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Abstract. Millions of dollars have been spent on brush management, or removal of unwanted
woody vegetation, as a conservation practice to control the presence of woody species. Land
managers need an inexpensive means of monitoring the effects of brush management conser-
vation methods for decreasing degradation in rangeland systems. In this study, free, publically
available, high-resolution (1 m) imagery from the National Agricultural Imagery Program
(NAIP) and moderate-resolution (30 m) Landsat-5 Thematic Mapper (TM) imagery were com-
bined to produce a large-scale technique for mapping woody cover. High-resolution imagery-
based estimates of woody cover were found to be reasonable (RMSE ¼ 3.8%, MAE ¼ 2.9%)
surrogates for ground-based woody cover. An equation for TM-derived woody cover was
developed. TM scenes of woody cover (TMWC) were produced and validated using NAIP
and ground-based data. Results showed that the developed relation produced viable
(RMSE ¼ 8.5%, MAE ¼ 6.4%) maps of woody cover that could be used to successfully
track the occurrence of brush removal, as well as monitor the presence or lack of subsequent
reemergence. This work provides land managers with an operational means of determining
where to allocate resources to implement brush management, as well as a cost-effective method
of monitoring the effects of their efforts. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in
part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.9
.096057]
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1 Introduction

There has been an increase in trees and shrubs on rangeland systems in the past 150 years.1–3 This
increase in woody species comes at the expense of perennial grasses whose losses can cause
changes in primary production, nutrient cycling, and the accumulation of soil organic matter.4

In order to decrease the loss of inherent ecosystem function, vegetation mortality, and increased
runoff associated with rangeland system degradation, it is necessary to utilize effective conser-
vation practices. One such practice is brush management, which typically employs prescribed
burning, mechanical methods (e.g., chaining, roller chopping, root plowing, shredding, and
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bulldozing), chemical methods (i.e., herbicide application), or a combination of these methods to
control unwanted woody vegetation.5 Between 1997 and 2003, the United States Department of
Agriculture’s (USDA) Natural Resources Conservation Service (NRCS) spent nearly $34 million
dollars on conservation practices, over $19 million being for brush management alone, on 188
million ha of central and western rangelands and grazed forests.6 With such a large investment of
resources being allocated toward the implementation of brush management, it is essential to have
a mechanism for evaluating its effectiveness. The cost combination of labor, equipment, vehicles,
travel, and supplies, make traditional ground-based methods of data collection on large scales
prohibitively expensive. A pilot study to sample 400 sites (800 points) on 3.1 million ha of range-
land and pinyon-juniper woodlands, reported costs of sampling 448 points by 12 people working
10–12 h per day (data collection and travel) from early June to mid-October at approximately
$400,000, with field data collection cost before analysis, averaging $893 per sample point.7

Evaluating nearly 200 million ha solely using on-the-ground resources is simply not feasible.
A new large-area method is required.

Due to its ability to provide information faster and more cost-effectively than ground-based
data collection, remote sensing has been used to map, monitor, and assess vegetation over large
areas for over 30 years.8–17 Within the last 10 years, new government programs, policy changes,
and technological advances have made remotely sensed data more accessible than ever before.
The USDA Farm Service Agency’s (FSA) National Agriculture Imagery Program (NAIP) has
been collecting and providing free, publically available, high-resolution aerial imagery for the
continental United States since 2003. Further, the global, multidecadal Landsat satellite data
record (1980s to present), together with Landsat’s free data policy, make county, state, regional,
and national scale vegetation assessment possible. There was a time when cost made the use of
remotely sensed products for long-term monitoring purposes unrealistic. However, with the
availability of these no-cost, high spatial, and high temporal resolution datasets, remotely sensed
assessment of the effectiveness of conservation practices that strongly influence vegetation cover
(e.g., brush management) is now attainable.

