (Table 3), SVM obtains the best results. This could be
due to the limited parameter space we explored with each classifier (shown in Table 1).
Optimizing these parameters for the specific dataset could improve classification accuracy of
each method. We also notice that some SVM classifiers require on the order of 10 times longer
to train than other classifier types (but performance metrics on training time are not presented
because the metric is highly dependent on computational hardware). We recommend that the
type of classifier utilized in future work should be carefully selected for each individual appli-
cation (by considering the amount of training data, dimensionality of the data, training time,
number of the features, number of classes, and class separation).

5 Conclusion

This work lays the foundation for follow-on work to design advanced classifiers optimized for
specific applications. The combination of lidar and passive polarimetric sensors in a hybrid im-
aging architecture is demonstrated to obtain 91.1% material classification accuracy. A unique
dataset consisting of f, and DoLP measurements versus 6 is presented for a diverse set of
34 material types each imaged at eight observation angles. Material classification is implemented
using six machine learning classifiers with multiple feature sets to clearly show the benefit of
using a hybrid infrared imaging technique. The advantage of imaging an object at multiple
viewpoints is shown to increase classification accuracy by ~31.5% compared to classification
at 70 deg alone when SNR = 6 dB is considered. The presented technique relies on lidar 3-D
point-cloud imagery to estimate surface orientation and is designed to classify on material sur-
face properties f, measured with lidar and DoLP measured with passive polarimetric infrared
sensors. Future work can combine this technology with object classification based on spatial
features. For example, spatial features such as shape, height, length, and intensity contrast are
typically obtained from the imagery of the sensors in the proposed hybrid sensing architecture.
By combining material classification of our work with spatial features captured with the same
sensors, we expect the classification accuracy to further improve.
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