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Abstract

Significance: There is an emerging need for convenient and continuous bedside monitoring of full-
term newborns with hypoxic-ischemic brain damage (HIBD) to determine whether early interven-
tion is required. Functional near-infrared spectroscopy (fNIRS)-based resting-state brain network
analysis, which could provide an effective evaluation method, remains to be extensively studied.

Aim: Our study aims to verify the feasibility of fNIRS-based resting-state brain networks for
evaluating brain function in infants with HIBD to provide a new and effective means for clinical
research in neonatal HIBD.

Approach: Thirteen neonates with HIBDwere scanned using fNIRS in the resting state. The brain
network properties were explored to attempt to extract effective features as recognition indicators.

Results: Compared with healthy controls, newborns with HIBD showed decreased brain func-
tional connectivity. Specifically, there were severe losses of long-range functional connectivity
of the contralateral parietal-temporal lobe, contralateral parietal-frontal lobe, and contralateral
parietal lobe. The node degree showed a widespread decrease in the left frontal middle gyrus, left
superior frontal gyrus dorsal, and right central posterior gyrus. However, newborns with HIBD
showed a significantly higher local network efficiency (*p < 0.05). Subsequently, network
indicators based on small-worldness, local efficiency, modularity, and normalized clustering
coefficient were extracted for HIBD identification with the accuracy observed as 79.17%.

Conclusions: Our findings indicate that fNIRS-based resting-state brain network analysis could
support early HIBD diagnosis.
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1 Introduction

Hypoxic-ischemic brain damage (HIBD) is among the leading causes of neonatal death and
neurological disorders.1 Persistent brain injury in the neonatal period has been suggested to
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disrupt key structural development, which results in serious consequences such as white matter
abnormalities, neuronal necrosis, and intracerebral hemorrhage. Nearly 25% of survivors present
neurological-related sequelae, including mental retardation, paralysis, epilepsy, and other
diseases.2–4 Typical neurological symptoms of HIBD deteriorate within a few days after birth;
therefore, continuous monitoring and effective evaluation of brain function in these children
could help determine whether targeted intervention is necessary and allow for decisive disease
diagnosis and treatment.5

Currently, the clinical HIBD diagnosis mainly relies on two aspects. These include clinical
characterization, which specifically refers to abnormal changes in consciousness, original reflec-
tion (there are some congenital reflexes in newborns, which reflect whether the body and nervous
system function of the newborn is normal), and muscle tension,6 as well as detection of HIBD-
induced lesions using ultrasound, computed tomography (CT), magnetic resonance imaging
(MRI), and other medical imaging technologies. These classical technologies have their own
advantages and limitations. Ultrasound has gradually optimized resolution in brain structure scan-
ning, but it is insufficient at monitoring capabilities of functional hemodynamics. CT involves a
certain radiation degree, with immature brain tissue having an unideal tolerance. MRI has a strong
spatial resolution, which can accurately distinguish the perfusion level of regional cerebral blood
flow. However, there is an emerging need for convenient and continuous bedside monitoring of
neonates who are unable to undergo MRI due to clinical instability and/or the medical equipment
required for therapeutic interventions. It would be a positive effort to satisfy the need by func-
tional near-infrared spectroscopy (fNIRS) resting-state brain network analysis.

fNIRS is a relatively new non-invasive brain imaging technology and has attracted great
attention from brain researchers due to its friendliness to the participants.7,8 More importantly,
the main advantage of fNIRS in the diagnosis of HIBD is to support portable and continuous
bedside monitoring. fNIRS allows us to obtain neonatal high-quality data sets within a few
minutes. Notably, the data can be collected with the infants in a quiet or sleep state without
the need to perform tasks or other auxiliary reagents (tranquilizers). The short preparation and
detection period at the bedside means that pediatricians can record data repeatedly at any critical
point. In addition, fNIRS avoids the effects of radiation on newborns compared with CT or
positron emission CT.

Brain network analysis has been widely used in the evaluation of brain function. The human
brain is a highly complex network system with numerous local or global topological features.9,10

Some synchronous low-frequency fluctuations are associated with neural activity between some
brain regions in the resting state, which indicates that organized activities between different brain
regions contribute to maintaining the mechanism of brain activity.11,12 Different from a random
network, the brain functional network is economical, which ensures that the brain can differ-
entiate and integrate information efficiently, providing the physiological basis for information
processing and mental representations.13 Bullmore and Sporns14 believe that brain networks can
be examined by critical properties of graph theory, such as clustering coefficient, node degree,
efficiency, and modularity. These metrics of graph theory provide key information about the
network structure and describe the specific organizational style of the network. Over the past
decade, resting-state brain networks have had great utility in brain function assessment, espe-
cially when assessing neurocognitive development in newborns. Relevant fMRI studies have
shown some basic functional networks in healthy newborns;15 moreover, the precursors of some
advanced networks have been identified. Studies have demonstrated the presence of the default
mode network of the primary motor cortex and sensory cortex.16 Smyser et al.17 used fMRI to
explore the resting-state connectivity of premature infants. The results showed that the most
obvious decrease of functional connectivity was in the area near the injured site. They also con-
firmed that abnormal development of periventricular white matter would lead to a decrease of
network connectivity. Tusor18 studied 15 infants with HIBD, and conventional MRI showed that
there were varying degrees of damage to white matter and gray matter in the cohort. In these
infants, typical resting-state networks, including auditory, somatomotor, visual, and default pat-
tern networks, were identified. In addition, the long-distance connection of the unilateral brain in
children with HIBD was weakened.

