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Abstract. We optimize a proposed multicast parametric synchronous sampling scheme. Two segments of 1 cm
high nonlinear spiral photonic crystal fiber are utilized as a nonlinear medium in parametric processors.
Meanwhile, a segment of 1.8 km dispersion compensation fiber is used to obtain linear chirped sampling pulses
instead of a 5 km single-mode fiber. The experimental results show that a 120 GSa∕s equivalent sampling rate,
high power of sampling copies, and low variance are obtained. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its
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1 Introduction
Analog-to-digital convertor (ADC) as an important part of
communication systems needs to satisfy requirements of
the rapid development of ultrawide-band applications such
as advanced Radar communication systems, high-speed opti-
cal communication, and so on.1–3 The electrical ADC whose
sample rate is only several gage-samples per second (GSa∕s)
cannot meet the requirements of ultrawide-band applications
because of its inherent electrical bottle-neck such as clock
jitter and sampling aperture.1–4 Optical signal processing
has attracted researchers’ interests because it can overcome
the electrical limitations.5–8 Bres et al.9 demonstrated a
320 Gb∕s optical demultiplexing sampling method that
required a mode-locked laser with a very high repetition
rate. In order to meet the requirement, a large number of cop-
ies are needed. Zhang et al.10 proposed a multicast parametric
synchronous optical sampling scheme using only three cop-
ies based on a high nonlinear fiber (HNLF). However, a fiber
length over 200 m was used to realize all-optical ADC,
which is disadvantageous for photonics integration.

In this paper, we optimize a proposed multicast paramet-
ric synchronous sampling scheme utilizing a 2 cm high non-
linear spiral photonic crystal fiber (PCF) instead of a 200 m
HNLF as the nonlinear medium based on the parametric
process and a 1.8 km dispersion compensation fiber
(DCF) instead of the 5 km single-mode fiber (SMF) as
the time-stretched medium, respectively. The experimental
results show the parametric process efficiency based on a
high nonlinear spiral PCF and verify the feasibility of our
optimized scheme.

2 Theory of Operation
The scheme is composed of signal multicast, time delay, and
parametric sampling blocks. The original signal as the pump
is copied utilizing a parametric process in a high nonlinear
spiral PCF1. The idler gain is

G ∝ exp½2γLEpðtÞ�; (1)

where γ is the nonlinear coefficient, L is the fiber length, and
EpðtÞ is the pump power. The idlers change with the original
pump to realize signal multicast.

In order to temporally overlap the pulse center of the
pump and a nonreturn-to-zero (NRZ) code, these idlers
are fed into an SMF to temporally delay each other by a
factor

Δτ ¼ TNRZ∕3; (2)

where Δτ is the temporal delay and TNRZ is the period of the
NRZ signal. Hence, the temporal delays are −Δτ, 0, and
þΔτ between the pump and idler 1, idler 2, and idler 3,
respectively.

Time-stretched and linearly chirped pulses are used as the
sampling pump signal based on high nonlinear spiral PCF2
in a parametric sampling block. The pump pulses are fed into
a DCF to obtain linear chirp.11,12 The linear chirped pulses
are delivered into a high nonlinear spiral PCF2 with idlers as
Ai;nðtÞ ðn ¼ 1;2; 3Þ. The phases of sampling copies given as
Asc;nðtÞ ðn ¼ 1;2; 3Þ are modulated by chirped pump pulses
due to phase combination between pump and idlers in the
high nonlinear spiral PCF2. The gain frequency variation
of the sampling copies is

δωscðTÞ ¼ −2
∂ϕp

∂T
¼ 2sgnðβ2Þðz∕LDÞ

1þ ðz∕LDÞ2
T
T2
0

; (3)

where ϕp is the phase of the chirped pump pulse, β2 and LD
are the group velocity dispersion and the dispersion length of
high nonlinear spiral PCF2, respectively, and T0 is the full
width at half maximum.13–16 From Eq. (3), the chirp of
the pump can be transferred to sampling copies and the
chirp of sampling copies is twice that of the pump.
Therefore, an arrayed waveguide grating (AWG) is utilized
to extract different frequency components of the sampling
copies. Finally, the sampling time points are sent into a*Address all correspondence to: Sha Li, E-mail: shalee@ustb.edu.cn
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data signal processing module to realize quantization and
coding. In the sampling scheme, the equivalent sampling
rate is

