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Abstract. The effects of insect infestation in agricultural crops are of major ecological and eco-
nomic interest because of reduced yield, increased cost of pest control and increased risk of
environmental contamination from insecticide application. The Russian wheat aphid (RWA,
Diuraphis noxia) is an insect pest that causes damage to wheat (Triticum aestivum L.). We pro-
posed that concentrated RWA feeding areas, referred to as “hot spots,” could be identified and
isolated from uninfested areas within a field for site specific aphid management using remotely
sensed data. Our objectives were to (1) investigate the reflectance characteristics of infested and
uninfested wheat by RWA and (2) evaluate utility of airborne hyperspectral imagery with 1-m
spatial resolution for detecting, quantifying, and mapping RWA infested areas in commercial
winter wheat fields using the constrained energy minimization classifier. Percent surface reflec-
tance from uninfested wheat was lower in the visible and higher in the near infrared portions of
the spectrum when compared with RWA-infested wheat. The overall classification accuracies of
>89% for damage detection were achieved. These results indicate that hyperspectral imagery
can be effectively used for accurate detection and quantification of RWA infestation in wheat for
site-specific aphid management. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.8.083661]
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1 Introduction

The Russian wheat aphid (RWA: Diuraphis noxia) is one of the economically important insect
pests of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) around the world.1,2

While feeding, the RWA injects toxin into plants manifesting into a variety of stress symptoms.
These symptoms are expressed as white, reddish-purple, or yellow longitudinal streaks on leaves
and stems and rolling and stunting of either stems or leaves.1 Stunting in heavily infested plants
leads to reductions in plant and stem height, leaf area, root development, chlorophyll concen-
tration, grain mass, and vegetative biomass.1,3,4 Plant stress due to the RWA is a combination of
developmental, biochemical, physiological, and morphological responses. Plant growth stages,
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time and duration of feeding, nutritional status of the host plants, aphid abundance, and other
environmental factors all can affect plant responses to RWA feeding.5

The RWA infestations in wheat usually are not uniform, but rather occur in clusters referred
to as “hot spots” based on assessment of visible damage symptoms by the naked eye. Applying
pesticides to only the infested patches would reduce RWA control costs. These hot spots could be
spatially recognized within fields and site specific insect management plans could be imple-
mented to hot spots only.

Although the RWA is widely distributed around the world, its economic impact on small
grains has been assessed only in Ethiopia, South Africa, Canada, and the United States
(US).3,4 Studies indicate that economic injury levels due to RWA feeding in small grains
vary within a given region or among regions.3,4 In favorable conditions, RWA infestation
can result in heavy damage to wheat and barley in a short period of time.3 Wheat yield losses
due to RWA infestation were estimated to be 37% in the Canadian Prairies,6 between 35% and
60% in South African wheat fields and between 41% and 79% in barley fields in Ethiopia.3 In the
United States (US), the RWA reduced wheat grain yield up to 82.9% and vegetative biomass up
to 76.5% in Texas and Oklahoma Panhandles.3

Remote sensing has become increasingly an essential tool for monitoring and quantifying crop
stress due to biotic and abiotic factors using a wide range of data sets.7,8 A large number of inves-
tigators9–11 have discussed the superiority of hyperspectral imaging sensors (also known imaging
spectrometry) such as Airborne Imaging Spectroradiometer for Applications (AISA; Specim Inc.,
Oulu, Finland) over multispectral instruments such as Landsat Thematic Mapper. The former sys-
tems collect spectral information in continuous, narrow spectral channels, while the latter ones
record spectral reflectance at a few wide, noncontinuous wavelengths separated by spectral seg-
ments where no measurements are taken. The hyperspectral system was designed to separate the
surface optical properties into tens of bands with spectral resolution <20 nm or smaller through the
visible, near infrared (NIR), and mid-infrared regions of the electromagnetic spectrum (usually 400
to 2500 nm). These narrow and continuous bands provide ample spectral information to identify
and distinguish between spectrally similar but unique surface materials.11–13 Consequently, hyper-
spectral imagery provides the potential for more detailed and accurate spectral information than
multispectral images. Hyperspectral data have been applied to a wide range of agricultural crops,
such as detecting crop stress and disease.14 Hyperspectral sensors can capture reflectance features
of plant pigments and chemical compounds in plants, including lignin, cellulose, nitrogen, chloro-
phyll, carotenoids, and water.15