A series of advances has been made in the study of the neonatal fNIRS connectivity. Homae
et al.19 conducted follow-up fNIRS assessments of healthy newborns for 6 months and observed
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gradual complication and enhancement of the functional network in each region of the neonatal
cerebral cortex. Makiko et al.20 found that infants with Down’s syndrome had lower connectivity
and different local hemodynamics, which demonstrated the potential of fNIRS for clinical use in
infants. Lin et al.21 utilized resting-state fNIRS imaging data to explore topological changes in
network organization during development from early childhood and early adolescence to adult-
hood, and the results showed the developmental maturity of important functional brain organi-
zation in early childhood. Kelsey et al.22 explored the link between gut microbiome, brain, and
behavior in 63 newborn infants by resting-state fNIRS. They found that the composition of gut
microbiota is related to the individual differences of brain network connectivity, which in turn
mediates the individual differences of infant behavior temperament. Their findings indicate that
the gut microbiome plays an important role in human development.

However, as far as we know, the existing studies on the functional connectivity of the neo-
natal brain mostly focus on preterm infants (gestational age < 37weeks) and do not deeply deter-
mine the changes of their network properties. Full-term infants with HIBD often miss the
treatment window because of their atypical clinical symptoms, until serious complications such
as hydrocephalus are found. The specific network properties have not been extracted as sensitive
biological factors for early auxiliary diagnosis of HIBD. Given the aforementioned findings, this
study aims to use fNIRS to record the resting-state data of full-term infants with HIBD for con-
structing a functional network that covers the prefrontal, parietal, and temporal lobes, to observe
the local or global topological features of HIBD using network analysis, and to extract sensitive
biological factors to achieve effective recognition of HIBD.

2 Methods

In this experiment, fNIRS was applied to record resting-state signals from neonates with HIBD.
We constructed a whole-brain functional network based on the between-channel correlation of the
sequences of hemoglobin concentration. Functional connections between six early-developing
regions of interest (ROIs) were explored. Using comparisons, sensitive network indicators were
extracted as features and used to input support vector machines (SVM) for training and testing.
This study was conducted according to the Declaration of Helsinki and approved by the local
Ethics Committee of Beihang University.

2.1 Participants

This study enrolled participants from the pediatric neonatal ward of the Peking University First
Hospital. The inclusion criteria were as follows: (1) term neonates with a gestational age of 37 to
44 weeks; (2) having a HIBD diagnosis (mainly including diffuse white matter abnormalities,
periventricular leukomalacia, blood oxygen ischemic encephalopathy, intraventricular hemor-
rhage, hemorrhagic ventricular dilatation, hemorrhagic hydrocephalus, and periventricular hem-
orrhagic infarction); and (3) having consent from the legal guardian. All relevant assessments
were obtained within 72 h of the baby’s birth since typical neurological symptoms of HIBD
appear within 6 to 12 h after birth and peak at 72 h. The acquisition time was strictly controlled
to avoid the effect of our clinical intervention. All infants were monitored after full lactation and
natural sleep. Two infants woke up and cried, so they could not complete the monitoring. They
were excluded in the follow-up analysis. After early screening and subsequent visits, 13 eligible
newborns with HIBD and 13 healthy newborns as controls were enrolled in the experiment. The
socio-demographic information for this study is shown in Table 1.

2.2 Data Acquisition

The fNIRS signals were acquired using a multichannel fNIRS system (NirSmart-2416,
HuiChuang, China) with two wavelengths (760 and 850 nm) at a sampling rate of 10 Hz.

An experimental platform dedicated to newborns was established [see Fig. 1(a)]. To reduce
interference from the external environment, the newborns were tested in a room with dim light
and sound insulation effects. Before being tested, the newborn was placed in a supine position in
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the crib and the head was fixed using measuring aids. Subsequently, the special head cap covered
the early developing primary functional areas, including the prefrontal, temporal, and parietal
lobes. As shown in Fig. 1(b), the cap was formed by 20 sources and 16 detectors, which com-
prised the channels. To ensure the safety and comfort of the newborns, the probes and head cap
were made of soft materials to achieve soft contact with the scalp. Table 2 shows the specific
correspondence between the channels and brain regions. Resting-state data were collected for
10 min to subsequently construct brain functional networks, following Wang et al.23 who found
that the functional connectivity remained stable only when the fNIRS data acquisition duration
was longer than 7 min. NirSmart-2416 supported the automatic adjustment of the source power
and detector gain to optimize signal quality. The average signal-to-noise ratio of channels used
was 22.2� 12.1 dB.

