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Abstract. A complex pattern of urban demographic transition has been taking shape since
the onset of the COVID-19 pandemic. The long-standing rural-to-urban route of population
migration that has propelled waves of massive urbanization over the decades is increasingly
being juxtaposed with a reverse movement, as the pandemic drives urban dwellers to suburban
communities. The changing dynamics of the flow of residents to and from urban areas under-
score the necessity of comprehensive urban land-use mapping for urban planning/management/
assessment. These maps are essential for anticipating the rapidly evolving demands of the urban
populace and mitigating the environmental and social consequences of uncontrolled urban
expansion. The integration of light detection and ranging (LiDAR) and imagery data provides
an opportunity for urban planning projects to take advantage of its complementary geometric and
radiometric characteristics, respectively, with a potential increase in urban mapping accuracies.
We enhance the color-based segmentation algorithm for object-based classification of multispec-
tral LiDAR point clouds fused with very high-resolution imagery data acquired for a residential
urban study area. We propose a multilevel classification using multilayer perceptron neural
networks through vectors of geometric and spectral features structured in different classification
scenarios. After an investigation of all classification scenarios, the proposed method achieves an
overall mapping accuracy exceeding 98%, combining the original and calculated feature vectors
and their output space projected by principal components analysis. This combination also elim-
inates some misclassifications among classes. We used splits of training, validation, and testing
subsets and the k-fold cross-validation to quantitatively assess the classification scenarios. The
proposed work improves the color-based segmentation algorithm to fit object-based classifica-
tion applications and examines multiple classification scenarios. The presented scenarios prove
superiority in developing urban mapping accuracies. The various feature spaces suggest the best
urban mapping applications based on the available characteristics of the obtained data. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution
or reproduction of this work in whole or in part requires full attribution of the original publication, includ-
ing its DOI. [DOI: 10.1117/1.JRS.15.044521]
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1 Introduction

The United Nations’ world urbanization prospects of 2019 anticipate the world urban population
to increase to 4.9 billion versus the world rural population dropping by ∼28 million between
2005 and 2030. Meanwhile, more than half the world’s population resides in metropolitan cities,
and the proportion is projected to reach two-thirds by 2050.1

Urban sprawl has significant ecological, social, and health ramifications. Of the considerable
negative impacts that urban sprawl brings to the ecosystem, the loss of agricultural lands, air
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pollution, and deterioration of water resources are most fateful to the long-term sustainability of
humanity. On the societal level, uncontrolled urban expansion causes enormous strains on social
institutions. Local governments face the dilemma of increasing public spending or risk aggra-
vating existing health and social issues, such as poverty, crime, obesity, unemployment, and
social isolation.2

The 2018 revision of the United Nations’ world urbanization prospects3 addressed North
America among the most urbanized geographic regions, with 82% of its population living in
urban areas in 2018. Urban residents in North America are more than doubled in 1950 to 2018
(110 versus 299 million) and are expected to increase by 29% in 2050. The expansion in urban
dwellers results from industrialization and rapid economic growth, which offer opportunities
in education and employment. In contrast, the urban population growth rate declined from
1995 to 2000 to 2015 to 2020 (1.6% versus 1%) and is projected to further decrease to 0.6%
in 2045 to 2050. Nevertheless, the still-positive growth rate exhibits North America’s high levels
of urbanization.

The COVID-19 pandemic brings to the fore some of the fragilities of urbanization. The high-
density living, patterns of human contacts, and the underlying social issues in many urban areas
provide an easy transmission route for the novel coronavirus. Despite only 56% of the world
population being urban, 95% of the COVID-19 cases occur in urban settlements, with more
than 1500 metropolitan cities economically impacted. According to the World Bank,4 49 million
urban residents worldwide are threatened by pandemic-driven new poverty. Moreover, the
contagions and the COVID-19 lockdowns imposed by municipal authorities have affected the
dynamics of urban–urban and rural–urban migrations.4 Remote work has encouraged urban
dwellers, especially long commuters, to purchase larger suburban homes offered at lower interest
rates.5 For instance, Toronto residents spent on average 16.1 h daily indoors at home before the
pandemic hit.6 This average is expected to have increased during the COVID-19 pandemic, with
working from home and the absence of outdoor activities being the norm. Hence, urban inhab-
itants have been seeking extra spaces to accommodate simultaneous work and school, where
they can better practice hygiene and physical distancing without risking contagion in apartment
buildings’ related facilities (i.e., elevators and lobbies).7

These dynamics necessitate policymakers, demographic researchers, and nongovernmental
organizations to improve current plans and develop new strategies to better manage hotspots
of anticipated service shortages due to urban sprawl. Urban mapping represents a scientific
guidance to municipal leaders that considers spatial factors with other urban-related datasets
for more precise urban assessments and predictions.

Light Detection and Ranging (LiDAR) or laser scanning technology collects high-quality
three-dimensional (3D) data about topographic objects on the Earth’s surface. Airborne LiDAR
systems acquire highly accurate, shadow-free, georeferenced, and unstructured distributed 3D
point clouds with minimum point spacing. In addition, some airborne laser scanners have multi-
ple-return and full-waveform privileges. The multiple-return characteristic allows each emitted
laser signal to sense multiple objects and collect the backscattered laser signal strength together
with the recorded time in a waveform data structure, providing a more comprehensive under-
standing of the targets’ physical characteristics.8 Current multispectral airborne LiDAR scanners
sense objects using a maximum of three laser channels (i.e., Optech Titan). This coarse spectral
resolution encourages fusing LiDAR data with high-resolution multispectral images to obtain a
richer inventory of spectral and textural information.9 In this way, LiDAR imagery fusion com-
bines the advantage of reflectivity variation of several wavelength ranges on the electromagnetic
spectrum (i.e., visible red, green, and blue (RGB) and near-infrared (NIR)], with the geometric
data description in the LiDAR’s 3D domain. Consequently, the classification of LiDAR point
clouds obtained for urban regions could be achieved with better mapping results.

Huang et al.10 divided LiDAR point clouds using voxelization into chips of points. They
downsampled the size of the chips to represent their main structure. Instead of using traditional
calculated feature spaces, they input the downsampled chips to PointNet++ to learn the points’
features. PointNet++ is a deep learning technique that divides input data into overlapping sub-
divisions, learns the local features of each subdivision, successively groups lower-level local
features to learn higher-level features until the learning of global features of the entire input
data is achieved. PointNet++ outputs initially classified data with soft labels. The authors
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constructed a weighted graph for global regularization that accounts for the initial label prob-
ability set and the spatial correlation to refine the soft labels. They achieved 85.38% overall
accuracy, with 70%, 79%, 97%, 6%, 89%, and 89% accuracy of identifying man-made terrains,
natural terrains, high vegetations, low vegetations, buildings, and vehicles, respectively.

Sen et al.11 carried out an unsupervised classification on airborne LiDAR point clouds
acquired for a residential urban area using the weighted self-organizing maps clustering tech-
nique. They applied Pearson’s chi-squared independence test to weigh the normalized data
attributes, 3D coordinates, and a single intensity. They manually adjusted the number of clusters
based on the visual observation of the resulting clusters and labeled them manually using 3D
visual analysis and satellite images. The authors employed Cramer’s V coefficient to define the
strength of association between the LiDAR data’s attributes and output clusters. They reached a
mapping accuracy of 86% and per-class accuracies of 93%, 62%, 74%, and 96% for buildings,
vegetations, transmission lines, and ground, respectively.

Kang et al.12 achieved a higher overall accuracy of 95% by integrating airborne LiDAR point
clouds and RGB aerial images. They used the orthoimages’ direct georeferencing data to register
both data types. The authors applied the k-nearest neighbor (k-NN) and fractal net evolution
approach-based algorithms to segment LiDAR and imagery data before spectral and geometrical
feature extraction. They introduced an improved mutual information-based Bayesian network
structure learning algorithm for data classification at multiple neighborhood and segmentation
scale sizes. They compared the results with Dtree, AdaBoost, random forest (RF), and support
vector machines (SVM) classifiers. The authors recommended their proposed Bayesian network
for ground, low vegetation, and high vegetation over buildings’ land-uses. They obtained an
accuracy of 96%, 93%, 97%, and 90% for the four classes, respectively.

Similarly, Sanlang et al.13 fused airborne LiDAR point clouds with high-resolution aerial
images obtained with RGB and NID bands. They segmented the images by eCognition software
to avoid the salt-and-pepper effect commonly encountered in land-cover classification. However,
the authors introduced different spectral, textural, geometrical, and 3D urban structural param-
eters and applied the Gini Index to measure the significance of each extracted feature. They
followed a multimachine learning approach using the RF, k-NN, and linear discriminant analysis
to classify an urban scene with buildings, trees, grass, soil, impervious ground, and water. Their
findings included a 3% increase in overall accuracy when considering the LiDAR’s 3D geo-
metric characteristics in the feature space. They also concluded that the digital surface model
(DSM) was the most critical feature. Nevertheless, the reported overall accuracy barely passed
87% with the RF classifier, and the maximum class accuracy did not exceed 93%.