Rs ¼
jδωscðTÞjmaxnRpump

Δf
; (4)

where n is the number of copies, Rpump is the repetition rate
of the pump, and Δf is the bandwidth of the filters. If the
bandwidth of the filters is a constant, a larger chirp of the
sampled copies supports a higher equivalent sampling
rate. Hence, a high equivalent sampling rate can be achieved
when the pump rate is far below the Nyquist rate.

3 Results and Discussion
Based on the above theoretical analysis, we optimize the pro-
posed multicast parametric synchronous sampling scheme
utilizing a high nonlinear spiral PCF as the nonlinear
processing medium. The optimized schematic diagram is
exhibited in Fig. 1. First, the degenerated pump signal
with 1550.4 nm center wavelength is phase modulated by
50, 150, and 300 MHz radio frequency harmonics to sup-
press stimulated Brillouin scattering. Next the pump signal
is amplitude modulated by 10 Gb∕s NRZ bit sequence. Then
the pump signal is amplified by erbium-doped fiber amplifier
(EDFA1) and filtered by an optical bandpass filter (BPF1)
with a 0.6 nm bandwidth to eliminate the amplified sponta-
neous emission noise, respectively. Subsequently, the ampli-
fied pump signal is coupled into a 1 cm high nonlinear spiral
PCF1 with three continuous waves (CWs) whose peak
powers are 1 dBm and whose center wavelengths are
1558.8, 1560.8, and 1562.8 nm for signal multicast. Three
idlers are delivered into a 1.2 km SMF to realize a temporal

delay with each other after optical BPF2 that removes the
pump signal and three CWs at the output of PCF1. Ten giga-
hertz Gaussian optical pulses with a 1555 nm center wave-
length and 10 ps pulse width are delivered into 1.8 km DCF
instead of a 5 km SMF to stretch in time domain and gain
linear chirp and are amplified by EDFA2. The amplified
pulses as the sampling pulse train are coupled into PCF2
with the three idlers for parameter processing. Finally, the
different frequencies are separated by an AWG, and a digital
signal processor (DSP) realizes photoelectric conversion,
quantization, and coding.

In our system, the 2 cm high nonlinear spiral PCF is uti-
lized as a nonlinear medium instead of the 200 m HNLF. Its
structure is shown in Fig. 2(a). The spiral PCF consists of an
elliptical slot core with a low index silicon nanocrystals (Si-
nc) rod surrounded by three rings of air holes in a spiral lat-
tice. The PCF has six spiral arms, where each arm shapes a
single spiral with r radius and θ angular increment. The
curves of the dispersion and the nonlinear coefficient of
the fundamental mode versus the wavelength are shown
in Fig. 2(b). Based on the spiral structure, the dispersion
is only −0.07 ps∕ðnm · kmÞ and the dispersion slope is
−1.25 × 10−3 ps∕ðnm2 · kmÞ at the wavelength of
1550 nm. The nonlinear coefficients of the fundamental
mode are as high as 224.36 W−1 m−1 and are 1.87 × 104

times as large as the one of the HNLF.17–19

The spectra at the outputs of PCF1 and PCF2 are recorded
as shown in Figs. 3(a) and 3(b) together with the eye dia-
grams of idler 1 and copy 1 (insets), respectively. The
three idlers are generated at 1538.01, 1540.09, and
1541.98 nm with approximately the same peak power in
Fig. 3(a), and further optical processing is conveniently
based on the same peak power for each NRZ code. As
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Fig. 1 Schematic diagram of the optimized scheme. CW: continuous wave, PM: phase modulation, AM:
amplitude modulation, EDFA: erbium-doped fiber amplifier, BPF: bandpass filter, WDM: wavelength divi-
sion multiplexer, PCF: photonic crystal fiber, DCF: dispersion compensation fiber, AWG: arrayed wave-
guide grating, DSP: digital signal processor.
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shown in Fig. 3(b), three sampling copies are generated at
1568.22, 1570.20, and 1572.21 nm and the maximum
peak power is −5.235 dBm at 1570.20 nm. The simulation
results are in very good agreement with the measurements.
The spectrum widths of the three sampling copies are wider
than the ones of the three idlers, which means the chirp of the
pump transfers to the sampling copies. According to the
above theoretical analysis, the chirp of the sampling copies
is twice that of the pump. So the sampling copies can be fil-
tered by an AWG with a 0.2 nm bandwidth and 12 wave-
lengths from 1567.91 to 1572.66 nm.