Fig. 1 (a) Experimental settings. (b) Schematic illustration of the fNIRS layout (45 channels,
20 sources, and 16 detectors). The green lines represent channels, and the nodes represent
optical probes. The arrangement covers the prefrontal, temporal, and parietal lobes.

Table 1 Socio-demographic information for this study.

Infant no. 1 2 3 4 5 6 7 8 9 10 11 12 13

HIBD

Gender M M M F M M F F M F M M M

GA (week) 38 37 39 41 39 40 39 37 40 39 38 38 39

Birth weight (kg) 2.81 2.46 3.60 3.05 2.60 2.68 3.70 2.15 3.80 3.60 3.71 3.60 2.72

Delivery C T T T T T C T T T C T C

Feeding Mix Milk Mix Mix Mix Mix Mix Mix Mix Mix Mix Mix Mix

Healthy control

Gender F M M M M F M F F M F F M

GA (week) 39 38 40 38 40 39 38 39 40 39 40 38 39

Birth weight (kg) 3.28 3.07 3.26 2.78 3.48 3.04 3.19 3.31 3.75 3.26 2.58 2.92 3.01

Delivery T C T C C C C T T T C C C

Feeding Mix Mix Mix Mix Milk Mix Mix Mix Mix Mix Milk Mix Milk

Note: GA = gestational age; M = male; F = female; C = cesarean delivery; T = transvaginal delivery; mix =
breast feeding + formula milk powder.
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Table 2 The MNI coordinates and anatomical labels corresponding to the measurement
channels.

Channel
Length of the
channel (mm)

MNI coordinates

ROI Anatomic labelx y z

1 TP7-T7 20 −45 −25 −2 LTL Middle temporal gyrus left

2 TP7-P7 25 −41 −42 −1 LTL Middle temporal gyrus left

3 FT7-T7 20 −45 −8 −2 LTL Temporal pole (superior) left

4 FT7-F7 20 −41 10 −3 LTL Superior temporal gyrus left

5 FC5-T7 25 −46 −7 8 LTL Heschl gyrus left

6 FC5-F7 25 −42 11 7 LTL Inferior frontal gyrus (opercular) left

7 FC5-C3 30 −44 −6 31 LPL Postcentralgyrus left

8 FC5-F3 25 −41 14 26 LPL Middle frontal gyrus left

9 CP5-P7 25 −43 −44 10 LTL Middle temporal gyrus left

10 CP5-C3 30 −47 −27 32 LPL Inferior parietal lobule left

11 CP5-P3 25 −42 −48 30 LPL Angular gyrus left

12 AF7-F7 20 −37 26 −2 LPFC Inferior frontal gyrus (triangular) left

13 AF7-Fp1 25 −26 39 −2 LPFC Middle frontal gyrus left

14 AF3-F3 25 −29 34 25 LPFC Middle frontal gyrus left

15 AF3-Fp1 25 −17 44 10 LPFC Superior frontal gyrus (dorsal) left

16 CP1-C3 30 −35 −27 55 LPL Postcentralgyrus left

17 CP1-P3 30 −31 −50 47 LPL Superior parietal gyrus left

18 FC1-C3 30 −33 −5 50 LPL Precentralgyrus left

19 FC1-F3 30 −30 17 42 LPL Middle frontal gyrus left

20 FC1-Fz 30 −14 17 53 LPL Superior frontal gyrus (dorsal) left

21 FC1-Cz 30 −15 −4 61 LPL Supplementary motor area left

22 AFz-Fp1 30 −10 45 13 LPFC Superior frontal gyrus (medial) left

23 AFz-Fz 25 −2 36 37 Prefrontal
cortex

Superior frontal gyrus (medial)

24 AFz-Fp2 30 7 45 14 RPFC Superior frontal gyrus (medial) right

25 AF4-Fp2 25 14 43 11 RPFC Superior frontal gyrus (dorsal) right

26 AF4-F4 25 25 32 28 RPFC Middle frontal gyrus right

27 FC2-Fz 30 6 18 53 RPL Superior frontal gyrus (dorsal) right

28 FC2-Cz 30 7 −3 61 RPL Supplementary motor area right

29 FC2-F4 30 24 16 45 RPL Middle frontal gyrus right

30 FC2-C4 30 27 −4 52 RPL Middle frontal gyrus right

31 AF8-Fp2 25 23 38 0 RPFC Middle frontal gyrus right
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2.3 Data Preprocessing

The NirSpark software (HuiChuang, China) package was used to preprocess fNIRS signals.
During fNIRS scans, the newborns occasionally had involuntary sudden head movements (even
in sleep). Motion artifacts affect functional connectivity analysis deeply and have attracted much
attention. The commonly used correcting approaches include spline interpolation, wavelet analy-
sis, principal component analysis, Kalman filtering, etc. Each method has its own advantages.
The positive aspect of spline interpolation is that it only corrects the pre-localized artifacts with-
out modifying the other portions of the time series. Therefore, the spline interpolation method
was used to amend motion artifacts, which were manifested as an impulse or cliff-type jumps
caused by the relative sliding of the scalp and probes.24–26 Subsequently, 0.01- to 0.1-Hz band-
pass filtering was performed to remove the noise based on physiological fluctuations such as
pulse and respiration.27 Then the modified Beer–Lambert law was used to transform light inten-
sity data into the relative change of the concentration of oxygenated (HbO) and deoxygenated
hemoglobin (HbR) as follows:

EQ-TARGET;temp:intralink-;e001;116;207ΔODλi ¼ ðελiHboΔCHbo þ ελiHbRΔCHbRÞ × r × DPFλi ; i ¼ 1;2; (1)

where the variable ε is the wavelength-dependent extinction coefficient for each hemoglobin
type. The change in light absorption, which is referred to as the delta optical density, is repre-
sented as ΔOD. ΔCHbO and ΔCHbR represent the relative concentration changes of HbO and
HbR, respectively. The DPF (differential path-length factor) accounts for the true effective path
length between the source and detector, while r represents the linear distance between the paired
probes. The DPF is related to the wavelength of the incident light and the distance between
sources and detectors. Based on a related study by van der Zee et al.,28 DPF ¼ 4 was considered
appropriate for this study.

Table 2 (Continued).

Channel
Length of the
channel (mm)

MNI coordinates

ROI Anatomic labelx y z

32 AF8-F8 20 32 25 0 RPFC Inferior frontal gyrus (triangular) right

33 CP2-C4 30 28 −26 56 RPL Postcentralgyrus right

34 CP2-P4 30 26 −50 50 RPL Superior parietal gyrus right

35 FC6-F4 25 35 13 30 RPL Middle frontal gyrus right

36 FC6-F8 25 37 10 11 RTL Inferior frontal gyrus (opercular) right

37 FC6-C4 30 39 −5 34 RPL Postcentralgyrus right

38 FC6-T8 25 41 −6 11 RTL Heschl gyrus right

39 FT8-F8 20 36 8 0 RTL Superior temporal gyrus right

40 FT8-T8 20 40 −7 0 RTL Temporal pole (superior) right

41 CP6-C4 30 41 −26 37 RPL Inferior parietal lobule right

42 CP6-P4 25 37 −46 34 RPL Angular gyrus right

43 CP6-P8 25 40 −43 14 RTL Middle temporal gyrus right

44 TP8-T8 20 41 −24 1 RTL Middle temporal gyrus right

45 TP8-P8 25 38 −41 2 RTL Middle temporal gyrus right

Zhang et al.: Resting-state brain networks in neonatal hypoxic-ischemic brain damage. . .

Neurophotonics 025007-6 Apr–Jun 2021 • Vol. 8(2)



2.4 Brain Functional Networks Construction

During the past 20 years, brain studies have increasingly applied EEG-, fMRI-, and fNIRS-based
brain network analysis, as well as other brain imaging techniques. Studies have shown that graph
theory-based brain network theory is an effective tool for analyzing brain structure and function,
which reveals numerous potential operating mechanisms and features.29

During advanced cognitive processing, there is cooperation among brain regions with a con-
sistent hemoglobin supply. The transformed HbO or HbR sequences were used to construct
and evaluate the correlation between 45 channels through Pearson’s correlation coefficient as
follows:

EQ-TARGET;temp:intralink-;e002;116;621r ¼ Σn
i¼1ðXi − XÞðYi − YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Σn
i¼1ðXi − XÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σn
i¼1ðYi − YÞ2

q ; (2)

where X and Y represent the time series of hemoglobin concentration in the different channels or
ROIs, respectively, and r is the correlation coefficient. Thus, a 45 × 45 functional connectivity
matrix could be obtained from each participant. Subsequently, Fisher’s r-to-z transformation was
applied to convert these correlation coefficients to z-scores for improved normality.

Forty-five channels were divided into six ROIs based on their location (see Table 1), includ-
ing the left prefrontal cortex (LPFC), left temporal lobe (LTL), left parietal lobe (LPL), right
prefrontal cortex (RPFC), right temporal lobe (RTL), and right parietal lobe (RPL). Moreover,
we averaged the time series of all channels in each region and calculated the between-region r to
evaluate the between-ROI correlation.

Using threshold sparsity, the correlation matrix was transformed into a binary matrix fol-
lowed by the construction of the specific brain network model of HIBD. The thresholds were
selected to ensure network integrity and small-world attributes. The sparsity parameter was
selected to determine the ratio of the number of existing edges to the maximum possible edges,
which has a great impact on the topology of the network. Usually, researchers apply multiple
thresholds and analyze the topological properties of brain networks. Bassett et al.30 used a spar-
sity range (5% < s < 25%, stepsize ¼ 1%) to explore the network properties. Lin et al.21 and
Wang et al.23 investigated the relationship between function connectivity and fNIRS data length
with 10% < s < 50%. This is because the real difference of topological attributes between states
is likely to cover a sparsity interval (called sparsity segment), rather than a few sporadic sparsity
levels. Random noise only has a very low probability to form a statistically significant sparsity
segment. In this study, 36 brain network models were constructed to assess HIBD characteristics
at different scales (5% < s < 40%, stepsize ¼ 1%). Further, we generated random networks with
the same number of nodes, number of edges, and degree distribution as the actual network to
verify the reliability of the real network. Several common global network and regional node
metrics were used to evaluate global and local topological features, including clustering coef-
ficient (Cp), small-worldness (σ), modularity (Q), local efficiency (Eloc), and global efficiency
(Eglob). The calculation formula is as follows:11,31