In a trial to target vegetations around urban settlements for fire reduction and controlling
plans, Rodríguez-Puerta et al.14 classified no-vegetation, crops, bush and grass, permitted and
forbidden trees using RF, linear and radial SVM, and artificial neural networks (ANNs). They
introduced nine data combinations derived from high-density unmanned aerial vehicle LiDAR,
low-density airborne laser scanning LiDAR, Pleiades-1B, and Sentinel-2 data. The satellites
acquired the images in RGB and NIR bands, with an additional short-wave infrared band for
Pleiades-1B photos. The authors used the bands to calculate vegetation indices and growth
metrics. They applied the variable selection using RF to select the final classifying variables
based on the Gini Index. Similar to other related research, the authors used the eCognition
software for the multiscale segmentation of the imagery data. The best overall mapping accu-
racy they could achieve was 92% by classifying the Sentinel-2 fused by both LiDAR data using
the RF classifier.

Likewise, Pu and Landry15 combined multiseasonal Pleiades images with airborne LiDAR
point clouds to map seven urban tree species. The authors computed spectral and geometric
features from the imagery objects and transformed them into fewer canonical variables. They
added normalized DSM-derived variables and introduced seasonal trajectory difference indices
for two-seasonal combined images. They carried out a multilevel classification using RF and
SVM. Their expanded feature space reached an overall accuracy of 75% using the SVM clas-
sifier. Zhang and Shao16 also mapped urban vegetation, but into forest and grassland classes by
combining airborne LiDAR point clouds and multispectral Worldview-2, Worldview-3, and
GaoFen-2 satellite images. They developed canopy- and band-related features to five classi-
fication models: stepwise linear regression, k-NN, ANN, support vector regression, and RF.
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Of the five models, the RF produced the highest coefficient of determination (R2 ≈ 0.70) and the
lowest root-mean-square and relative-root-mean-square errors.

Urban sprawl, usually associated with accelerated economic expansions in developed coun-
tries, results in large-scale reclamation projects with intense constructions that compact soils
with land subsidence and building collapse threats. He et al.17 integrated airborne LiDAR point
clouds with interferometric synthetic aperture RADAR (InSAR) imagery data for producing
urban subsidence hazard maps. They calculated land subsidence rate information using small
baseline subset (SBAS)-InSAR and permanent scatters (PS)-SBAS-InSAR algorithms on multi-
temporal Sentinel-1A and TerraSAR-X images, respectively. After removing distorted RADAR
scatters due to shadow, layover, and foreshortening effects, the authors used fine-resolution DSM
data derived from airborne LiDAR scanners for a further precise geometric correction of SAR
images. They classified the DSM for building extraction and then applied a feature combination
method to extract contour lines. They considered building heights and building contour lines as
driving forces in assessing buildings’ subsidence hazard levels.

Our study tests the hypothesis of expanding LiDAR point clouds’ feature space by fusion
with imagery data to enhance urban mapping accuracies. Specifically, we aim to (i) enhance the
color-based segmentation technique18 to fit supervised object-based classification of colored air-
borne LiDAR point clouds after integration with aerial photos and (ii) introduce a detailed multi-
level classification of LiDAR data using 10 feature spaces formed from different combinations of
variables based on the multispectral properties of LiDAR-imagery data and the 3D geometric
characteristics of LiDAR point clouds. Accumulating multispectral LiDAR-imagery data’s origi-
nal and derived features helps improve mapping accuracies, eliminate misclassifications, and set
a reference for matching potential urban mapping applications based on the available properties
of the data under processing, which marks the study as superior to other related research work.

The remaining sections address methods in Sec. 2, experimental work in Sec. 3, results and
discussions in Sec. 4, conclusions in Sec. 5, and Appendix in Sec. 6 of confusion matrixes on
the testing data for the entire introduced classification scenarios (feature combinations).

2 Methods

Figure 1 schematically explains the conceptual overview of the proposed methodology. First,
LiDAR point clouds are georegistered to imagery data covering the same area of interest;
consequently, the spectral properties of the imagery data densify the LiDAR data’s feature space.
Then, LiDAR data are geometrically classified based on height to separate ground from non-
ground points. We recommend ground filtering to avoid misclassification of objects sharing
similar spectral characteristics (i.e., grass and trees). Afterward, the 3D point clouds are seg-
mented, then different radiometric and geometric features are calculated for each segment. Later,
segments are collected for classification models’ training, validation, and testing. Next, an
object-based classification runs on the LiDAR point cloud to test different feature combinations
on the mapping accuracy. One of these scenarios is lessening an extended feature space to an
optimal combination without significantly affecting the classification accuracy. All classification
scenarios are evaluated for comparison and final land-use map production.

2.1 LiDAR-Image Georegistration

The first step of the fusion process is to perform georegistration between LiDAR and imagery
data. We georegistered multispectral LiDAR point clouds to an aerial photo using a phase con-
gruency (PC)-based scene abstraction approach.19 LiDAR 3D points are converted to two-
dimensional (2D)-intensity or height images, whichever type better describes the scene based
on the visual interpretation. For example, an area of a wastewater treatment plant varies in height
more than in intensity, where most elements are inner and outer tanks, curbs, and structures.
These elements share the same concrete cover; and thus, a height-based interpolation would
be the optimal decision. On the other hand, a residential area typically includes urban features
varying in intensity (i.e., grass, asphalt, and land-markings), which advises an interpolation
based on LiDAR data’s intensity values. The approach implements the PC filter, which computes
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the moment of each pixel’s center point, knowing its PC measure in different orientations. The
moment value of a point indicates whether it is an edge or a corner point. A predefined threshold
range of moment values can be set to identify candidate tie points on both data sets.

Georegistering data acquired at different times with different sensors may result in two dis-
similar sets of candidate tie points, impacting the threshold range. In this case, the PC filter’s
outputs (moment images) are abstracted by clustering, then detecting common polylines in
LiDAR and imagery data. Moment points within a buffer around these detected edges are con-
sidered the candidate tie points. Alternatively, an additional filter can be fused with the PC filter
to isolate candidate tie points inputted to the shape context descriptor model to be matched in
pairs of final tie points. Finally, a least-squares adjustment estimates the transformation param-
eters of empirical registration models.

This registration is generic, as it was found to accommodate different urban morphologies,
is no longer limited to traditional linear control primitives, and does not require the onboard
acquisition of both data simultaneously.19

2.2 Color-Based Segmentation

After data registration, LiDAR point clouds are expressed by 3D coordinates as well as their
spectral characteristics. The spectral characteristics include the ones originally captured by a
LiDAR sensor during the same flight mission and those inherited from aerial images. The
color-based segmentation algorithm proposed by Zhan et al.18 is applied to segment LiDAR
point clouds based on their geometric and spectral characteristics. The approach determines the
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Fig. 1 Proposed methodology of multilevel classification of LiDAR point clouds fused with very
high-resolution images.
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similarity between two points by calculating the geometric and colorimetric distances between
one another. It measures colorimetric distances based on the RGB signatures of LiDAR points.
It has been applied successfully in previous research work in segmentation-oriented applica-
tions.20,21 The algorithm performs the color-based segmentation in two steps: segment growing
and segment merging and refinement.

2.2.1 Segment growing

In this step, the algorithm assigns each unlabeled LiDAR point to a segment and then marks it as
labeled. It constructs three entities: points (P) that contains the LiDAR points to be segmented,
stack (ST), and segments (S). In the case of an empty ST, which is the default setting when the
algorithm starts, the process loops on P until it meets an unlabeled point (p). The process
appends p to ST, creates a new segment (s) in S, inserts p to s, and eventually marks p labeled
in P. While ST is occupied, it pushes its top point, point of investigation (pt) out, and the process
searches its neighboring points in P within a 3D distance window. If the neighbors are unlabeled
and also radiometrically close to pt, the process appends them to s and ST. Once ST is clear,
densifying s with LiDAR points terminates, and the algorithm looks for another unlabeled point
in P to initiate a different segment in S. The process continues until ST is empty and all points
in P are labeled.

Figure 2 addresses a hypothetical example to illustrate the segment growing step in the color-
based segmentation process. Figure 2(a) represents the start run, where all points P are not
assigned to segments and yet marked unlabeled, and ST and S are created. ST is by default
empty. Hence, the process searches for an unlabeled point (p1Þ in P, appends it to ST, constructs
a new segment s1 in S, and adds p1 to s1. ST’s pt is p1 that becomes the point of investigation
[Fig. 2(b)]. The algorithm marks p1 labeled in P. ST pushes out its pt (p1), and the process
locates its neighbors (p2, p3, and p4Þ in P within a predefined 3D distance range [Fig. 2(c)].
The three neighbors are unlabeled, but only p2 meets the radiometric similarity condition. Thus,
the algorithm appends p2 to s1 and ST and marks it labeled in P [Fig. 2(d)]. Consequently, the
process does not add p2 to a different segment in the future to maintain a one-to-one relation
between P and S. Since ST is occupied, points inside can contribute to s1’s growth by their
neighbor points as long as they are close in color. ST pushes out its pt (p2), which turns to
be the point of investigation. The approach determines p2’s neighbors in P (p1, p3, p4, and
p5). The latter three points are unlabeled, but none of them meets the colorimetric condition.
Therefore, the densification of s1 always ends with an empty ST [Fig. 2(e)].

The process loops again on P and locates the following unlabeled point (p3), which initiates
a newly created segment s2, joins ST, and becomes the point of investigation [Fig. 2(f)]. The
algorithm marks p3 as labeled and finds its neighbors in P (p1, p2, p4, and p5). The latter two
points are unlabeled; hence, they are the ones for the algorithm to evaluate the colorimetric
condition for inclusion into s2 [Fig. 2(g)].