Remote sensing has been used to assess woody vegetation in arid and semiarid rangeland
systems around the world.8,18–24 Assessments are commonly performed using spectral mixture
modeling18,19,25–29 and land cover maps20–22,24,30 produced through supervised classification tech-
niques. These methods often employ the use of high-resolution (<15 m) satellite imagery, aerial
photography, or hyperspectral data. However, the nature of these methods does not easily lend
itself to operational use. High-resolution imagery is often expensive to obtain, not readily avail-
able on an extended temporal basis, and the requirements that attend its use (e.g., software and
skilled labor for data preprocessing, development of image processing algorithms, and data man-
agement and storage) present additional challenges. Likewise, resource investments (people,
time, money, and equipment) for collection of the data required for ground-truth land cover
maps are often prohibitive for repetitive map production. To be of practical use by land man-
agers, the quantification of large-scale woody vegetation cover must be possible using a fairly
straightforward and easy to apply methodology that utilizes inexpensive (free) imagery and
requires minimal image processing (due to time constraints of overburdened personnel).
Thus, the objective of this study was to develop an operationally oriented method for assessing
woody vegetation cover using publically available, no-cost remotely sensed data sources on
semiarid rangelands in southeastern Arizona.

2 Methodology and Data Processing

The goal of this work was to develop an operational remote sensing protocol for quantifying
woody vegetation cover using no-cost imagery. This protocol is intended for use by land man-
agers to aid in implementing, monitoring, and assessing the effects of brush management con-
servation practice applications. The woody species Prosopis L. (mesquite) was the focus of this
particular study. Sections 2.1–2.3 include descriptions of the study areas, ground-based datasets,
imagery used, its processing, the integration process used for subpixel discernment of woody
vegetation, and the generation of the relation to quantify woody cover.
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2.1 Study Areas

The study was conducted within major land resource area (MLRA)-41 Southeastern Arizona
Basin and Range31 and on the Empire Ranch in southeastern Arizona (Fig. 1). The Arizona
portion of MLRA-41 covers approximately 36;281 km2. Elevation ranges from 975 to
1525 m and the average annual precipitation ranges from 304 to 406 mm with 60% of the rainfall
occurring between July and September. The Empire Ranch, which is operated by the Bureau of
Land Management (BLM), is located within the Las Cienegas National Conservation Area in the
Sonoita Valley of southern Arizona. It is a high profile multiple use area which includes BLM,
Pima County, State Trust, and private lands. The ranch is managed cooperatively with significant
citizen input, is actively used for cattle ranching, and has experienced a number of conservation
management practices (prescribed grazing, prescribed burning, and mechanical grubbing for
brush removal). The dominant vegetation is native grass, including Bouteloua gracilis
(Willd. ex Kunth) Lag. ex Griffiths (blue grama), Bouteloua eriopoda (Torr.) Torr. (black
grama), Bouteloua curtipendula (Michaux) Torr. (sideoats grama), Bouteloua hirsuta
(Lagasca) (hairy grama), and Aristida spp. Woody species are mainly comprised of Prosopis
L. (mesquite) and Populus L. (cottonwood).

Mechanical grubbing for brush removal was performed at several locations on the Empire
Ranch. Brush removal treatments occurred from October 18, 2010 to January 26, 2011 on three
sites covering approximately 180 ha (Fig. 1). These sites were used to conduct a pre- and post-
treatment assessment of woody cover.

2.2 Data Collection and Processing

Five years of pre-existing ground-based data collected on the Empire Ranch and at National
Resources Inventory (NRI) sites within the MLRA were used for the study (Table 1). The
NRI and Empire Ranch sampling block (ERBLOCK) data were collected by NRCS and
USDA Agricultural Research Service Southwest Watershed Research Center personnel, respec-
tively. The Nature Conservancy (TNC) data were collected by TNC employees and volunteers as
part of an annual monitoring program for the Empire Ranch. The line-point intercept32 method
was used to measure foliar canopy cover by species at all locations. Only woody species cover
data were used for analysis. Five years of remotely sensed data were also obtained for the study
(Table 2). The datasets NRI, NAIP, and Landsat-5 thematic mapper (TM) imagery were used for
training, validation, and equation development. Descriptions of image selection criteria and
processing procedures are provided in subsections 2.2.1–2.2.3.