EQ-TARGET;temp:intralink-;e003;116;241CP ¼ 1

N

X
i∈G

Ei

DiðDi − 1Þ∕2 ; (3)

whereN represents the number of nodes in the unweighted networkG,Di is the number of edges
connected to the i’th node, and Ei is the number of edges in the subgraph. The clustering coef-
ficient reflects the local interconnectivity of a network,

EQ-TARGET;temp:intralink-;e004;116;159σ ¼ Cp_γ

Lp_λ
: (4)

The characteristic path length Lp of graph G is defined as the average of the shortest path
lengths between all node pairs in network G. Specifically, Cp_γ ¼ Creal

p ∕Crand
p , where Crand

p

is the average value of the corresponding parameters derived from 1000 matched random net-
works with the same number of nodes, edges, and degree distribution as the real brain network.
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Similarly, Lp_λ ¼ Lreal
p ∕Lrand

p could be calculated to examine the small-world attributes of the
networks,

EQ-TARGET;temp:intralink-;e005;116;710QðpÞ ¼
Xm−1

M

�
lm
L

−
�
dm
2L

�
2
�
; (5)

whereM is the number of modules, L is the total number of edges of the network, lm is the total
number of edges in module m, and dm represents the sum of the degrees of the nodes in module
m. Modularity is defined as the largest value of modularity measures associated with all pos-
sible configurations of modules,

EQ-TARGET;temp:intralink-;e006;116;612Eglob ¼
1

NðN − 1Þ
X
i≠j∈G

1

dij
; (6)

EQ-TARGET;temp:intralink-;e007;116;552Eloc ¼
1

N

X
i∈G

EglobðiÞ; (7)

where dij is the shortest distance between node i and node j and N is the number of nodes of G.
Concretely, Eglob delivers the efficiency of parallel information transfer in the network, while
Eloc measures the local efficiency of information transfer in the immediate neighborhood of
each node. Similar to the normalized clustering coefficient, the normalized local and global
efficiency were also calculated as follows: Eloc_γ ¼ Ereal

loc ∕Erand
loc and Eglob_γ ¼ Ereal

glob∕Erand
glob,

respectively. More concretely, Erand
loc and Erand

glob were the average value of the corresponding

parameters derived from 1000 matched random networks with the same number of nodes,
edges, and degree distribution as the real brain network.

2.5 Statistical Analysis

Two-sample t-tests and false discovery rate (FDR) correction were applied to compare the
differences between the HIBD and healthy control (HC) groups. To examine the small-world
attributes of HIBD networks, we showed the small-worldness, local efficiency, modularity, and
normalized clustering coefficient at a threshold of 0.3, and the statistical difference between
HIBD and HC was exhibited.

Based on differences in brain networks, we extracted the most recognizable small-world
attributes and operational efficiency as the feature input to the SVM for model training, which
could provide concise and efficient auxiliary indicators for HIBD clinical diagnosis.

The small-worldness, local efficiency, modularity, and normalized clustering coefficient at a
threshold in the range of 0.3 to 0.34 were selected as features. Thus, 4 × 5 ¼ 20 features could be
extracted from each sample. We randomly divided the 13 HIBD samples, as well as the HC
samples, into the training group and test group (10:3). Then the SVM was conducted for the
binary classifications of the HIBD and HC. This study selected a linear kernel function and
fivefold cross-validation mode.32,33 Cross folding for internal validity and grid search methods
were used to identify the optimal parameters c and g. In addition, the receiver operating char-
acteristic (ROC) curve approach was applied to evaluate the sensitivity and specificity of the four
types of significant differential features. The area under the ROC curve (AUC) was conducted to
quantify the performances of these features in detecting HIBD.

3 Results

We explored the structural characteristics of the resting brain network in infants with HIBD and
assessed for differences in the network phenomenon compared with healthy newborns. In this
study, we mainly used HbR signals to characterize the topological development of functional
brain networks since they are generally more reliable for most brain network metrics.

Zhang et al.: Resting-state brain networks in neonatal hypoxic-ischemic brain damage. . .