Another important characteristic of remotely sensed imagery for quantifying plant stress is
the pixel size that represents the smallest area identifiable in the imagery. Higher spatial reso-
lution imagery often contains detailed intraspecies spectral variability than lower resolution
imagery, when stress occurs in small patches than the pixel size. For example, in cases
where RWA hot spots <1 m in size could not be reliably detected using an image with 1-m
pixel size due to hot spots being mixed with uninfested wheat within a pixel or among pixels.
Timing, location, spectral, and spatial resolutions are all important for detecting stress over time
and space. Several researchers argued that high-spatial resolution-based remote sensing is
a better method to detect and quantify the impact of plant pathogens and insect infestations
in vegetation compared with visual techniques because a vegetative unit can be repeatedly, objec-
tively, and nondestructively examined in a fast, robust, accurate, and inexpensive way.16–19

Despite a wide range of space borne, airborne, and ground-based instruments have been
widely investigated for identification and mapping insect infestation and disease occurrence
in crops around the world20,21 and frequent infestations of RWA in the US and other countries,
the application of very narrow banded (very high-spectral resolution) and high-spatial resolution
hyperspectral imagery to RWA infestation at the commercial scale (e.g., field level) is not well
studied. Ability to utilize these methods to discriminate and separate RWA infestation from unin-
fested areas within a field would improve monitoring population dynamics, understanding pest
ecology, and developing long- and short-term site-specific management practices for RWA. Our
primary objective was to evaluate the use of very narrow banded (average about 2.25 nm in the
visible, 3.5 nm in the NIR regions, and 2.9 nm in the visible and NIR wavelengths) 1-m spatial
resolution hyperspectral data and the constrained energy minimization (CEM) method for
detecting and discriminating RWA feeding damage (RWA hot spots hereafter). The secondary
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objectives of our study were to (1) examine the spectral properties of RWA hot spots, uninfested
wheat (control wheat hereafter), and mixed bare ground. Our study presents a unique application
of hyperspectral data in terms of relative value of seasonal images for management application,
high spatial and spectral resolution of hyperspectral data, and classification method presented for
RWA hot spot detection. Our study initiates to fill an important gap in the application of hyper-
spectral imagery for detecting and discriminating RWA hot spots. Since the hyperspectral remote
detection of RWA hot spots has not been well documented, our study presents the first appli-
cation of hyperspectral data for discriminating RWA hot spots.

2 Materials and Methods

2.1 Site Description

Local RWA infestations in Baca County, Colorado, and Cimarron County, Oklahoma, were iden-
tified on April 19 and May 15, 2005. We selected three fields where RWA hot spots were dis-
tinctive for the study. Two of the fields (field 1 and 2 hereafter) were near city of Campo,
Colorado (37° 13′ 16.61″, −102° 26′ 05.19″ with an altitude ∼1275 m for field 1 and 37°
08′ 52.12″, −102° 41′ 15.71″ with an altitude ∼1373 m for field 2) and the third field (field
3 hereafter) was near Boise City, Oklahoma (36° 40′ 20.09″, −102° 25′ 19.394″ with an altitude
∼1240 m) (Fig. 1). Zadoks22 wheat growth stages were about 37 in fields 1 and 2 and 60 in
field 3.