Fig. 1 Major land resource area 41 overlaid with a Landsat-5 TM tile for path 35, row 38, and the
Empire Ranch study area with National Agricultural Imagery Program (NAIP), National Resources
Inventory (NRI), The Nature Conservancy (TNC), brush removal, and Empire Ranch sampling
block (ERBLOCK) study sites. NAIP and NRI represent high-resolution imagery subset locations.
TNC and ERBLOCK represent ground-based sampling locations.
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It should be noted that dataset acquisition dates ranged from 2002 to 2013. However, barring
the occurrence of major disturbance (e.g., mechanical removal, fire), mesquite cover changes
very slowly (<1% per year) in the Southwest.33–35 Given that no disturbance events occurred
within the areas examined for this study, the assumption was made that comparisons made
of datasets acquired within a 3-year window of one another were valid.

2.2.1 National Resources Inventory imagery

The NRCS rangeland NRI image scenes are ultra-high-resolution (0.305-m), three-band (red,
green, and blue) aerial photographs that have been collected as part of the NRI36,37 data collec-
tion efforts since 2000. Five scenes were used for the study (Table 2). Each scene covered
approximately 1609 m2 and was subset to correspond with ground data collection sites. All
subsets were classified as woody or nonwoody through supervised object-oriented classification

Table 1 Ground-based dataset description. NRI ¼ National Resources Inventory,
TNC ¼ The Nature Conservancy, ERBLOCK ¼ Empire Ranch sampling block.

Dataset (number of points) Collection year Plot size (m) Transect length (m) (number of lines)

NRI04 (7) 2004 50 × 50 46 (2)

TNC06 (16) 2006 50 × 100 50 (10)

TNC08 (15) 2008 50 × 100 50 (10)

TNC12 (12) 2012 50 × 100 50 (10)

ERBLOCK 1 (1) 2011 80 × 80 60 (6)

ERBLOCK 2 (1) 2011 50 × 30 50 (5)

ERBLOCK 3 (1) 2011 100 × 100 60 (6)

ERBLOCK 4 (1) 2012 80 × 80 60 (4)

ERBLOCK 5 (1) 2012 80 × 80 60 (4)

Table 2 Imagery dataset description. NRI ¼ National Resources Inventory,
NAIP ¼ National Agricultural Imagery Program, TM ¼ Landsat-5 Thematic Mapper.

Type of image Acquisition date Purpose of use

NRI1 August 23, 2002 Equation development

NRI2 August 23, 2002 Equation development

NRI3 August 23, 2002 Equation development

NRI4 August 23, 2002 Equation development

NRI5 August 23, 2002 Equation development

NAIPP1 August 07, 2013 Training, validation

NAIPP2 August 07, 2013 Training, validation

NAIPC1 July 23, 2013 Training, validation

NAIPC2 July 23, 2013 Training, validation

TM June 17, 2006 Validation

TM June 22, 2008 Validation

TM June 15, 2011 Validation, equation development
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performed with Overwatch Systems LTD’s Feature Analyst®. Object-oriented analysis utilizes
both the spectral characteristics of pixels and their spatial arrangement.24