To ensure the same time interval for all of the samples and
extract precisely different temporal sampling points, we

chose 12 sampling channels as shown in Table 1. The
peak powers of 12 sampling channels utilizing a 2 cm
high nonlinear spiral PCF as a nonlinear medium after the
photoelectric detector are recorded and compared with the
ones utilizing a 200 m HNLF. There are peak power varia-
tions among samples whether PCF or HNLF is utilized as the
nonlinear medium, because of the irregular amplitude of
time-stretched sampling pulses and the gain ripples of
sampled copies. As shown in Table 1, the peak powers
using PCF as a nonlinear medium are higher than the
ones using HNLF, where the maximum and minimum devi-
ations are 15.84 and 31.01 dB, respectively. Because the spi-
ral PCF has a very high nonlinear coefficient, the idlers with
high peak power are easily obtained.

Subsequently, these electrical signals are sent into the sig-
nal processing block for equalization. The distortion of

Fig. 2 The spiral PCF: (a) structural diagram of the high nonlinear spiral PCF; (b) dispersion and
nonlinearity versus wavelength curves.

Fig. 3 Spectral profiles (a) at output of PCF1 and (b) at output of PCF2
with pump on and off. Insets: the eye diagrams of idler 1 and copy 1.

Table 1 Sampling performance.

Sampling channel

Center
wavelength

(nm)

Peak power
(dBm)

(2 cm PCF)

Peak power
(dBm)

(200 m HNLF)

1 1567.91 −46.86 −65.88

2 1568.14 −48.06 −63.90

3 1568.35 −33.28 −54.71

4 1568.60 −23.80 −53.98

5 1569.86 −19.09 −46.72

6 1570.10 −30.32 −56.87

7 1570.37 −31.91 −54.92

8 1570.63 −19.99 −46.33

9 1571.86 −14.45 −42.81

10 1572.18 −29.69 −56.77

11 1572.38 −31.46 −53.11

12 1572.66 −25.41 −56.42

Note: PCF, photonic crystal fiber; HNLF, high nonlinear fiber.
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sampling can be eliminated from the shape of the linearly
chirped pump and the gain ripples. In the DSP, the equali-
zation function is

S ¼ ðe1; e2 · · · e12Þ

0
B@

s1 0

. .
.

0 s12

1
CA; (5)

where S is the final sampling time points, s1; s2; : : : ; s12 are
the sampling points, and e1; e2; : : : ; e12 are the equalization
coefficients. The amplitude of the original signal is set as a
constant, then the equalization coefficients are determined.
In the DSP, the electrical signals are processed at the rate
of 10 Gb∕s. Such a processing rate corresponds to the rep-
etition rate of the original laser source and is quite within the
speed, which is compatible with electronic devices. The
original signal and equalized sampling points are shown
in Figs. 4(a) and 4(b), respectively. It is evident that the sam-
pling points are in good agreement with the original signal
with an equivalent sample rate of 120 GSa∕s.

Changing the length of the PCF will induce different gain
ripples and this will induce sampling distortion. The powers
of the idler 1 and copies as a function of the length of PCF1
and PCF2 are recorded in Figs. 5(a) and 5(b), respectively.
The power of the idler 1 and three sampling copies increases
with the lengths of PCF1 and PCF2, respectively. The sim-
ulation results are in very good agreement with the experi-
mental data. The powers of the three idlers are almost theFig. 4 (a) Original 10 Gb∕s nonreturn-to-zero (NRZ) signal.