2.2 Imagery Acquisition

An image collection flight was conducted over the study fields on April 21 in fields 1 and 2 and
May 18, 2005, in field 3. An AISA mounted in a Cessna 172 airplane was used to acquire the

Fig. 1 Location of study fields illustrated with red circles over Environmental Systems Research
Institute Aerial Bing Maps Image in Baca County, Colorado (fields 1 and 2), and Cimarron County,
Oklahoma (field 3).
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images. The AISA is a hyperspectral pushbroom type airborne imaging spectrometer. It had a
spectral resolution of 505 to 900 nm with bands ranging from 0.7 to 9.4 nm. Under typical
conditions in the Cessna 172 airplane, the AISA can acquire between 20 and 60 bands at
a spatial resolution between 1 and 4 m per pixel at 1000 and 4000 m flying heights from
the ground elevation, respectively. It captures 384 pixels across each track with a 22.7-deg
field of view. Resolution along each track for a single image is limited by a disk space of
2 GB. Downwelling irradiance was measured simultaneously via a fiber optic sensor mounted
on the roof of the airplane. The downwelling irradiance was used to calibrate the image.
Navigation data for georectification was collected by an onboard Boeing C-MIGITS II integrated
inertial navigation system/global positioning system (INS/GPS; Systron Donner Inertial
Division, Concord, California). Radiometric and geometric corrections were done using
Caligeo image preprocessing software version 1.7 (Specim Inc., Oulu, Finland) using sensor
specific calibration data. The images were atmospherically corrected using fast line-of-sight
atmospheric analysis of spectral hypercubes in Environment for Visualizing Images software
(ENVI; Exelis Visual Information Solutions, Boulder, Colorado). Image spatial resolution

Fig. 2 Mean reflectance spectra of Russian wheat aphid (RWA) infested wheat (mean of 225
training pixels/training polygons), uninfested wheat (mean of 225 pixels), and mixed bare ground
(mean of 225 pixels) for fields 1 (a), 2 (b) and 3 (c). Fields were located in Baca County, Colorado
(fields 1 and 2 sampled on 21 to 23 April, 2005), and Cimarron County, Oklahoma (field 3 sampled
on May 18, 2005). Paired t -test results of these spectra presented in Table 1.
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was 1 m with a flight height of about 1000 m. Each image consisted of 50 bands ranging from
509 to 885 nm.

2.3 Imagery Classification

In each field, 15 RWA hot spots with feeding damage visually estimated to be >10% were iden-
tified and point coordinates of each hot spot were collected with a field computer equipped
with a GPS receiver. The RWA feeding symptoms that were <10% were not counted as hot
spots in this study because at this low level of damage (e.g., with only a few small lesions
on leaves and no rolling and stunting of either stems or leaves) it was difficult to identify stress.
The 1-m image allowed clear visual identification of RWA hot spots that exhibited >10%

damage symptoms. We overlaid GPS point coordinates of the RWA hot spots on the images
to insure one-to-one matching with visually identified locations in order to extract training sam-
ples for classification. Training samples were manually extracted from the imagery, consisted of
15 polygons (each of which had 15 pixels) from only RWA hot spots at locations identified
both on the ground and on the image. At the same time, 15 undamaged control areas (each
of which had 15 pixels) and 225 pixels of soil mixed with sparse wheat and dry plant materials
(mixed bare ground hereafter) were visually located in fields 1 to 3 to collect spectral signatures
(Fig. 2). Spectral reflectance for RWA hot spots, control wheat, and mixed bare ground collected
from fields 1 to 3 was tested for statistical significance using paired t-tests at α ¼ 0.05 in
Microsoft Excel (Table 1). The paired t-test analysis was based on the spectral data correspond-
ing to the spectral profile presented in Fig. 2 for infested, uninfested, and mixed bare ground in
fields 1 to 3. Fields 1 and 2 were sampled on April 21 to 23, 2005, and field 3 was sampled on
May 18, 2005.

The image classification was performed for only RWA hot spots but not for uninfested wheat
or mixed bare ground using the CEM classifier in ENVI (Figs. 3–5). The CEM method was

Table 1 Paired t -test comparison of the mean reflectance spectra of Russian wheat aphid (RWA)
infested (mean of 225 training pixels), uninfested wheat (mean of 225 pixels), and mixed bare
ground (mean of 255 pixels) for fields 1 to 3 (data obtained from Fig. 2). Fields were located
in Baca County, Colorado (fields 1 and 2 sampled on April 21 to 23, 2005), and Cimarron
County, Oklahoma (field 3 sampled on May 18, 2005).