2.2.2 National Agriculture Imagery Program imagery

Three-band (red, green, and blue) mosaicked NAIP images for Pima (NAIPP) and Cochise
(NAIPC) counties collected on August 07, 2013, and July 23, 2013, respectively, were obtained
from the USDA NRCS Geospatial Data Gateway.38 The NAIP scenes were 1-m ground sample
distance ortho-imagery rectified within �6 m to true ground at a 95% confidence level and for-
matted to a UTM NAD83 coordinate system. Subsets of the images (NAIPP1, NAIPP2, NAIPC1,
andNAIPC2) were selected to represent vegetation found in the mesquite grassland portions of the
TM tiles (Fig. 2).NAIPP1 andNAIPC1 are examples of grassland areas with low tomoderate levels
of mesquite. NAIPC1 was more sparsely vegetated with greater soil heterogeneity. NAIPP2 and
NAIPC2 are examples of mesquite dominated areas, withNAIPP2 being largely composed of mes-
quite and the large bunchgrass Sporobolus airoides (Torr.) Torr. (alkali sacaton). All subsets were
classified as woody or nonwoody through supervised object-oriented classification performed
with Overwatch Systems LTD’s Feature Analyst®. Accuracy assessments of each scene were per-
formed using error matrices with 100 randomly distributed sample points per class.39

2.2.3 Thematic Mapper imagery

Moderate-resolution (30 m) TM image tiles of path 35, row 38, selected for the study were
downloaded from the USGS Earth Explorer website40 and had been atmospherically corrected
to surface reflectance using the Landsat Ecosystem Disturbance Adaptive Processing
System.41,42 Scenes came processed to standard terrain correction (level 1T), which provides
systematic radiometric and geometric accuracy by integrating ground control points while uti-
lizing a digital elevation model for topographic accuracy. All scenes were converted to UTM
North American Datum of 1983 (NAD83) zone 12.

The landscape of MLRA-41 is a mix of heterogeneous vegetative cover and soil types.
Therefore, characterizing its vegetation canopies will require the use of a spectral vegetation
index that can handle such variability. One of the greatest concerns for assessing the sites

Fig. 2 Examples of NAIP subsets from Pima and Cochise counties collected on August 07, 2013
and July 23, 2013, respectively.
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used in this study was the influence of soil background conditions, which can have considerable
influence on calculated vegetation indices for partial canopy spectra.43,44 The normalized differ-
ence vegetation index (NDVI)45

NDVI ¼ ρNIR − ρred

ρNIR þ ρred
; (1)

where ρNIR and ρred are near-infrared (NIR) and red reflectance, is one of the most commonly
used indices for assessing vegetation with remotely sensed data. However, the NDVI is sensitive
to optical properties of soil background, particularly when vegetation is sparse, making it prob-
lematic for application to data spanning different soil types.43,45,46 The soil-adjusted vegetation
index (SAVI)

SAVI ¼ ρNIR − ρred

ρNIR þ ρred þ L
ð1þ LÞ; (2)

is capable of minimizing the effects of variable soil backgrounds through the use of an L adjust-
ment factor.43 However, to obtain the most precise measures of SAVI, knowledge of vegetative
densities for the area of interest is needed to select the most appropriate value for L (e.g., L ¼ 1

for very low vegetation densities, L ¼ 0.5 for intermediate densities, and L ¼ 0.25 for higher
densities).43,44 This can be an issue when looking at large areas containing varying densities of
vegetation. Unlike SAVI, the modified soil-adjusted vegetation index (MSAVI)

MSAVI ¼ 2ρNIRþ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ρNIR þ 1Þ2 − 8ðρNIR − ρredÞ

p

2
; (3)

requires no prior knowledge about vegetation densities in order to select the best L value. Instead
optimal L values are determined based on the present reflectance.47 Due to the heterogeneity of
the study area, MSAVI was selected for use in this study.

Given that a vegetative index will only provide a general measure of greenness, it was nec-
essary to use phenologic timing to discriminate between woody and nonwoody vegetation can-
opies. Initial selection of TM scenes for the study was based on a short preliminary study
conducted to identify the time period that would provide the greatest contrast between mesquite
and herbaceous canopies. Homogeneous areas of mesquite and herbaceous vegetative cover
were sampled from cloud-free TMMSAVI images ranging from January 1, 2002, through
December 31, 2011. Mean monthly MSAVI values of the mesquite and herbaceous areas
were calculated and plotted for the time series (Fig. 3). Optimal timing for capturing the greatest
contrast between the two canopy types was between June and July, with mid- or late- June being
most favorable.