2.2.2 Segment merging and refinement

The output of the segment growing step is S, which contains roughly segmented clusters that
need to be merged and refined in this subsequent run. The algorithm builds a merged segments
(MS) entity to store lists of homogeneous segments from S. The process marks S’s segments as
labeled if MS already includes those segments. Otherwise, they are marked as unlabeled. The
approach first iterates S to find an unlabeled segment (s). Then, a new merged segment (ms) is
created in MS, with s being a member of ms. Afterward, s is marked as labeled and becomes a
segment of the investigation. The process locates its neighboring segments in S within a 3D
searching window. s’s neighbors are determined by locating the point neighbors of all points
within s. Every segment to which these point neighbors belong is a neighboring segment. The
algorithm calculates the radiometric similarity between s and its unlabeled neighbor segments
after averaging the RGB values of each. Suppose that s’s neighboring segments are found to be
colorimetrically close to s, the algorithm appends them to ms and marks them labeled in S. The
process then continues looping on S and merging segments in MS and terminates when all seg-
ments in S are marked labeled and included in MS. Finally, all segments within the same MS are
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fused. The refinement step looks for MSs with a number of LiDAR points less than a predefined
minimum. The process highlights them as MSs of interest, determines their nearest MS in MS
within a specific 3D window size, and fuses both in a refined segment (rfs). The refinement
continues until the size of all rfs is larger than the predefined minimum. That is when MS even-
tually turns to be an rfs entity.

Points [P] Stack [ST] Segments [S]

Unlabeled

Points [P] Stack [ST] Segments [S]
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Fig. 2 Color-based segmentation algorithm applied to LiDAR point clouds: segment growing step.
(a) P, ST , S are created, and ST is empty. (b) Unlabeled p1 in P initiates s1 in S, is pushed to ST ,
and becomes ST ’s pt and point of investigation. (c) p1 is marked labeled in P, pushed out by ST ,
and its neighbors are determined in P. (d) p2 meets the conditions, is appended to s1, is pushed to
ST , becomes ST ’s pt , and is marked labeled in P. (e) ST pushes out p2 that becomes the point of
investigation, and its neighbors determined in P. (f) None meets the conditions, s1 is terminated,
ST becomes empty, the following unlabeled point in P is p3 that initiates s2 in S, p3 is pushed to
ST , and becomes ST ’s pt and point of investigation. (g) p3 is marked labeled in P , pushed out by
ST , its neighbors are determined in P, qualified neighbors to be examined.
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Figure 3 graphically explains the segment merging and refinement step. The figure describes
a hypothetical scenario where S has five unlabeled segments, and MS is empty before running
the step [Fig. 3(a)]. The process loops on S, spots an unlabeled segment (s1), marks it labeled in
S, creates a new MS (ms1) in MS, and inserts s1 in ms1 [Fig. 3(b)]. s1 becomes the segment of
investigation, for which the process locates its neighbors in S (s2 and s3) [Fig. 3(c)]. Both are
unlabeled and meet the colorimetric similarity condition with s; hence, the algorithm marks them
labeled in S and appends them to ms1 in MS [Fig. 3(d)].

The process loops again on S, finds the subsequent unlabeled segment (s4), highlights s4 as
labeled in S, and initiates (ms2) in MS with s4 [Fig. 3(e)]. s4 is the segment of investigation, and
the process searches its neighbors in S (s2 and s5) [Fig. 3(f)]. Only s5 is unlabeled and meets the
radiometric similarity condition with s4. Therefore, the algorithm marks s5 labeled in S and
pushes it to ms2 in MS [Fig. 3(g)]. The merging process terminates, since S’s elements are
entirely labeled and fully included in MS. Segments within same MSs are fused [Fig. 3(h)].
Finally,ms2’s size is less than the minimum, so it becomes an MS of investigation whose nearest
neighbor (NN) in MS is ms1 [Fig. 3(i)]. Eventually, the process merges ms2 to ms1 as a new
refined segment (rfs1) in RSF [Fig. 3(j)].

2.3 Eigenvalue-Based Geometric Features Determination

Sanderson graphically explains the geometric conception of eigenvectors and eigenvalues with a
series of visual-aided materials on their website.22,23 An eigenvector of a linear transformation is
a nonzero vector on which the only effect of the linear transformation is scaling by a constant
number. The value of the scaling constant is the eigenvalue of the eigenvector. Equation (1)
describes the above relation as follows:

EQ-TARGET;temp:intralink-;e001;116;449A~v ¼ λ~v; (1)

where A is the transformation matrix that scales its eigenvector ~v by an eigenvalue λ.
To solve for λ and ~v, Eq. (1) can be expressed as

EQ-TARGET;temp:intralink-;e002;116;396ðA − λIÞ ~v ¼ ~0; (2)

where I is the identity matrix.
Since the right-hand side of Eq. (2) is a zero-vector, ðA − λIÞ is a singular transformation with

the property

EQ-TARGET;temp:intralink-;e003;116;328 detðA − λIÞ ¼ 0; (3)

where detðA − λIÞ is the determinant of ðA − λIÞ.
Equation (3) solves the eigenvalue(s) of the linear transformation A. Finally, the correspond-

ing eigenvector of each eigenvalue can be determined using Eq. (2) upon substitution of λ with
each solved eigenvalue.

Figure 4 shows a numerical example to geometrically describe how eigenvectors and their

corresponding eigenvalues are calculated for a transformation matrix A ¼
�
3 1

0 2

�
between 2D

spaces. Figure 4(a) assumes the coordinates of the unit vectors î and ĵ in the input space are (1, 0)
and (0, 1), respectively. Hence, ðAÞ transforms both to (3, 0) and (1, 2), respectively, which
represent the coordinates of the output space’s base vectors with respect to the input space’s
grid shown in the background [Fig. 4(b)]. The procedure as mentioned earlier leads to a quadratic
polynomial in λ that has two solutions: λ1 ¼ 2 and λ2 ¼ 3, meaning that there are two vectors in
the input space that are only scaled by constants upon the transformation. Substituting in Eq. (2)
with both eigenvalues determines the corresponding eigenvectors as expressed by xþ y ¼ 0 and
y ¼ 0, respectively [Fig. 4(c)]. A vector that lies on either eigenaxis in the input space does not
alter that axis in the output space; the vector is just scaled by its corresponding eigenvalue (2 or 3)
as shown in Fig. 4(d).

The geometry of LiDAR points in 3D is derived from the variance of their coordinates: x, y,
and z. One way to analyze LiDAR points is to perform a coordinate transformation such that
the transformed coordinates X, Y, Z optimally reveal the variances of the original coordinates.
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Fig. 3 Color-based segmentation algorithm applied to LiDAR point clouds: segment merging and
refinement step. (a) S is from segment growing step, and MS is created. (b) Unlabeled s1 is
marked labeled in S, ms1 is created in MS, and s1 is inserted in ms1. (c) Segment of investigation
is s1, and its neighbors are determined in S. (d) s2 and s3 meet the conditions, are marked labeled
in S, and appended to ms1 in MS. (e) Subsequent unlabeled segment is s4, is marked labeled in S,
ms2 is created in MS, and s4 is inserted in ms2. (f) Segment of investigation is s4, its neighbors are
determined in S. (g) s5 meets the conditions, is marked labeled in S, and appended to ms2 in MS.
(h) Segments are labeled in S, merging process terminates, and segments are fused within same
ms in MS. (i) ms2’s size is less than the minimum, it becomes an MS of investigation, its NN (ms1)
is determined in MS. (j) ms2 is merged to ms1 to form rfs1 in RSF.
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This is achieved when the covariance matrix expressing the variance/covariance between the 3D
coordinate records is diagonal, meaning that the diagonal values are the variances of the trans-
formed coordinates X, Y, and Z that have a zero or minimal correlation between each other. The
diagonal covariance matrix in the transformed space (X, Y, Z) can be obtained by eigendecom-
position of the original covariance matrix, with each dimension and scaling of the transformed
space being an eigenvector and its corresponding eigenvalue of the original covariance matrix.
Moreover, the resulted eigenvectors are always orthogonal due to the orthogonality of the trans-
formation (covariance) matrix itself, which is a rotation matrix in this case. The corresponding
eigenvalues form indices that better expose the geometry of LiDAR point clouds in a 3D space.24,25

2.4 Dimensionality Reduction of Feature Space

It is preferable to diminish the set of input variables (features) of the data being analyzed while
developing a predictive model to decrease the computational cost.26 In some cases where the
space volume is too large, the data records may not be representative, causing fitting problems
that reduce the model performance, in a phenomenon known as the curse of dimensionality.27

Feature selection techniques can be supervised by eliminating statistically irrelevant variables
with a weak relationship to the target variable the model attempts to predict. On the other hand,
unsupervised feature selection methods drop redundant variables based on statistical measures
(i.e., correlation), independent of the target variable.

Even though feature selection and dimensionality reduction techniques attempt a fewer input
space to a predictive model, the latter fundamentally differs from the former. Dimensionality
reduction methods project the data into a new space of fewer dimensions, resulting in trans-
formed input features26 which are called components in the principal component analysis (PCA)
method that we applied in our study to reduce the data dimensionality.