Wavelength range (nm)

510 to 592 600 to 722 735 to 885

t p t p t p

Spectral pair for fields 1

RWA infested versus uninfested 2.11 <0.00 2.06 <0.00 2.03 <0.00

RWA infested versus mixed bare ground 2.12 <0.00 2.04 <0.00 2.07 <0.00

Uninfested versus mixed bare ground 2.09 <0.00 2.05 <0.00 2.06 <0.00

Spectral pair for field 2

RWA infested versus uninfested 2.11 <0.00 2.06 <0.00 2.03 <0.00

RWA infested versus mixed bare ground 2.13 <0.00 2.05 <0.00 2.03 <0.00

Uninfested versus mixed bare ground 2.18 <0.00 2.04 <0.00 2.04 <0.00

Spectral pair for field 3

RWA infested versus uninfested 2.13 <0.00 2.04 <0.00 2.02 <0.00

RWA infested versus mixed bare ground 2.15 <0.00 2.05 <0.00 2.05 <0.00

Uninfested versus mixed bare ground 2.09 <0.00 2.05 <0.00 2.06 <0.00
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developed for distinguishing subpixel abundance of image materials. Subpixel or soft classifi-
cation techniques retain more information from mixed spectra within pixels. Since reflectance of
a pixel is frequently consisted of more than one image element, spectral unmixing can be used to
decompose the mixed spectra in order to identify subpixel fractions of each image component.23

Hence, the CEM relies on the endmember representing pure spectra of target object to be used in
the classification procedure. The CEM is a nonlinear signal processing method that constructs a
finite impulse response filter to perform matched filtering of an image. The technique minimizes
the total energy in the image sequence while the response of the operator to the signature of
interest is constrained to a desired constant level. The CEM enhances the response of a target
signature, while suppressing the response of unknown or undesired background signatures and
noise.24 The CEM method requires prior knowledge of a target endmember but it does not
require that all image endmembers be defined.24 Therefore, rather than a target endmember,
the reflectance spectra of different materials do not have to be identified either from pure pixels
in an image or ground-collected endmember using a field spectroradiometer. The CEM generates
a gray-scale fractional abundance image representing estimated relative degree of match to
a target endmember. Thus, the CEM appears to be a good technique for identifying the fractional
abundance of single-target material, such as RWA hot spots in our study.

2.4 Accuracy Assessment

The classification of remotely sensed imagery is a process of assigning variables into discrete
categories of useful information. However, errors of classification occur because of mixed pixels,
similar spectra of different materials, positional errors, and human errors.25 The most effective

Fig. 3 Color infrared hyperspectral imagery acquired over field 1 located in Baka County,
Colorado, on April 21, 2005 (a), classified image using the constrained energy minimization
(CEM) classifier (b), and sampling design for ground verification (c).
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way to represent classification accuracy is via an error matrix.26 Therefore, the accuracy assess-
ment for the classification was made by constructing an error matrix for each classified image,
which compares on a group by group basis, the relationship between known actual (reference)
categories as verified on the ground and corresponding classified categories. An error matrix is
a square, with the number of columns and rows being equal to the numbers of categories whose
classification accuracy is being evaluated.26 Error matrices for each classification map were gen-
erated by comparing the classified classes with the ground verification data.

There is no single set standard for selection of the image and ground areas for comparison.25–27

Because a pixel in an image has an arbitrary location on the ground, and because positional errors
of maps and GPS receivers become significant with small pixel sizes, areas based on geographic
information system polygons are used frequently.26 Using individual pixels is appropriate if a
per-pixel classification is assessed for accuracy, which avoids problems caused by generating
“homogeneous” polygons on a landscape.28 It has been shown that pixel positional error results
in conservative bias of the accuracy assessment;29 therefore, the unavoidable positional error
introduced into this assessment would result in lower or conservative estimates of mapping
accuracy.25

In addition to the accuracy assessment for the classified maps and individual land cover
classes, the kappa coefficient was calculated. The kappa statistic is a measure of agreement
or accuracy between the remote sensing–derived classification map and the ground verification
data as indicated by (a) the major diagonal and (b) the chance agreement, which is indicated by
row and column totals estimates. The kappa values range from 0 to 1, with values >0.80 rep-
resenting strong agreement between the classified map and ground truth, values between 0.40
and 0.80 indicate moderate agreement, and values <0.40 representing poor agreement.30

2.5 Field Validation

For the accuracy assessment, 560, 253, and 560 points with about 20-m equal spacing over the
study fields 1 to 3 were generated using the “create fishnet” function in ArcMap, (ESRI, Inc.