Cloud-free scenes of June were then screened for precipitation. Occurrence of precipitation
events was evaluated using data generated from Daymet,48 a collection of algorithms and com-
puter software that interpolates and extrapolates from daily meteorological observations to

Fig. 3 Comparison of MSAVI-based greenness for mesquite and herbaceous canopies over time.
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produce gridded estimates of daily weather parameters over large regions at 1-km spatial res-
olution. Studies in semiarid environments have demonstrated that germination of annual forbs
and grasses can begin at precipitation levels ranging from 10 to 25 mm.49–51 This appearance of
green vegetation sparked by winter rains is often followed by a subsequent senescent period.52 It
is during this senescent period that deep-rooted woody vegetation will green-up, with perennial
grasses following after the onset of summer rains (Fig. 3). However, an occurrence of subsequent
rainfall events following germination can lead to the presence of a green herbaceous cover
extending into the critical window needed for discriminating woody from herbaceous canopies.
Moreover, it has been observed that 50.8 mm (2 in.) of winter precipitation can sustain herba-
ceous vegetation until summer precipitation arrives.53 Therefore, all scenes with a cumulative
precipitation (January 1 to the image date) of 50.8 mm or greater were eliminated in an effort to
decrease the likelihood that green herbaceous vegetation was present. Finally, TM scene selec-
tion was narrowed to years spanning the 2006 to 2011 timeframe to facilitate application with
available coincident datasets (Table 2).

2.3 Subpixel Discernment of Woody Vegetation and Equation Development

Moderate-resolution satellite imagery is useful for examining vegetation cover over large areas.
However, when trying to discriminate between vegetation types, the presence of mixed pixels
can be problematic. In this study, a method was needed to “unmix” pixels without having to
undertake the more complicated methods used for spectral unmixing.54–57 This was accom-
plished by integrating moderate 30-m resolution imagery with higher 1-m resolution imagery.

Each classified NAIP subset was aggregated up to 30-m resolution using a script created in
MATLAB® (Fig. 4). The following is a short description of operations performed within the script
for each NAIP scene. The 2011 TMMSAVI and the classified NAIP images were cropped together so
that their dimensions ensured each TM pixel region comprised exactly 900 (30 × 30) NAIP pixels.
The cropped NAIP imagewas then reclassified using a binary system, with each pixel given a value
of one for woody or zero for nonwoody. This binary image was aggregated to 30-m resolution by
passing a 30 × 30 pixel moving window over the image and calculating the percent woody cover
per iteration [Fig. 4(c)]. Percent woody cover was calculated using the following equation:

Percent woody cover ¼
P

n
i¼1 vi
n

× 100; (4)

where vi is a reclassified binary pixel value, n is the total number of pixels in the moving window,
and NAIP-based woody cover (NAIPWC) scenes were produced.

The 2011 TMMSAVI and NAIPWC images were used to develop a relationship for producing
TM images of woody cover (TMWC). A MATLAB script was created to perform randomly strati-
fied sampling of the TMMSAVI andNAIPWC scenes. Stratification class bounds were based on the
NAIPWC values (0 to 100%) and set at 10% increments. The number of samples was set to 10
samples per class without replacement. A 3 × 3 pixel (90 × 90 m) window was used for sam-
pling the scenes and the mean TMMSAVI and NAIPWC values for the window region were
extracted.58 The resulting data were split to serve as training and validation datasets.
Regression of the training dataset pairs of TMMSAVI and NAIPWC was used to develop a relation
for TMMSAVI-derived woody cover. The resulting equation was applied to the three TMMSAVI

scenes to create TMWC scenes. Validation of the TMWC scenes from 2006, 2008, and 2011 was
conducted using the NAIPWC, TNC06, and TNC08 datasets.