The PCA linearly projects a feature space into a subspace that still preserves the essence of
the original data.28 It looks for descriptive features of high variance values revealed by the eigen-
decomposition of the features covariance matrix. Then, it projects the input feature space into
another space constructed by that chosen subset of features. Brownlee28 delineates the process
in the following steps:

1. Centering the feature values by subtracting the mean.
2. Calculating the covariance matrix of the centered values.
3. Calculating the eigendecomposition of the covariance matrix. The eigenvectors picture

the directions or components of the projection output space. The eigenvalues are the
variances of these components (termed features in the input space) or the magnitudes
for the directions.

4. Selecting the principal components (PCs) of the new subspace by ranking the eigen-
vectors by their corresponding eigenvalues in decreasing order and choosing those with
the largest eigenvalues.

5. Projecting the input feature space into the subspace.

i

(0,1)

(1,0)

(a)

i

(1,2)

(3,0)

(0,1)

(1,0)

(b)

y = 0

(c)

2 = 3

(d)

Input space Output space Grid axes in x-direction Grid axes in y-direction

Input space’s grid as background in output space Eigenvectors i, : Unit vectors in x-, y-directions

X = y = 0

Fig. 4 Geometric interpretation of eigenvectors and eigenvalues in 2D spaces–numerical exam-
ple. (a) Coordinate system of input space. (b) Coordinate system of output space. (c) Eigenvectors
on input space. (d) Eigenvectors and corresponding eigenvalues on output space.
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2.5 Classification of LiDAR Data

We isolated a portion of the segmented LiDAR data and divided it into training, validation, and
testing subsets before employing the multilayer perceptron (MLP) neural network classifier.
Table 1 summarizes the main characteristics of the classification we carried out in this work.

ANNs are machine learning algorithms that are inspired by observations of how the brain
functions with its constituent structures.29 An MLP neural network consists of an input layer and
some hidden layers. The last layer is the output layer that provides the final predictions. Each
layer is a row of neurons (nodes), where each neuron has weighted inputs, bias, and output to the
next layer, representing a perceptron.30 An optimization algorithm weights a neuron’s inputs, and
a bias is accumulated to the weighted summation of the inputs to determine their signal
strength.31 The ultimate goal is setting those weights and biases to particular values so the overall
classification error is minimal.32 An activation function is applied to an output signal strength by
intensifying or diminishing its value depending on its magnitude. Consequently, outputs of large
magnitudes propagate further and contribute to the final predictions more than those of lower
magnitudes.32

Training data have to be numerical in a multiclass classification application. The dimension
of the input layer is set to the feature space of the training data, and the output layer has as many
nodes as the number of noticed classes. The optimization algorithm initially assigns random
weights to each node’s inputs, and their signal strengths are determined after adding a bias
to the inputs’ weighted summation.30 The activation function filters signal strengths so only
those of high magnitudes propagate to the final predictions. A loss (cost) function measures
the model’s classification error, represented by comparing the predictions to their corresponding
ground truth data. The model training process iterates over the training dataset for a preset num-
ber of times (epochs), or until a condition that signifies a cost function’s minimum is numerically
achieved.31 The model updates the weights at each epoch, where all training records participate.
In addition, internal weights updates occur at each batch or subset of the training data in the case
of batch training.33

3 Experimental Work

Python programming language ran sequential calculations on Spyder Integrated Development
Environment (IDE) v 3.7.9, embedded in Anaconda Enterprise v 4.10.0. ERDAS IMAGINE
v 2018 helped visualize LiDAR point clouds, and LAStools converted LiDAR data into different
formats and extracted metadata. Data analysis was carried out on a workstation with the follow-
ing specifications: Windows 10 Pro for workstations OS 64-bit, 3.2 GHz processor (16 CPUs),
and memory of 131,072 MB RAM.

Table 1 Description of performed classification.

Perspective Type Explanation

Learning type Supervised Training samples of observed classes are a prerequisite
for the classifier to determine the class of each segment

Data distribution assumption Nonparametric MLP does not assume the data probability distribution’s
shape. It uses kernel density estimation to approximate
the probability density function of a continuous random
variable

Data structure Object-based After LiDAR data segmentation, MLP forms fundamental
knowledge of data by being trained on the mean feature
values of each segment instead of the direct feature values
of each point. Hence, the class MLP assigns to a segment
is given to all points included within that segment

Output classes per segment Hard MLP assigns each segment to every class with varying
probabilities. In this study, the class MLP labels a segment
with is the one with the highest probability
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3.1 Study Area and LiDAR Dataset

We used a multispectral LiDAR point cloud captured by the airborne Optech Titan sensor in
2015 to test the proposed approach. The sensor collected LiDAR data using three laser channels:
C1, C2, and C3 that represent the 532-, 1064-, and 1550-nm wavelengths of the electromagnetic
spectrum, respectively. The point cloud contains 1,976,164 3D points spaced at 0.13 m, pro-
duced and projected by the OptechLMS software to the North American Datum (NAD)
1983 Universal Transverse Mercator (UTM) coordinate system (zone 17N). The dataset covers
a 33;000m2 residential area in Rouge within Scarborough, east of Toronto. Megahed et al.34

georegistered the points to a very high-resolution orthophoto acquired in 2014 with a spatial
resolution of 0.2 m and covers the same study zone in R, G, B, and NIR bands. They later
corrected the overparameterization problem in empirical registration models.35 Figure 5 visual-
izes the LiDAR dataset before and after the georegistration.

We used the “lasground-new” tool36 within the collection of LAStools software package to
separate ground from nonground points. The tool applies the progressive triangulated irregular
network (TIN) densification approach.37 It filtered the LiDAR data into 857,738 and 1,118,426
ground and nonground points, respectively.

We observed four nonground and another four ground classes, as follows:

1. buildings,
2. vehicles,
3. high vegetation (tall trees),
4. low vegetation (short trees, shrubs, and bushes),
5. dark asphalt (collectors),
6. light asphalt (local roads),
7. sidewalks, and
8. grass.

3.2 Color-Based Segmentation of LiDAR Data

Figure 6 schematically explains how the segmentation algorithm was applied in the study. It sum-
marizes what Secs. 2.2.1 and 2.2.2 explain in a single chart, with a few alternations that are further
illustrated at the end of this section. The classic k-NN method is commonly utilized to determine a
point’s neighbors. It requires a predetermined k value, representing a chosen number of neighbors

HighLow

(a)

HighLow

(b)

HighLow

(c)

HighLow

(d) (e) (f)

Fig. 5 Visualization of LiDAR data after registration to multispectral very-high-resolution aerial
image. (a) Intensity–C1 channel. (b) Intensity–C2 channel. (c) Intensity–C3 channel. (d) Height.
(e) R, G, B bands visualized in RGB colors. (f) NIR, B, and G bands visualized in RGB colors.
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for the query point, to initialize the process. First, the algorithm calculates the distances between
the point and the remaining data samples. Then, it creates a collection where the indices of those
samples are stored with their distances from the query point, sorted in ascending order. Finally, the
method selects the first k records from the constructed collection as the point’s k-NN.38 Despite
the simplicity of the k-NN, such a brute-force search is structureless; consequently it is computa-
tionally expensive when processing multidimensional data with large sizes.38,39 Hence, the struc-
ture-based k-dimensional tree (k-d tree) method was applied in this study.

A k-d tree is a binary tree where each nonterminal node divides the data into two portions
depending on a record’s position from a k-d hyperplane (splitting partition).40 Each nonterminal
node depicts a different partition. Each level of nonterminal nodes alternates sequentially among
the d dimensions in splitting the records. The search starts at the root node and goes down the
tree, turning left or right at each nonterminal node based on the query point’s value compared
with the threshold value at the split dimension.41 The search continues until it reaches the ter-
minal node that contains a maximum number of points at which the algorithm switches over to
brute-force (leaf size).42 However, these points do not represent the final set of NNs for the query
point if their extent (centered at the query point) intersects with other hyperplanes. In this case,
potential NNs may exist on those sides of the tree where they need to be searched.40

A k-d tree is a data structure based on hierarchical spatial decompositions. Each nonterminal
node is associated with a d-dimensional cell and the subset of records within this cell. The fun-
damental design issue is the choice of the splitting hyperplane. The standard split method uses the
data distribution by determining hyperplanes orthogonal to the median coordinate along which the
points have the most significant spread. However, it generates elongated cells in the case of clus-
tered data, resulting in longer searching times. On the other hand, the midpoint split method uses
the cell’s shape by dividing it through its midpoint using a hyperplane orthogonal to the longest
side, creating tangibly less elongated cells. Nevertheless, many of the resulted cells can be empty,
affecting tree sizes and processing times, especially when dealing with large high-dimensional
data. The sliding midpoint method partitions data as the midpoint split method does. However,
when it produces empty cells with no data records, it shifts the splitting plane toward data location
until the plane touches the first record. This performance overcomes generating sequences of
skinny or repetitive blank cells as in the standard and midpoint split methods, respectively.43

We used the “cKDTree” function42 embedded in the “scipy.spatial” library in this work.
The function constructs a k-d tree for quick NN lookup. We kept its default values: the sliding
midpoint partitioning technique and bucket size of 16 records. Meaning that a node turns to a
terminal node (leaf) if 16 points or less are associated with it. Otherwise, the algorithm continues
partitioning the data.43
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Fig. 6 Application of color-based segmentation algorithm with some modifications.
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The color-based segmentation algorithm calculates the radiometric distance (RD) between
two LiDAR points (p1 and p2) using the Euclidean norm; the square root of the sum of the
squares of the differences between the R, G, and B values of each point. We added the NIR
figures as follows:

EQ-TARGET;temp:intralink-;e004;116;687 RDðp1; p2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððR1 − R2Þ2 þ ðG1 − G2Þ2 þ ðB1 − B2Þ2 þ ðNIR1 − NIR2Þ2Þ

p
: (4)

Equation (4) was also applied to calculate the RD between two segments (s1 and s2). In this case,
the spectral figures were the average of each segment’s points’ R, G, B, and NIR values. We
normalized the four features’ values to have the same range (0 to 255), knowing that the radio-
metric resolution of the aerial image is 8 bit. We normalized the spectral characteristics before
applying Eq. (4), following the rescaling (min–max normalization) equation below:

EQ-TARGET;temp:intralink-;e005;116;594xnormalized ¼
ðx − dminÞðrmax − rminÞ

ðdmax − dminÞ
þ rmin; (5)

where x is the figure to be normalized, dmin is the minimum feature value, dmax is the maximum
feature value, rmin is the minimum range value (0), and rmax is the maximum range value (255).