Neurophotonics 025007-8 Apr–Jun 2021 • Vol. 8(2)



3.1 Channel-Based Functional Connectivity

The grand-average correlation coefficient matrices of infants with HIBD and healthy infants are
presented in Figs. 2(a) and 2(b), respectively, and were used to describe the between-channel
correlation of the whole brain in each group. Compared with the control group, the HIBD group
has significantly weakened functional connections (mean� SD: 0.57� 0.10 and 0.41� 0.14,
respectively). We used two-sample, two-sided power analysis to calculate the statistical power.
The sample size of each group was 13, and the overall standard deviation was 0.14. The final
calculated power was 83.06% at the significance level of 5%. For the results of Fig. 2(c), there
were 62 connections with a significant difference (*p < 0.05) and 9 connections with a signifi-
cant difference (**p < 0.01). This indicates that HIBD caused diffuse functional decline
throughout the brain.

3.2 ROI-Based Functional Connectivity

To further explore the between-ROI connectivity characteristics, the time series of six ROIs’
internal channels were averaged, and two-sample t-tests and FDR correction were applied to
compare the differences between the HIBD and HC groups. Compared with the control group,
the HIBD group had significantly lower cross-interval brain functional connectivity intensity
in LTL-RPL [tð24Þ ¼ −2.08, *p ¼ 0.045], LPFC-RPL [tð24Þ ¼ −2.34, *p ¼ 0.026], LPL-
RTL [tð24Þ ¼ −2.11, *p ¼ 0.042], LPL-RPFC [tð24Þ ¼ −2.21, *p ¼ 0.035], and LPL-RPL
[tð24Þ ¼ −2.38, *p ¼ 0.023], as shown in Fig. 3. There was a greatly significant difference
in long-distance connectivity associated with the parietal lobe.

3.3 Functional Networks

Based on brain functional connectivity, we constructed HIBD brain network models at differ-
ent scales using threshold sparsity. Given the underlying physiological mechanisms, delayed
brain development caused by hypoxia-ischemia probably affected the formation of important
cortical hubs and reduced the efficiency of interregional cooperation. Therefore, we explored
the brain network attributes of infants with HIBD from the central point, network efficiency,
and modularity. Moreover, we attempted to elucidate the internal basis for clinical disease
characterization.

Figure 4 demonstrates the functional network metrics of real (solid line) and random (dashed
line) networks with an increasing threshold (0.05 to 0.4). It can be seen from Fig. 4(a) that the
small-worldness of the HIBD and HC groups were both larger than 1 at all thresholds, which
indicates that the brain networks in newborns have small-world attributes. The Cp, modularity,
and local efficiency of brain networks were large than those of the random networks [see
Figs. 4(b)–4(d)], whereas the global efficiency values of the networks were slightly lower than

Fig. 2 Grand-averaged correlation matrix: (a) infants with HIBD and (b) healthy infants. Axes re-
present the regions. Each channel with its correlation coefficient set at zero (the diagonal line).
LPFC, left prefrontal cortex; LTL, left temporal lobe; LPL, left parietal lobe; RPFC, right prefrontal
cortex; RTL, right temporal lobe; RPL, right parietal lobe. (c) The inter-group differences in actual
channels. The dark blue lines represent connections with significant differences (*p < 0.05) and
the red lines represent connections with extremely significant difference (**p < 0.01).
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those of the matched random networks [Fig. 4(e)]. Compared with the HC group, the HIBD
group showed higher modularity and small-worldness values, whereas the clustering coefficient
and network efficiency of the two groups were comparable.

The group differences in the global network metrics with the sparsity threshold at 0.3 are
shown in Fig. 5. The results demonstrated that the small-worldness [HIBD: 1.31� 0.23; HC:
1.14� 0.12; tð24Þ ¼ 2.27, *p ¼ 0.037], normalized Cp [HIBD: 1.42� 0.26; HC: 1.24� 0.11;
tð24Þ ¼ 2.26, *p ¼ 0.039], modularity [HIBD: 0.26� 0.08; HC: 0.20� 0.04; tð24Þ ¼ 2.21,
*p ¼ 0.043], and normalized local efficiency [HIBD: 1.16� 0.09; HC: 1.10� 0.05; tð24Þ ¼
2.41, *p ¼ 0.024] of HIBD networks were significantly higher than those of the HC group,

Fig. 4 The functional network metrics in the range of the sparsity thresholds (0.05 to 0.4).
(a) The small-worldness, (b) the normalized clustering coefficient, (c) the modularity, (d) the local
efficiency, and (e) the global efficiency. Red and blue curves with circles represent the HIBD
and healthy control groups, respectively. The curves with an asterisk represent the mean and
error bars of the matched random networks.

Fig. 3 The p values of the inter-group t -test of functional connections between all ROIs. The
dashed circles represent six ROIs. Red lines indicate significant inter-group differences in the
regional connection (0.01 < �p ≤ 0.05).
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while the normalized global efficiency [HIBD: 0.94� 0.04; HC: 0.93� 0.08; tð24Þ ¼ 0.25,
p ¼ 0.801] of the HIBD group and HC group had no statistical differences.

In addition, we expect to mine as many effective features as possible in a fixed threshold
range for the needs of clinical diagnosis. According to the statistical results, 0.3 to 0.34 is a
noticeable threshold range. Table 3 shows the details of the four kinds of effective features used
for classification.