(b) Sampling points of original waveform with 120 GSa∕s.

Fig. 5 Power of the idler 1 and sampling copies and their increasing
amount as the function of fiber length: (a) at the output of PCF1; (b) at
the output of PCF2, LPCF1

¼ 1 cm.

Fig. 6 Different wavelength space between each CW effect on the
variance: (a) the length of PCF1 versus the variance curves;
(b) the length of PCF2 versus the variance curves.
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same at the output of PCF1, but there are power variations
among the three sampling copies at the output of PCF2 due to
the irregular shape of the sampling pulses. With the increase
in the length of PCF1 and PCF2, the power increasing
amount of idlers and copies decreases monotonically and
approaches zero, respectively. Consequently, it is inadvisable
that high power for idlers or copies be obtained by increasing
the fiber length.

The sampling distortion comes not only from the fiber
length, but also the wavelength space between each CW.
Here, we define the variance as

variance ¼ 1

3

�X3
i¼1

ðpoweri − averageÞ2
�1∕2

; (6)

where poweri is the power of idler i or sampling copy i
ði ¼ 1;2; 3Þ, and average ¼ 1∕3

P
3
i¼1 poweri. The lengths

of PCF1 and PCF2 versus the variances diagrams with differ-
ent wavelength space are recorded in Figs. 6(a) and 6(b),
respectively. With the increase in the length of PCF1 or
PCF2, the variance value gets a random jitter. Figure 6(a)
shows that the variance becomes large when the wavelength
space between each CW is 3 nm. This is because the power of
the idlers depends on thewavelength conversion efficiency of
the CWs, which changes with the center wavelength of each
CW.20When thewavelength space between each CW is 3 nm,
the maximal variance is 0.037 dB at the output of PCF1.

When the length of PCF1 is 1 cm, the variance gets large
with the increase in the wavelength space as shown in
Fig. 6(b). Due to the gain ripples of the idlers and the irregular
shape of the sampling pulse, the variance at the output of
PCF2 is larger than the one at the output of PCF1. When
the wavelength space between each CW is 3 nm, the maximal
variance is 2.159 dB at the output of PCF2. However, the min-
imal variance at the output ofHNLF1 is 0.6 dB in the previous
schemewhen the wavelength space is 3 nm, leading to a large
sampling distortion.

Changing the power of the pump or sampling pulse will
also induce different gain ripples and this will also induce
sampling distortion. The power of idlers and sampling copies
versus the input power of pump and sampling pulse diagrams
with different nonlinear coefficients is simulated, as shown in
Figs. 7(a) and 7(b), respectively. The power of idlers or sam-
pling copies monotonously increases and slopes gently with
the increase in the input power of the pump or sampling
pulse in any case of nonlinear coefficient γ. In Fig. 7(a),
the curves are fitted with the same nonlinear coefficient γ,
and the power of idlers is higher by 4.51 dB than the one
utilizing HNLF as a nonlinear medium. In Fig. 7(b), the
curves have a deviation with the same nonlinear coefficient
γ due to the gain ripples of idlers and the irregular shape of
the sampling pulse; the power of the sampled copies is
12.44 dB higher than the one utilizing HNLF as a nonlinear
medium.

4 Conclusion
In summary, we optimize a proposed multicast parametric
synchronous sampling scheme utilizing 2 cm high nonlinear
spiral PCF instead of 200 m HNLF as nonlinear medium
based on parametric process and 1.8 km DCF instead of
5 km SMF as time-stretched medium, respectively. By
using the high nonlinear spiral PCF, the high power of sam-
pling copies and low variance are obtained to avoid sampling
distortion. In order to realize real-time sampling and reduce
the requirements of the electronic devices, the chirped sam-
pling pulses are utilized and a 120 GSa∕s equivalent sam-
pling rate is obtained. Compared with the pre-existing
schemes, the size of the parametric processor can be
much smaller than those previously proposed based on
HNLF. Therefore, our optimized scheme is more in line
with the concept of integration and miniaturization.
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