We kept the below threshold values as applied in Ref. 18:

• Distance point threshold (distPtThrd) = 30 cm: maximum 3D distance between ST’s pt
and its neighbors.

• Distance segment threshold (distSegThrd) = 50 cm: maximum 3D distance between two
neighboring segments.

• Radiometric segment threshold (radSegThrd) = 10: maximum RD between two segments.
• Minimum points per segment (segMinPoints) = 10 points.

However, we made the following modifications to the algorithm to fit the research objectives:

1. We decreased the radiometric point threshold (radPtThrd), which represents the maxi-
mum RD between two LiDAR points, from 35 to 30. The reason was to achieve a more
robust object segmentation, especially between through streets and boulevards that were
visually noticed to share close spectral characteristics after data registration.

2. To search for a point’s neighbors using the cKDTree function, we queried the k-d tree for
all point’s NNs within the distance threshold ranges (i.e., distPtThrd and distSegThrd).
Zhan et al.18 adopted the other way around by limiting the number of looked-up NNs then
checking their distances from the query point, as it provides a substantial gain in the
cKDTree’s efficiency.42 However, the data size we processed in this study is significantly
larger than Zhan et al.’s,18 fundamentally slowing down the processing time. Hence,
we tried to speed it up by examining all potential neighbors for radiometric similarity
at once. In this way, the possibility of assigning more points to a segment and merging
more segments to a segment increases. We were encouraged to develop this adjustment by
the searching ranges (distPtThrd and distSegThrd), which are already confined concerning
the data size and the study region’s coverage area. In addition, our change checks against
void lists of NNs and proceeds accordingly, as Zhan et al.18 defend this detail. Therefore,
our alternation should not affect the approach’s robustness. We did not apply this adjust-
ment in the refinement process since segments less than minimum points per segment
(segMinPoints) look for merging with their NN segment without a distance constraint.

3. In the growing step, we checked the colorimetric similarity between the stack’s top
points’ NNs and the point that initiated the segment instead of the top points themselves.
Our motive was to maintain a maximum spectral difference equals to the radPtThrd value
among the entire points within the same segment for a more robust point segmentation.

4. We added a condition to the growing step, keeping maximum points per segment
(segMa − xPoints) below 100 points. This size control was mandatory to prevent radio-
metrically similar elements from being targeted in the same segments, leading to sub-
sequent misclassification problems. To illustrate, the forestry area in the northeast
direction of the study region contains trees that barely vary in color since they share
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almost the same land cover, but they do vary in height. Hence, when a LiDAR point in
this area initiates a segment, the segment expands gradually as per the distPtThrd value to
entirely include the whole greeny area. Consequently, discriminating subclasses in the
forestry area (i.e., trees, shrubs, bushes, and grass) would not be possible. This procedure
of uncontrolled segment growing contradicts the research objectives, as the study pro-
poses LiDAR-imagery data integration fundamentally to segregate subclasses that a sin-
gle data type cannot separate. Hence, we introduced this adjustment as a restriction to the
segment growing step.

3.3 Feature Space Construction

A 10D point features vector represents each point in the LiDAR dataset as below:

EQ-TARGET;temp:intralink-;e006;116;593PF ¼ ½ x y h I1 I2 I3 R G B NIR �T; (6)

where PF is the point features, x and y are the point’s x and y coordinates, respectively, h is the
point height calculated in the ground filtering process, I1; I2; I3 are the point’s intensities
obtained from the multispectral LiDAR sensor in the C1, C2, and C3 channels, respectively,
and R;G; B;NIR are the point’s spectral properties inherited after LiDAR-aerial data registration
in the red, green, blue, and near-infrared bands, respectively.

These point features fundamentally build the following radiometric and geometric features
per LiDAR segment.

3.3.1 Radiometric features

The following is a 25D radiometric segment features vector that we calculated for each 3D
LiDAR segment:

EQ-TARGET;temp:intralink-;e007;116;420

SFrad ¼ ½μI1 μI2 μI3 μR μG μB μNIR Br
ratioI1 ratioI2 ratioI3 ratioR ratioG ratioB
ratioNIR NDVI EVI GLI GNDVI GARI

MSAVI2 MNLI TDVI VrNIRBI VgNIRBI�T
; (7)

where SFrad is the radiometric segment features vector, and μI1; μI2; μI3; μR; μG; μB; μNIR are
the segment’s mean I1, I2, I3, R, G, B, and NIR values, respectively, calculated by

EQ-TARGET;temp:intralink-;e008;116;333

μI1 ¼
1

N

XN
i¼1

I1i ;

μI2 ¼
1

N

XN
i¼1

I2i ;

μI3 ¼
1

N

XN
i¼1

I3i

μR ¼ 1

N

XN
i¼1

Ri;

μG ¼ 1

N

XN
i¼1

Gi;

μB ¼ 1

N

XN
i¼1

Bi;

μNIR ¼ 1

N

XN
i¼1

NIRi; (8)

where N is the number of points the segment includes, i is a counter that runs over N, and Br is
the brightness value that averages the segment’s seven colors, given as
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EQ-TARGET;temp:intralink-;e009;116;735Br ¼ 1

7
ðμI1 þ μI2 þ μI3 þ μRþ μGþ μBþ μNIRÞ; (9)

ratioI1 ; ratioI2 ; ratioI3 ; ratioR; ratioG; ratioB; ratioNIR are the segment’s ratios of I1, I2, I3, R, G, B,
and NIR, respectively, given as

EQ-TARGET;temp:intralink-;e010;116;678

ratioI1 ¼
μI1

μI1 þ μI2 þ μI3 þ μRþ μGþ μBþ μNIR

ratioI2 ¼
μI2

μI1 þ μI2 þ μI3 þ μRþ μGþ μBþ μNIR

ratioI3 ¼
μI3

μI1 þ μI2 þ μI3 þ μRþ μGþ μBþ μNIR

ratioR ¼ μR
μI1 þ μI2 þ μI3 þ μRþ μGþ μBþ μNIR

ratioG ¼ μG
μI1 þ μI2 þ μI3 þ μRþ μGþ μBþ μNIR

ratioB ¼ μB
μI1 þ μI2 þ μI3 þ μRþ μGþ μBþ μNIR

ratioNIR ¼ μNiR

μI1 þ μI2 þ μI3 þ μRþ μGþ μBþ μNIR
: (10)

The mean colors, brightness, and color ratio features represented in Eqs. (8)–(10) are inspired by
Kang et al.’s study.12 However, we included additional vegetation indices for better segregation
of trees and grasses, which the scene contains. The added indices are part of multiple broadband
greenness vegetation indices offered by ENVI software44 and chosen based on their compati-
bility with the nature of the study area. They are computed as follows:

EQ-TARGET;temp:intralink-;e011;116;412NDVI ¼ μNIR − μR
μNIRþ μR

; (11)

where NDVI is the segment’s normalized difference vegetation index that identifies healthy and
green vegetation

EQ-TARGET;temp:intralink-;e012;116;344EVI ¼ 2.5ðμNIR − μRÞ
μNIRþ 6μR − 7.5μBþ 1

; (12)

where EVI is the segment’s enhanced vegetation index. It improves NDVI in areas of high veg-
etation by accommodating soil background signals and atmospheric effects:

EQ-TARGET;temp:intralink-;e013;116;276GLI ¼ 2μG − μR − μB
2μG − μRþ μB

; (13)

where GLI is the segment’s green leaf index, designed initially for digital RGB images

EQ-TARGET;temp:intralink-;e014;116;221GNDVI ¼ μNIR − μG
μNIRþ μG

; (14)

where GNDVI is the segment’s green normalized difference vegetation index. It is more sensi-
tive to chlorophyll concentration than NDVI, as it uses the green instead of the red spectrum:

EQ-TARGET;temp:intralink-;e015;116;154GARI ¼ μNIR − μGþ γðμB − μRÞ
μNIRþ μG − γðμB − μRÞ ; (15)

where GARI is the segment’s green atmospherically resistant index. It is more susceptible to a
wide range of chlorophyll concentrations and less sensitive to atmospheric impacts than NDVI,
as GARI involves a weighting function (γ constant = 1.7) that depends on aerosol conditions in
the atmosphere
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EQ-TARGET;temp:intralink-;e016;116;735MSAVI2 ¼ μNIRþ 0.5 − 0.5ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2μNIRþ 1Þ2 − 8ðμNIR − μRÞ

q
Þ; (16)

where MSAVI2 is the segment’s second modified soil adjusted vegetation index that decreases
soil noise to highlight healthy vegetation:

EQ-TARGET;temp:intralink-;e017;116;681MNLI ¼ ððμNIRÞ2 − μRÞÞð1þ LÞ
ðμNIRÞ2 þ μRþ L

; (17)

whereMNLI is the segment’s modified nonlinear index that accounts for the soil background by
including L; a canopy background adjustment factor of value 0.5, and

EQ-TARGET;temp:intralink-;e018;116;612TDVI ¼ 1.5ðμNIR − μRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððμNIRÞ2 þ μRþ 0.5Þ

p ; (18)

where TDVI is the segment’s transformed difference vegetation index that detects green covers
in urban morphologies.