Fig. 4 Color infrared hyperspectral imagery acquired over field 2 located in Baka County,
Colorado, on April 21, 2005 (a), classified image using the CEM classifier (b), and sampling design
for ground verification (c).
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Redlands, California), respectively (Figs. 3–5). The training samples were not included in
ground-truthing points. The ground-truthing points were exported to a field computer equipped
with the Farm Works software package (CTN Data Service, Hamilton, Indiana) and a GPS
receiver and were navigated on the ground for field verification. At each verification point within
a 1-m radius area, presence of RWA or its feeding symptoms (leaf yellowing, chlorotic spots, and
necrotic lesions) and absence of RWAwere assessed. Error matrices for each classification map
were generated by comparing the classified classes with the ground classes at these points. Error
matrices to evaluate the classification accuracy were calculated and included overall accuracy,
producer’s accuracy (percentage of reference pixels correctly classified), and user’s accuracy
(percentage of pixels classified on the map which actually represent that group on the ground)
and kappa coefficient.

3 Results

Mean reflectance spectra measured from RWA hot spots, control wheat, and mixed bare ground
in fields 1 to 3 are presented in Fig. 2. Paired t-test comparison of the mean reflectance spectra of
training samples for the same land cover types shown in Fig. 2 are presented in Table 1. As
expected, the spectral characteristics of the wheat canopies were markedly affected by RWA
feeding in fields 1 to 3. The reflectance of RWA hot spots in the NIR region was significantly

Fig. 5 Color infrared hyperspectral imagery acquired over field 3 located in Cimarron County,
Oklahoma, on May 18, 2005 (a), classified image using the CEM classifier (b), and sampling
design for ground verification (c).
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lower in contrast to significant increase in the visible spectrum due to RWA feeding. Control
wheat canopies always captured significantly more or reflected significantly less light than the
RWA hot spots in the range from 509 nm to the red edge shoulder around 730 nm. Beyond
730 nm, NIR reflectance from control wheat was significantly higher when compared with
RWA hot spots. Mixed bare ground had significantly higher reflectance within the visible
range of the spectrum and had significantly lower reflectance beyond the red edge shoulder
(730 nm) when compared with both RWA hot spots and control wheat.

The color infrared and classified maps of fields 1 to 3 for RWA hot spots are illustrated in
Figs. 3–5. The CEM classifier produced result that was more similar to a pixel-based classifi-
cation rather than a fractional abundance for RWA hot spots. This most likely occurred due to
image with 1-m pixel size and training pixels with varying degree of RWA feeding damage that
were extracted directly from image data in this study. Classifying an image with larger pixel size
(e.g., 30 m) using ideal pure endmember spectra from spectral library or database may yield
fractional abundance map. The error matrices that compare ground verification data with clas-
sified data for fields 1 to 3 are contained in Table 2. Overall mapping accuracies were 90%, 90%,

Table 2 Confusion matrices for fields 1 to 3 generated from the ground verification and classified
data for RWA hot spots. Fields were located in Baca County, Colorado (fields 1 and 2 sampled on
April 21 to 23, 2005) and Cimarron County, Oklahoma (field 3 sampled on May 18, 2005).