The AUC was conducted to quantify the performances of these features in detecting HIBD.
The AUC value for small-worldness, normalized Cp, modularity, and normalized local effi-
ciency is 0.74, 0.75, 0.76, and 0.75, respectively (see Fig. 6).

Figure 7 shows the grand-average central nodes of both groups, which reflected the key node
distribution in the newborn brain. At four different sparsity scales, all neonates showed the cen-
tral development characteristics of lateralization; specifically, there was a higher number of cen-
tral nodes on the left side than on the right side, which was consistent with previous findings.
Furthermore, the difference of distribution of the central nodes between groups was relatively
large when the threshold is 0.1 and 0.2, but gradually disappears when the threshold was further
increased.

3.4 Sensitive Feature Extraction

Based on the aforementioned network properties of infants with HIBD, we extracted the most
recognizable small-world properties and operational efficiency as the feature input to the SVM
for model training to determine efficient and convenient clinical evaluation for HIBD.

After analyzing the network characteristics of two data types, the four types of network indi-
ces, i.e., small-worldness, normalized local efficiency, modularity, and normalized clustering
coefficient, all showed a higher sensitivity for identifying infants with HIBD at a threshold
of 0.3 to 0.34. Therefore, we selected 4 × 5 ¼ 20 network features of each sample. The optimal
classification rate of the final model was 79.17%, and the mean classification accuracy was
72.92� 4.53%. These findings regarding the ideal classification show that fNIRS analysis
of the resting-state brain network can effectively detect functional abnormalities in children with
HIBD and has clinical utility for early disease detection and intervention.

Fig. 5 The group differences in the global network metrics with the sparsity threshold at 0.3.
(a) The small-worldness, (b) the normalized clustering coefficient, (c) the modularity, (d) the nor-
malized local efficiency, and (e) the normalized global efficiency. Asterisk indicates a significant
difference (*p < 0.05).
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Table 3 Details of features with thresholds of 0.3 to 0.34 used for classification.

Sparsity
threshold t p

HIBD
(Mean� SD)

HC
(Mean� SD)

Small-worldness 0.30 2.27 0.037 1.31� 0.23 1.14� 0.12

0.31 2.14 0.048 1.33� 0.25 1.16� 0.13

0.32 2.22 0.042 1.32� 0.24 1.15� 0.12

0.33 2.27 0.037 1.31� 0.23 1.14� 0.12

0.34 2.17 0.046 1.29� 0.23 1.14� 0.11

Normalized Cp 0.30 2.26 0.039 1.42� 0.26 1.24� 0.11

0.31 2.32 0.035 1.41� 0.25 1.23� 0.11

0.32 2.42 0.029 1.40� 0.24 1.22� 0.10

0.33 2.50 0.025 1.38� 0.23 1.21� 0.10

0.34 2.46 0.027 1.36� 0.22 1.20� 0.10

Modularity 0.30 2.21 0.043 0.26� 0.08 0.20� 0.04

0.31 2.42 0.028 0.25� 0.08 0.19� 0.04

0.32 2.34 0.033 0.25� 0.08 0.19� 0.04

0.33 2.46 0.026 0.25� 0.08 0.18� 0.04

0.34 2.40 0.030 0.24� 0.08 0.17� 0.04

Normalized local
efficiency

0.30 2.41 0.024 1.16� 0.09 1.10� 0.05

0.31 2.39 0.025 1.15� 0.08 1.09� 0.05

0.32 2.39 0.025 1.14� 0.08 1.08� 0.05

0.33 2.68 0.013 1.14� 0.07 1.08� 0.05

0.34 2.64 0.014 1.13� 0.07 1.07� 0.05

Note: p < 0.05 indicates a significant difference.

Fig. 6 The ROC curves of small-worldness, normalized Cp, modularity, and normalized local effi-
ciency, plotted in blue, red, green, and black, respectively. The AUC value for the four types of
features is 0.74, 0.75, 0.76, and 0.75, correspondingly.
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4 Discussion

For the channel-based results, HIBD significantly reduced resting-state brain functional connec-
tivity across the whole brain in infants. The respective correlation matrix of the two data groups
revealed that the HIBD group had significantly weaker brain functional network connectivity of
infants than the control group. This is consistent with the characteristics of whole brain involve-
ment in perinatal brain injury. In the early postnatal period, the brain of newborns develops
rapidly under the joint stimulation of endogenous and environmental factors, and synaptic con-
nections are reshaped under the joint influence of the body itself and the external environment.
The findings of Fransson et al.15,16 suggest that basic functional networks already exist and rap-
idly develop in healthy newborns. Perinatal brain injury may be related to many factors such as
abnormal synaptic development and decreased nerve cell transporters, which is also associated
with dysgenesis of functional connectivity.