3 Results and Discussion

The objective of this study was to develop an operationally oriented method for assessing woody
vegetation cover using publically available, no-cost remotely sensed data sources on semiarid
rangelands in southeastern Arizona. The following is a discussion of the results of the method’s
development, including accuracy assessments, validation, and end product usage.

It is often necessary to use pre-existing datasets when conducting large-scale land cover
assessments. Traditionally, ground-based measures have been the preferred source of reference
data when performing accuracy assessments of remotely sensed products. Unfortunately,
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ground-based data are not only expensive and time consuming to obtain, but when collected are
rarely at a scale appropriate for use with moderate-resolution scenes.7,36,39 Alternatively, stud-
ies59–62 have used high-resolution airborne imagery as a surrogate for ground-based data. When
using this method, a subset comparison of ground-collected and airborne data to verify reliability
is recommended.39 Therefore, a comparison of high-resolution image-based woody cover and
ground-based woody cover is shown (Fig. 5). Good agreement (RMSE ¼ 3.8%, MAE ¼ 2.9%)
was found between the datasets. The error fell within bounds considered reasonable for accept-
ing imagery-based woody cover estimates for use as ground-based surrogates.

NAIP imagery was used to produce ground-based woody cover in this study. Accurate clas-
sification of this imagery was imperative for generating reasonable estimates of woody cover.
Error matrices of the classified NAIP subsets indicated overall accuracies for the subsets that
ranged from 93% to 97% (Fig. 6). Misclassification of dark and/or shaded grasses as woody
vegetation was a source of error for all subsets. Overclassification of tree clusters was the
main source of error for the mesquite dominated scenes (NAIPP2 and NAIPC2).

The practice of relating spectral vegetation indices to vegetative properties (e.g., canopy
cover, LAI, biomass, leaf water content, and chlorophyll) is well documented.63–65 In this
study, a strong (R2 ¼ 0.92) linear relationship was found between TMMSAVI and NAIPWC

(Fig. 7). The resulting equation:

Fig. 4 Process for aggregating 1-m resolution NAIP to 30-m resolution: (a) a section of unclassi-
fied 1-m NAIP image, (b) section of 1-m NAIP image classified as woody or nonwoody, (c) sample
of binary aggregation calculation of percent woody cover using Eq. (2) for a 5 × 5 m moving win-
dow where n ¼ 25, (d) section of classified NAIP aggregated to 30-m resolution.
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Percent Woody Cover ¼ 599.64ðTMMSAVIÞ − 49.05; (5)

made it possible to quantify woody cover from TM imagery.
Validation is a critical step in the production of remotely sensed products.39,66,67 Assessment

of the 2006, 2008, and 2011 TMWC scenes revealed a number of factors responsible for the
resultant error (RMSE ¼ 8.5%, MAE ¼ 6.4%) (Fig. 8). First, saturation of TMWC correspond-
ing to the NAIPWCðP2Þ data was likely due to the possible presence of broadleaved woody species
mixed with mesquite canopies that were visually undetectable during initial classification efforts.
Next, apparent underestimation of TMWC for NAIPWCðP2Þ data seen in the mid- to high (40% to
85%) range of observed cover was the result of an inflation of NAIPWC caused by overclassi-
fication of tree clusters and dark and/or shaded grasses. Further, TMWC was overestimated for
NAIPWCðP2Þ data within the lower (5% to 25%) range of observed cover. This was largely due to

Fig. 6 Error matrices to assess the accuracy of classifications performed on four NAIP subsets of
images from Pima (NAIPP1, NAIPP2) and Cochise (NAIPC1, NAIPC2) counties captured on August
07, 2013 and July 23, 2013, respectively.