Actual category

Present Absent Row total User’s accuracy (%)

Field 1 classified category

Present 83 31 114 72.81

Absent 27 419 446 93.95

Column total 110 450 560

Producer’s accuracy (%) 75.45 93.11

Overall accuracy (%) 89.64

Kappa statistics 0.68

Field 2 classified category

Present 37 13 50 74

Absent 11 192 203 94.55

Column total 48 205 253

Producer’s accuracy (%) 77.08 93.63

Overall accuracy (%) 90.48

Kappa statistics 0.70

Field 3 classified category

Present 77 17 94 81.91

Absent 20 446 466 95.71

Column total 97 463 560

Producer’s accuracy (%) 79.38 96.35

Overall accuracy (%) 93.39

Kappa statistics 0.77
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and 93%, with a kappa value of 0.68, 0.70, and 0.77 for fields 1 to 3, respectively. About 27% of
the control or mixed bare ground was included into RWA hot spots, whereas about 25% of RWA
hot spots were misclassified as control or mixed bare ground by the classification method per-
formed in field 1. In field 2, ∼23% of RWA hot spots were excluded from the infested areas,
whereas about 26% of control or mixed bare ground was included in RWA hot spots. About 18%
of the control or mixed bare ground was included into RWA hot spots, whereas about 20% of
RWA hot spots were misclassified as control or mixed bare ground by the classification method
performed in field 3.

4 Discussion

The presence of a disease, insect feeding, or deficiency in growth limiting factors leads to change
in chemical-pigment concentrations, leaf area, and cell structure of the affected plant tissues. A
significant increase in percent reflectance values from infested-wheat canopies in the visible
region provided evidence that RWA feeding degraded the photosynthetic pigments and changed
the leaf structure in wheat canopies. Since leaf structure has a strong influence on leaf spectral
properties,31 the change in leaf structure because of RWA feeding resulted in optical differences
between RWA-infested and uninfested wheat. The RWA feeding causes a reduction in chloro-
phyll a and b and carotenoids in infested plants. Apparently, the reduction in pigment concen-
trations, in addition to change in leaf structure, induced by RWA feeding created differences in
visible light reflectance between infested and uninfested wheat. Symptoms from RWA infesta-
tion, in addition to leaf senescence, are often related to the decrease in NIR reflectance. In the
present study, lower reflectance in the NIR region from infested wheat indicates that the RWA
feeding reduced green leaf area by rolling and stunting and increased lesion formation. Spectral
characteristics of uninfested and infested wheat by RWA found in this study are similar to
the results found by previous studies.31,32–35 Spectral characteristics of field been (Vicia faba)
leaf infected by Botrytis fabae,32 wheat infested by sunn pest (Eurygaster integriceps)33 and
greenbug (Schizaphis graminum)31,34–35 showed similar patterns in reflectance from infested
infected and health plants. Reflectance from infested-infected plants was lower in the NIR
and higher in the visible spectrum than uninfected-uninfested plants studied.31–35 The method
employed in this study distinguished infested wheat from uninfested wheat and mixed bare
ground, but would not be able to easily separate other symptoms in wheat, especially greenbug
feeding damage, when they co-occur with RWA infestation. However, none of these other wheat
stresses due to biotic stressors were found during our detailed ground-level survey of fields
studied.

To test the utility of high spectral and spatial resolution hyperspectral data for remote detec-
tion and mapping of RWA infestation in wheat, the CEM subpixel mapping method was
employed for the image classification. The accuracy assessments for RWA hot spots confirmed
overall accuracies between 90% and 93%. This indicates that the method used in this study can
be used for field level monitoring of RWA infestations during the growing seasons. High values
of overall, producer’s, and user’s accuracies illustrate that healthy wheat and RWA-damaged
wheat were detectable at the commercial field-scale with high spatial and spectral resolution
hyperspectral images. In similar studies of other species, an overall accuracy of 80% for remote
detection of yellow rust in winter wheat was found using the 1-m airborne hyperspectral
imagery.36 The overall accuracies of 65.9% and 88.6% for winter wheat infected by leaf rust
and powdery mildew using an airborne hyperspectral image with a spatial resolution of 4 m
and a satellite image with a spatial resolution of 2.4 m were reported, respectively.37

Healthy and diseased wheat infected by yellow rust were discriminated with a success rate
of 96% using spectral images collected with a spectrograph in a field study.38 The areas
where sugarcane was infected by orange rust from disease free areas were distinguished
using Hyperion imagery with 30 m by 30-m spatial resolution that can be used to detect orange
rust disease in sugarcane.39