Moreover, we computed two urban indices that are designed for extracting built-up areas as
below:45

EQ-TARGET;temp:intralink-;e019;116;517VrNIRBI ¼
μR − μNIR

μRþ μNIR
VgNIRBI ¼

μG − μNIR

μGþ μNIR
; (19)

where VrNIRBI and VgNIRBI are the visible red-based and green-based built-up indices,
respectively.

The mean values of the I1, I2, I3, R, G, B, and NIR that appear in Eqs. (9)–(19) were calcu-
lated after the normalization of the corresponding point features in Eq. (6) to range from 0 to 255
by substituting in Eq. (5).

3.3.2 Geometric features

Below is a 12D geometric segment features vector that we calculated for each 3D LiDAR
segment. They are a combination of what Kang et al.12 and Martin et al.46 have applied in their
studies:

EQ-TARGET;temp:intralink-;e020;116;341

SFgeom ¼ ½μh hvar planeres λ1 λ2 λ3 Aλ Pλ Sλ Lλ OλEλ�T ; (20)

where SFgeom is the geometric segment features vector, and μh; hvar are the segment’s mean
height and height variance, respectively, given as

EQ-TARGET;temp:intralink-;e021;116;283μh ¼ 1

N

XN
i¼1

hi; (21)

EQ-TARGET;temp:intralink-;e022;116;222hvar ¼
1

N

XN
i¼1

ðhi − μhÞ2; (22)

planeres is the plane residual represented by the Euclidean distance norm of the vector that con-
tains the segment’s points’ residuals from their best-fitting plane estimated by least-squares,
λ1; λ2; λ3 are the eigenvalues resulting from the eigendecomposition of the segment’s covariance
matrix, which is constructed from the covariances between each pair of the segment’s x, y, and h
point features [Eq. (6)]. For instance, the covariance between x and y is computed as

EQ-TARGET;temp:intralink-;e023;116;133σxy ¼
P

N
i¼1ðxi − μxÞðyi − μyÞ

N − 1
; (23)

where μx; μy are the segment’s mean x and y coordinates, respectively.
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The segment’s three eigenvalues are normalized to accommodate different scales as follows:

EQ-TARGET;temp:intralink-;e024;116;723λj ¼
λjP
3
j¼1 λj

: (24)

They are sorted in a descending order so λ1 > λ2 > λ3, and the following eigenvalue-based geo-
metric features are calculated:

EQ-TARGET;temp:intralink-;e025;116;653

Aλ ¼
λ1 − λ3
λ1

Pλ ¼
λ2 − λ3
λ1

Sλ ¼
λ3
λ1

Lλ ¼
λ1 − λ2
λ1

Oλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1λ2λ3

3
p

Eλ ¼ −
X3
j¼1

ln λj; (25)

where Aλ is the segment’s anisotropy that exposes how its properties are directional (differ with
different directions), in opposite to isotropy, where properties are uniformly distributed in all
directions, Pλ, Sλ, Lλ are measures of the segment’s planarity, sphericity, and linearity, respec-
tively, Oλ is the segment’s omnivariance that describes its 3D shape, and Eλ is the segment’s
eigenentropy.

3.4 Feature Space Dimensionality Reduction Using PCA

We used the “PCA” class in the “decomposition” module embedded in the “scikit-learn” library
in Python to implement the PCA.47 The class implicitly applies the five steps previously men-
tioned in Sec. 2.4. We created a PCA model and set the number of components to the exact
dimensions of the original data. Then, we fitted the model to the input feature space. Afterward,
we targeted the components with the highest accumulating variances as the most significant PCs,
by which we recreated and refitted the model and finally identified the subspace dimensions.
Lastly, we transformed (projected) the original data to the determined output space.

There is no way to name the most significant features within a dimensionality reduction
technique; however, the PCA enables recognizing the most meaningful features contributing
to each PC’s creation. The “components” attribute in a PCA model is a matrix whose rows
resemble the PCs, and columns mirror the features in the input space. Each value in the com-
ponents matrix represents the weight a feature participated with while producing a PC. By sort-
ing each row in descending order, we could reflect on the most critical features that constructed
each PC. We carried out the dimensionality reduction for the ground and nonground subsets
separately.

3.5 LiDAR Data Classification Using MLP Neural Networks

We collected data for classification model training, validation, and testing manually on ERDAS
IMAGINE by digitizing polygons of points for each observed class. We acquired 13,953 seg-
ments, 80% of which contributed to training and validating the MLP neural network classifi-
cation model, with a ratio of 80% to 20%, respectively. We used the remaining 20% to test the
model (test 1). To ensure a robust model consistency, we added second testing (test 2) using a set
of 5337 points collected in the same way. Figure 7 shows the percentage breakdown of the
obtained data. It is worth mentioning that the validation and both testing data are three different
sets and did not participate in training the model. Also, we maintained a class representation in
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these four splits proportional to its size in the collected data. Equivalent class representation
ensures good model learning and unbiased evaluation. Figure 8 shows the categorization of the
eight classes within the collected data.

Since the class feature in the training, validation, and testing samples belongs to categorical
data as a multiclass prediction problem, we converted the class feature to numerical values in two
steps. First, we applied label encoding to assign an integer figure to each category (class). Then,
we implemented one-hot encoding to give those figures a binary representation to eliminate an
ordinal association among the classes.48

We used the “Keras” Application Programming Interface (API) in Python49 to create an MLP
neural network model of four layers. The input layer’s dimension was set to the number of
features (37 in total if we entirely consider the radiometric and geometric features). At the same
time, the two hidden layers and the output layer had 16, 12, and 4 neurons, respectively. We ran
the classification of ground and nonground segments independently; hence, the four neurons in
the output layer represent the number of classes observed in both sets. The model was compiled
using the Adam optimizer50 and the categorical cross-entropy loss function.51 We applied a tradi-
tional feedforward network, where forward processing carried out an upward activation of the
neurons until the final output. The rectified linear unit function52 activated the input and hidden
layers, whereas the softmax function activated the output layer.52 Softmax is typically used in
multiclass prediction applications, as it provides the probability membership of each segment to
belong to each of the output classes. We assigned the class of the highest probability to each
segment. The loss function computed the error and backpropagated it, while the optimizer
updated the weights according to their contribution to the error. The error backpropagation was
iterated over 100 epochs and 50 batches per epoch until the model arrived at a set of weights
minimizing the prediction error.30

We examined the following 10 scenarios, each of which trains an MLP neural network model
on a bundle of the 37 features, as follows:

1. μ h, μ I1.
2. μ h, μ I2.

5605
40%

473
3%

1417
10%

1607
12%

695
5%

1147
8%

531
4%

2478
18%

(a)

1789
34%

128
2%

493
9%388

7%

371
7%

907
17%

315
6%

946
18%

(b)

Buildings Vehicles High vegetation Low vegetation

Dark asphalt Light asphalt Sidewalks Grass

Fig. 8 Percentage/numerical breakdown of collected data: eight classes. (a) Collected segments
(splitted for training, validation, and test 1). (b) Collected points (used in test 2).

Collected data for model training, validation, and testing

Segment-format Point-format

20%
Test-2

Test-1

80%

80%-training

20%-validation

Fig. 7 Percentage breakdown of collected data: training, validation, and testing.
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3. μ h, μ I3.
4. μ h, μ I1, μ I2.
5. μ h, μ I1, μ I3.
6. μ h, μ I2, μ I3.
7. μ h, μ I1, μ I2, μ I3.
8. μ h, μ I1, μ I2, μ I3, μ R, μ G, μ B, μ NIR.
9. SFrad, SFgeom.

10. PCs.

Scenarios (1) to (7) thoroughly study the capabilities of the multispectral LiDAR features in
urban classification when combined with the height values in seven different ways. Scenario
8 reveals the effect of including R, G, B, and NIR from the aerial image on classifying the scene,
whereas scenario 9 tests the hypothesis of combining additional calculated radiometric and geo-
metric features on enhancing the classification results. Finally, scenario 10 attempts a lower
dimensionality represented by the most significant PCs instead of the whole input space in the
preceding scenario. To ensure a consistent assessment of the 10 scenarios, the training, valida-
tion, and testing datasets were the same for the 10 MLP classification models.