For the ROI-based results, there were severe losses of long-range functional connectivity
between the brain regions of infants with HIBD. This phenomenon was observed between the
contralateral parietal-temporal lobe, contralateral parietal-frontal lobe, and contralateral parietal
lobe. This is consistent with previous findings regarding brain dysfunction in preterm infants.
Tusor18 observed decreased resting-state single-side long-distance connections compared with
healthy newborns. This suggests that when brain injury occurs, especially in the acute phase,
bilateral parietal lobes may be most heavily involved. The involvement further weakens the
long-distance information transmission, which limits the efficiency of synergistic cooperation
between multiple brain regions. This is because, during brain development, HIBD-induced defi-
ciency in blood oxygen supply results in vasoconstriction and white matter deletion; moreover,
it may progress to involve neuronal necrosis of the overlying cortex. This hinders the synergistic
cooperation between brain regions in newborns, which results in the infants presenting cognitive
impairment with clumsiness or spasticity later in life.

The functional networks of infants with HIBD have a stronger ability of local information
transmission. Analysis of small-world attributes and operational efficiency showed that the net-
work normalized clustering coefficient, small world, normalized local efficiency, and modularity
level were larger in the HIBD group than in the control group in the left auxiliary motor area,
RTL area, and right parietal upper gyrus. This phenomenon was reported in an fMRI-based study
on extreme preterm neonates compared with normal neonates. Elveda et al.34 found that the
small-world degree of extremely premature infants was significantly larger than that of normal
newborns at partial thresholds. This could be attributed to extremely premature infants having
significantly enhanced intra-regional connectivity between the motor region and the auditory
network region, which leads to the increased clustering coefficient in some regions and the

Fig. 7 Grand-averaged central node of the two groups at four thresholds.
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increase of the small-world degree. This indicates that the functional connections of the infants
also redistribute after acute brain injury, which is consistent with the redistribution of cerebral
hemodynamics. The observed increase in local efficiency and the decline in overall ability could
be attributed to the compensation effect. The less damaged functional area responsible for basic
survival needs demonstrates the phenomenon of excessive compensation, which causes internal
network overdevelopment. Contrastingly, severely damaged high-level functional hubs show
impeded development. This phenomenon may be involved in the prognosis of patients with
mental retardation, cerebral palsy, and other cognitive disorders.

Graph theory analysis based on functional connectivity can derive summary parameters to
describe and quantify aberrant communication patterns associated with brain injury. After
screening, network indicators based on small-worldness, local efficiency, modularity, and nor-
malized clustering coefficient allowed for efficient HIBD identification. The AUC values dem-
onstrated the ability of all of these features in HIBD detection (*p < 0.05). The performance of
the four types of features was similar, among which modularity was slightly better. These indica-
tors highlight the dysfunction of information transmission and integration in the brain and net-
work efficiency overdevelopment within the region, which can be significantly distinguished
from healthy newborns. This provides a new and concise basis for clinical diagnosis, which
could increase the general attention of clinicians.

Moreover, central node development in the left side was higher than that in the right side;
specifically, there was preferential development of advanced language-related function of the
newborn. The left side of the healthy newborn is usually 4.3% larger than the right side,35 which
is consistent with our findings. Notably, infants with HIBD had missing regional central nodes
responsible for language-related advanced cognitive functions, including channel 8 (left middle
frontal gyrus), 15 (left upper frontal gyrus dorsal), and 30 (right central posterior gyrus). The
central nodes are responsible for integrating information from each functional region to complete
efficient resource allocation and operation; moreover, their absence could cause delayed
cognitive function development in newborns. On the other hand, the sample size limits further
discussion of distribution of the central nodes. Although the central nodes were not selected as
features for classification in this study, their low level of development for HIBD infants makes
them still worth collecting for verification, which may build a relationship between HIBD and
functional networks.

Taken together, sustained brain damage could disrupt the development of key structural and
functional networks, which leads to neurological development disorders in newborns. fNIRS-
based analysis of the resting-state brain network could be applied to identify abnormal features
regarding brain functional development in infants with HIBD, which contributes to the patho-
logical understanding and clinical diagnosis of the disease. There are also some limitations and
suggestions given based on our results. The small sample size restricts the statistical power to a
certain extent. We have not made a more in-depth pathological analysis of HIBD. In future stud-
ies, fNIRS and clinical manifestations of HIBD will be combined to assess the association
between the network of lesions and the core symptoms. Moreover, we expect to mine as many
effective features as possible in a fixed threshold range for the needs of clinical diagnosis. The
sparsity segment near 0.3 was a recommended threshold range and could be used as a reference
for future research on infant brain functional connectivity.

5 Conclusion

This is the first study to conduct fNIRS analysis of the resting-state brain network for assessing
brain function levels in children with HIBD.

By exploring brain network attributes, we observed significant between-group differences in
various aspects, including functional connectivity intensity, node center, and information
transmission between brain regions. These findings provide a theoretical basis for the clinical
characterization of mental retardation, cerebral palsy, convulsion, and cognitive dysfunction in
children. Further, according to specific network defects, the extracted sensitivity index based on
small-world attributes, efficiency, modularity, and node degree could be effectively applied to
identify patients, which indicates that fNIRS-based analysis of the resting-state brain network
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could be an exciting tool for assisting in the early clinical diagnosis of HIBD. Future studies
should assess the utility of this technology for other types of neonatal brain injury.
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