There is no set standard for classification accuracy as to what level of accuracy is adequate for
remote detection of insect infestations and disease occurrence in wheat. The acceptable level of
mapping accuracy depends on the project-based choice that differs based on the needs of the
end users and utilization of the classification results.25,26 An accuracy target of 85% was
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recommended by Foody40 and an overall accuracy target of 85% with no individual class accu-
racy <70%was suggested by Thomlinson et al.41 for vegetation mapping. Results from the image
classifications for three fields indicated that the overall, producer’s, and user’s accuracies were
all above these “recommended” guidelines. We achieved these high accuracies because
we used a suitable classification algorithm, very narrow-banded hyperspectral imagery with
1-m spatial resolution, and a ground verification method that extended to the entire study
area for RWA infestation.

The image classification method had higher producer’s accuracies than user’s accuracies
for fields 1 and 2 but producer’s accuracy was lower than user’s accuracy for field 3.
Producer’s accuracy may be more important than user’s accuracy for detecting and controlling
RWA infestation because undetected or omission (false negative) of RWA hot spots within a
field is the factor that most likely hampers control efforts. One of the most likely utilizations of
these accuracies would be to monitor wheat fields for RWA infestation over time and space.
The consistent and repeatable classification methodology and the level of accuracies accom-
plished in this study would facilitate an accurate and efficient geographic information system
(GIS)-based RWA management strategy. The ability to easily and repeatedly monitor wheat
fields during the growing season, at low cost, is perhaps the greatest advantage of this approach
for quantifying RWA infestations. It is more beneficial for the wheat producers to have RWA
infestation information as early as possible. The image classifications for fields 1 and 2 had
sufficient accuracies to enable a manager to make decisions regarding plans for treating this
aphid pest. Classification and mapping of RWA hot spots on mid-spring images when the
wheat is in the late jointing stage in this region of the US is important because the wheat
crop has time to recover from RWA feeding damage during the rest of the growing season
if RWA treatments are implemented early. However, this management practice may not be
suitable for field 3 because wheat was in the late heading and flowering stage at which
wheat crop might not have enough time to recover.

The high dimensionality of hyperspectral data with narrow continuous bands and spectral
resolution allowed identification and separation of RWA hot spots from the surrounding
uninfested areas in commercial wheat fields. Many researchers argued the advantages of
hyperspectral data over broadband multispectral data.15,30,42 Hyperspectral data have been
very effective for detecting and mapping insect infestation and disease occurrence in field
crops. Hyperspectral sensors with many narrow bands can capture a range of absorption features
including biochemical constitutes, such as lignin, cellulose, chlorophylls, carotenes, water, and
nitrogen. As biochemical concentrations vary in plants or leaves, absorption or reflectance spec-
tra change as well.15 Our study provided an application of very narrow-banded hyperspectral
imagery and a classification method to discriminate and map RWA hot spots in winter
wheat that were sufficiently accurate to be used in a commercial field-level situation and
could potentially facilitate management decisions regarding RWA treatment. Although our
study detected RWA feeding damage in winter wheat in the Southern Great Plains of the
US, this technology using high-resolution hyperspectral imagery and the CEM classification
method could be applied with little or no modification to similar insect-infested small grain
crops elsewhere in the world.

5 Conclusions

Widespread or localized infestations by RWA in winter wheat occur almost every year in the
Great Plains of the US. These infestations by RWA result in significant yield loss and costs to
control the pest. Precise and timely remote detection of RWA infestation in wheat is needed to
facilitate control methods using precision agriculture and decrease economic losses caused by
this pest. This study indicated that low to severe levels of RWA infestation in winter wheat could
be detected accurately using high spectral and spatial resolution hyperspectral imagery and
the CEM classification. High levels of accuracy were achieved using hyperspectral imagery
with 1-m spatial resolution. Detection was accomplished early enough in the growing season
to facilitate decisions regarding RWA treatment with pesticides, and was accurate enough to
facilitate use of GIS-based precision farming pesticide application to infested patches only
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in fields 1 and 2. Such a practice for RWA management increases insecticide application effi-
ciency and wheat yield and decreases the potential for environmental pollution.
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