3.6 Classification Assessment

We validated the 10 classification models using different classification metrics and resampling
techniques. We constructed the accuracy matrix in test 1 and test 2 for each MLP model to
calculate the accuracy, precision, recall, and F1-score metrics. They are explained below for a
binary classification that deals with two classes: positive and negative (Fig. 9). We accommo-
dated them accordingly in the calculations to fit a multiclass prediction problem:

EQ-TARGET;temp:intralink-;e026;116;439Accuracy ¼ TPþ TN

TPþ TNþ FNþ FP
; (26)

whereAccuracy is the model’s overall accuracy that donates the fraction of the total samples that
are correctly classified, TP is the true positive, reflecting the number of positive samples that the
model correctly predicts as a positive class,

TN is the true negative, reflecting the number of negative samples that the model correctly
predicts as a negative class, FN is the false negative, reflecting the number of positive samples
that the model incorrectly predicts as a negative class, and FP is the false positive, reflecting the
number of negative samples that the model incorrectly predicts as a positive class,

EQ-TARGET;temp:intralink-;e027;116;313Precision ¼ TP

TPþ FP
; (27)

where Precision is the precision of the positive class, referring to the fraction of positive pre-
dictions that are positive in reality. It is calculated for each class

EQ-TARGET;temp:intralink-;e028;116;247Recall ¼ TP

TPþ FN
; (28)
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Fig. 9 Confusion matrix of binary classification of positive and negative classes.
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where Recall is the recall of the positive class, referring to the fraction of positive samples that
are correctly predicted positive. It is calculated for each class, and

EQ-TARGET;temp:intralink-;e029;116;711F1-score ¼
2 � Precision � Recall
Precisionþ Recall

; (29)

where F1-score is the harmonic mean of the precision and recall of the positive class. It is cal-
culated for each class.

We trained, validated, and tested the 10 classification models using the same training, val-
idation, and testing sets, respectively, which are illustrated in Sec. 3.5 to maintain an unbiased
comparison. In addition, we applied the k-fold cross-validation as a different resampling tech-
nique. It divides the training records into a k number of folds, where one fold participates as a
testing set and the rest contribute to training the model. The algorithm runs k times, and at each
turn, a different fold takes part as the held-out testing set. In this way, the entire samples con-
tribute to the fitting and evaluation processes, ensuring robust assessment figures. The k-fold
cross-validation technique results in a k number of MLP models, whose accuracies are averaged
and their standard deviations are calculated.30,53 In this study, we set k to 10, used the segmented
training dataset (Fig. 7), constructed stratified folds to guarantee all classes in training and val-
idation folds are represented proportionally to their size in the training dataset, and repeated the
algorithm 100 times.

4 Results and Discussions

4.1 Dimensionality Compression of Feature Space by PCA

The segment growing step in the color-based segmentation process resulted in 38,930 and
92,489 rough segments for the ground and nonground LiDAR points. The merging and refine-
ment step reduced the number of segments to 21,853 and 36,138, respectively, which is 57,991
total segments for the entire point cloud.

After computing the 37D feature space for each segment, we commenced the PCA with 37
PCs, the size of the input space. By sorting the variances in descending order, we calculated
the accumulated variance as a preparatory step toward the definite number of components to
consider. Figure 10 shows that close to 100% cumulative variance is achieved by recognizing
only nine and seven PCs in the analysis of nonground and ground data, respectively. Hence, we
reperformed the PCA considering these most significant components and projected the 37D
input feature space of the nonground and ground LiDAR points into a 9D and 7D output space,
respectively.

Figure 11 reveals the contribution of each feature in the 37D input space to creating the most
significant PCs after normalizing the features’weights to range from 0 to 1, indicating no and full
contribution, respectively. The most significant PCs of both ground and nonground data pri-
marily consist of combinations of features of direct LiDAR and imagery spectral intensities;
I1, I2, I3, R, G, and NIR, with a notable contribution from EVI. As height is an expected feature
to distinguish between nonground objects, it is not surprising that it also appears to dominate the
most significant PCs of the nonground points. This initial overview highlights anticipation of
more influential spectral features than the derived geometric characteristics when the data are
classified.

4.2 Classification of LiDAR Data Using MLP Neural Networks

An MLP neural network is a stochastic machine learning algorithm whose decisions vary ran-
domly during the learning process. It uses random initial weights and random shuffle of samples
(batches) at each epoch to help the model seek better solutions by avoiding local or deceptive
optima. Consequently, each time an MLP neural network algorithm runs, it creates a different
model, provides different predictions, and produces a different accuracy. These variations occur
even when the algorithm uses the same training data each time it runs.54 Hence, it is essential to
test the MLP models on different datasets to ensure compatible results.
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Figure 12 shows the overall mapping accuracies of the 10 scenarios using the validation, test
1 and test 2 splits (previously addressed in Sec. 3.5), in addition to the k-fold approach. In the
k-fold approach, different nonoverlapping subsets of the training data, which summed up to the
entirety of the training set, participated in the validation in rotation. The fourth bar in each sce-
nario represents the mean accuracy of the 10 folds in the 100 repetitions when each fold acted as
the held-out testing set. The values above describe the standard deviation of the 1000 accuracy
values.

In each scenario, the four evaluations are close to each other, indicating consistent MLP
models that are reliable to apply on unseen data for predictions. However, the first and third
models show relatively lower accuracy figures when verified by the test 2 set. This decrease
is probably the result of insufficient input feature spaces in both scenarios that allowed mis-
classified segments, of which some points of test 2 are accidentally part. Test 2 is a set of points,
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Fig. 10 PCs’ cumulative variances. (a) Nonground LiDAR data. (b) Ground LiDAR data.
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not segments as the rest of the assessment splits are, so the misclassification effect is more pro-
nounced. The evaluation on test 2 shows consistency with the other three assessment splits in the
remaining scenarios whose feature spaces are larger with lower standard deviations, which sup-
ports this argument. The remaining part of this section discusses the classification results based
on the models’ evaluation using the test 1 dataset.

Figure 13 shows the classification results using the test 1 data split. A general glance at the
overall mapping accuracy shows its gradual increase by including more features in the input space
of the classification. However, there is a significant leap in the nonground accuracy compared
with the ground one highlighted in the first three scenarios. This notable increase results from the
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Fig. 11 The most significant PCs’ most contributing features. (a) Nonground LiDAR data.
(b) Ground LiDAR data.

Megahed, Yan and Shaker: Detection of urban features by multilevel classification. . .

Journal of Applied Remote Sensing 044521-23 Oct–Dec 2021 • Vol. 15(4)



height being a discriminative feature in the classification of nonground data, whose accuracy is
around 90% when combined with a single LiDAR channel. On the contrary, the height range of
the ground data is 4 cm, which does not provide room for a better classification when combined
with a LiDAR spectral channel, leading to a ground classification accuracy of around 60%.

When comparing the first three scenarios, the nonground accuracies of scenario 1 and sce-
nario 2 are almost the same (≈ 90%); however, scenario 3’s is relatively larger (92.37%) because
of its higher capability in detecting vehicles. On the other hand, the ground accuracies of scenario
1 and scenario 3 are close (≈ 61%); however, scenario 2’s ground accuracy is relatively larger
(64.40%) because of its higher capability in detecting light asphalt. Nevertheless, these variances
slightly affect the three scenarios in total; i.e., 79.92%, 80.89%, and 81.68%, respectively.

The following three scenarios reveal the impact of alternating two of the three LiDAR chan-
nels. Adding a second LiDAR spectrum booms the overall accuracy to 87.47%, 90.41%, and
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k -fold results.
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91.30% in scenario 4, scenario 5, and scenario 6, respectively, as it relatively enhances the
predictions of the vehicles, dark, and light asphalts. The increase of the overall accuracy is
vitally contributed by the ground classification, which rushes to around 80% compared with
around 60% in the past three scenarios. Combining a second LiDAR beam compensates par-
tially for the idle height feature in the ground classification as per the first three scenarios, with
steady progress in the nonground classification figures. Combining the three LiDAR channels
in scenario 7 does not add to the highest accuracies of a dual-channel inclusion provided by
scenario 6.

Scenario 8 renders another remarkable development in the classification results. Introducing
the aerial photo’s radiometric properties (R, G, B, and NIR) increases the accuracy to above
97%. The added spectral features push the nonground and ground accuracies to 97.59% and
97.33%, respectively, striking the overall accuracy of the scenario to 97.49%. This increase
results from a continuous improvement in the vehicle, dark, and light asphalt classes.

By accounting for the entire 37D feature space in scenario 9, the nonground classification
keeps growing to reach an accuracy of 98.74%. The height-derived geometric feature space
allows for better vehicles predictions, raising the accuracy of the nonground classification.
However, the full-feature input space slightly affects the dark and light asphalt classes, lightly
decreasing the ground accuracy to 97.12%, making the scenario’s overall accuracy 98.17%, and
the highest among the entire 10 scenarios.

The most significant PCs in scenario 10 insignificantly lower the nonground classification to
97.91% due to a decrease in the vehicles class accuracy, which is intuitively expected when only
a subset of the components participates in the classification. However, the selected components
yet contain the most distinguishing characteristics. Unlike the nonground classification, scenario
10 slightly enhances the ground classification to 97.84% due to an increase in the dark and light
asphalt classifications. Despite the nontangible improvement, it suggests that the original input
space may include a feature or more with a negative impact on the classification model that is
eliminated in the PC space, enhancing the results in consequence. Scenario-10 ends with an
overall accuracy of 97.89%.