Fig. 5 Comparison of high-resolution (NAIP and NRI) imagery-based woody cover and ground-
based woody cover. Root-mean-square error (RMSE) and mean absolute error (MAE) are
presented.
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a resulting disconnect due to the ability to visually detect the sacaton in the NAIPP2 scene when
determining observed woody cover, and an inability of TMMSAVI to differentiate between mes-
quite and sacaton greenness. Given that green-up of sacaton canopies can start as early as
April and last past October, discernment from mesquite greenness was simply unfeasible.
Finally, uncertainty in cover estimates when TMWC was less than 10% was largely dependent
on how well the woody signal overcame the underlying ground cover signal. Despite the
varied nature of these localized errors, the RMSE and MAE of the TMWC scenes were within
acceptable bounds for operational use to quantify large-scale woody cover for brush manage-
ment decisions.

These large-scale images of woody cover can provide a picture of the spatial distribution of
woody cover that is integral in establishing where removal should occur, and in tracking its re-
emergence for subsequent removal. For example, subsets of TMWC scenes of pre and postbrush
removal on the Empire Ranch showed a decrease in woody cover from 30% to 60% in 2008 to
10% to 20% in 2011 within areas treated with brush removal (Fig. 9). Changes seen in the area
southwest of the treatments where woody cover dropped from roughly 11% to 60% down to 0%
to 5% cover were caused by a wildfire on June 01, 2011. The continuation of the Landsat time
series through the launch of Landsat-8 will make tracking reemergence within these treatments
post-2011 possible.

Fig. 8 Comparison of observed (NAIPWCðP1Þ, NAIPWCðP2Þ, NAIPWCðC1Þ, NAIPWCðC2Þ, TNC06, and
TNC08) and predicted (2006, 2008, and 2011 TMWC) woody cover. Root-mean-square error
(RMSE) and mean absolute error (MAE) are presented.

Fig. 7 Relationship of 2013 NAIPWC to 2011 TMMSAVI. Regression is significant.
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4 Concluding Remarks

An operationally oriented protocol for quantifying woody vegetation cover with no-cost, pub-
lically available imagery is needed to aid land managers in implementing, monitoring, and
assessing brush management conservation practice applications. This work showed that it
was possible to produce viable (RMSE ¼ 8.5%, MAE ¼ 6.4%) maps of woody cover to
track the occurrence of brush removal and monitor the presence or lack of subsequent re-emer-
gence. However, there are a number of conditions that must be upheld to achieve valid results.
With regard to Landsat image selection, appropriate phenologic timing for capturing the greatest
contrast between the woody species of interest and other vegetative cover is critical. Precipitation
and cloud cover must also be considered. In this study, the woody species of interest was mes-
quite and optimal timing was mid- or late- June, with less than 50.8 mm of cumulative precipi-
tation occurring before the cloud-free image date. Use of the protocol in other locations (e.g.,
Texas, New Mexico, Colorado, etc.) will require new determinations of the optimal timing to
allow for greatest contrast between woody and nonwoody vegetation, as well as precipitation
conditions that limit the occurrence of green forbs and grasses.

Generation and validation of TM scenes to estimate woody cover from TMMSAVI requires
corresponding image-based woody cover values. Given that these image-based woody cover
estimates are calculated from classifying high-resolution imagery, accurate classification of
woody versus nonwoody vegetation is essential. Misclassification due to shadowing and clump-
ing of vegetation will manifest as error in the validation of Landsat-based woody cover estimates.
Early green-up of herbaceous vegetation will also contribute to misclassification error and
should be avoided if possible. The relation for woody cover from MSAVI in this study
(Eq. 5) was developed to target mesquite cover. It does detect other woody species; however,
to achieve the best results, new relations should be developed for use with woody species like
Juniperus L. (juniper) or Populus L. (cottonwood) that have reflective signatures that are very
different from mesquite.

This study demonstrated that it was possible to produce a viable method for developing an
operationally oriented method for assessing woody vegetation using publically available, no-cost
remotely sensed data on semiarid rangelands in southeastern Arizona. Future work will include
development of new relationships to better quantify juniper and cottonwood species, as well as
test protocol applicability to Landsat-8 imagery and other rangeland locations in the central and
western United States.
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