Figure 14 digs more into the classification results by visualizing the per-class accuracies of
the different scenarios represented by the F1-score. If a class’s F1-score is zero, it means either
its precision or recall is zero. Height and C1 LiDAR channel in scenario 1 can reasonably differ-
entiate buildings, high vegetation, and low vegetation with 95.16%, 80.95%, and 87.61%,
respectively, justifying the scenario’s high nonground accuracy (Fig. 13). However, the two fea-
tures show buildings/high-vegetation and vehicles/low-vegetation misclassification problems.
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Fig. 14 Per-class accuracies of LiDAR data’s multilevel object-based classification: F 1-score (test
1 set).
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Because of the different data acquisition times (LiDAR and imagery data were obtained inde-
pendently in 2015 and 2014, respectively), the model misclassifies many high vegetation seg-
ments as buildings. Some high-vegetation LiDAR points resemble asphalt locations on the aerial
image, where trees were not planted. The model also misclassifies some segments of buildings as
high vegetation due to orthorectification problems. These problems are attributed to the building
facades appearing in the aerial image; consequently, LiDAR segments on roof edges inherited
the spectra of building interfaces and surrounding surfaces usually planted in residential areas.

More severely, scenario-1 shows poor vehicle classification results (47.76%) as it mixes a
substantial part of the class with low vegetation. It is unlikely for a vehicle to keep the exact
location in a study scene, particularly when captured by two different sensors on different dates.
Therefore, they inherited the corresponding spectra of the ground surfaces where they usually
park (i.e., grassy sidewalks). Hence, the abovementioned pairs of misclassified classes are
radiometrically and geometrically indistinguishable, with the height information being the solely
geometric feature in scenario 1.

On the other hand, scenario 1 recognizes sidewalks and grass with an accuracy of 88.29%
and 81.85%. Nevertheless, it reports dark-asphalt/light-asphalt/grass misclassification that
plunges dark asphalt to 31.14% and completely misses light asphalt. Scenario 2 introduces
C2 LiDAR channel instead of C1. It increases the high-vegetation accuracy (85.08%), almost
does not change the accuracy of buildings (95.89%), decreases the accuracy of low vegetation
(85.60%), and completely drops the accuracy of vehicles due to the previously mentioned mis-
classifications, which eventually does not alter the nonground classification as noticed in Fig. 13.
Nonetheless, scenario 2 identifies light asphalt with an accuracy of 66.56% after a drop in sce-
nario 1. This jump enhances the ground accuracy (Fig. 13) despite the misclassification of the
entire four ground classes, which misses the sidewalks and dark asphalt, and lowers the grass
accuracy to 78.10%.

Scenario 3 tests C3 instead of the other two LiDAR channels: C1 and C2. The model boosts
the vehicle classification to 64.15% after a drop in scenario 2, consequently raising the low
vegetation to 90.59%. By providing a slight increase to the classification of buildings (96.40%),
scenario 3 increases the nonground classification accuracy compared with scenario 1’s and
scenario 2’s (Fig. 13). It also records a hit in classifying sidewalks (98.10%), compensating
for missing both asphalts as grass, lowering the grass accuracy to 72.78%, in consequence.
This hit keeps scenario 3’s ground accuracy close to scenario 1’s.

Alternating the three LiDAR channels in pairs as per scenario 4 to scenario 6 presents a
nearly steady increase of all classes, converging in a high accuracy range, from 87% to 98%,
except for vehicles and asphalts. The inclusion of dual channels rushes the accuracy of light
asphalt to 73.89%, 76.16%, and 76.47% in the three scenarios, respectively. The dark asphalt
class accuracy also jumps from 2.84% in scenario 4 to 30.77% and 29.47% in scenario 5 and
scenario 6, respectively. On the other hand, the vehicles’ accuracy decreases to 45.33% in
scenario 4, then raises to 59.06% and 68.16% in scenario 5 and scenario 6, respectively.
These figures give scenario 6 higher ground, nonground, and overall accuracy than the preceding
scenarios and are very close to scenario 7’s, donated by including the three LiDAR channels
(Fig. 13). Compared with scenario 6, scenario 7 decreases vehicles from 68.16% to 58.99% and
increases dark asphalt from 29.47% to 33.33%.

The last three scenarios continue the nearly steady improvement of all classes, yet converging
in a higher accuracy range, from 96% to full prediction, except for vehicles and both asphalts.
Accumulating the aerial photo’s spectra in scenario 8 tangibly improves the troubling classes to
88.30%, 90.85%, and 95.13% for vehicles, dark, and light asphalt, respectively. The R, G, and B
bands lend a hand in discriminating dark and light asphalts even with the naked eye visualization
[Fig. 5(e)]. At the same time, the NIR band helps identify the greeny features with 96.98%,
96.62%, and 99.60% accuracy for the high, low vegetation, and grass classes, respectively,
which raises the accuracy of the vehicles and buildings (98.80%) in accordance since they are
misclassified with low vegetation and high vegetation, respectively.

The SFgeom introduced in scenario 9 better eliminates this misclassification, as the mixed
classes share close values of the SFrad added in the same scenario since they already have similar
green characteristics. Scenario-9 notably increases the vehicle accuracy to 92.55% and develops
the accuracy of buildings, high vegetation, and low vegetation to 99.55%, 98.58%, and 97.85%,
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respectively. On the other hand, the scenario suggests one or more confusing features in the
SFrad, such as lowering the sidewalks to 97.65% after a full prediction in scenario 8, also decreas-
ing the light asphalt to 94.29%. The PCA eliminates confusing features by definition; therefore,
scenario 10 increases the accuracy of dark, light asphalts, sidewalks, and grass to 92.94%,
95.54%, 100.00%, and 99.80%. These figures are not only higher than scenario 9 but also even
exceed what scenario 8 achieves for ground classes.

4.3 Production of Final Urban Map

The bar charts in Fig. 15 summarize the best and the worst classification accuracy results we
achieved in this study from scenario and class perspectives. Figure 15(a) displays the most useful
versus the most unfavorable scenarios for the land-uses, ground, nonground, and overall clas-
sification, based on the results discussed in Sec. 4.2. Scenario 9 produces the highest nonground
accuracy (98.74%) as expected after the scenario being the highest-scoring in the nonground
classes, except for high vegetation. The class yields 98.94% accuracy in scenario 10, slightly
above the 98.58% obtained by scenario 9. Likewise, scenario 10 provides the best ground
(97.84%) and ground per-class accuracies, except for grass that reaches 99.90% in scenario
9, insignificantly over the 99.80%, it hits with scenario 10. Therefore, we considered scenario
9's and scenario 10's nonground and ground classifications to produce the final urban map.

Figure 15(b) shows the same results but from a different aspect, as it sums up the most versus
the least detectable classes for each scenario. Building roofs are the best hits of the majority of
the scenarios. As long as a feature space includes the height records, adding a single radiometric
feature guarantees >95% detection (i.e., 95.16% in scenario 1), which can be improved by add-
ing more features. Scenario 3 is the best to efficiently target sidewalks or similar elements (i.e.,
landmarking at pedestrian crossing intersections) with a >98% accuracy.

Scenario 2 and scenario 4 are still easy-to-pick options (narrow feature spaces, and thus, fast
processing) if a building-accuracy higher than what scenario 1 offers is required. Scenario 4 is
also beneficial in grass-oriented applications with a >92% accuracy (Fig. 14). Scenarios 5 to 7
are good choices if a >97% building detection is needed or a >90% green accuracy is attempted
(>90%, >92%, >95% for low, high vegetation, or grass, respectively) [Fig. 14)].

Scenario-8 is a perfect compromise of the entire eight classes. Besides a full grass detection,
the inherited R, G, B, and NIR substantially solve the vehicle/low-vegetation and dark/light-
asphalt misclassifications emerging in the preceding scenarios. Vehicles are the scenario’s least
accurate features, yet, detected with an accuracy of 88.30%. Nevertheless, scenario 9 is optimum
for the maximum misclassification elimination between geometrically distinguished classes (i.e.,
vehicle/low-vegetation and building/high-vegetation). Consequently, the scenario fits urban
mapping applications with fine accuracy requirements (>98%). Vehicles are still the scenario’s
least accurate features, but 91.39% accurate. Scenario 10 suits large input feature spaces when
one lacks a predetermined knowledge about their significance.

We want to emphasize that the results’ discussions, along with the recommended case uses of
each scenario, are guidelines for researchers, assuming similar urban objects and encountered
data challenges (i.e., orthorectification, shadow, and different acquisition time). Researchers
should consider their data structure, observed classes, and application requirements to decide
optimal classification scenarios. Our analysis may shed light on even more feature combinations
and testing scenarios.

Picking the best scenario depends on the application’s nature and objectives. This study aims
to provide the best possible accurate urban mapping that accommodates all accuracies: per-class
and overall accuracies. Consequently, we chose scenario 9 and scenario 10 for nonground and
ground classifications. The combined scenarios increase the overall final map accuracy to
98.43%, slightly higher than the maximum overall accuracy achieved by scenario 9 alone
[98.17%; Fig. 15(a)].

Figure 16 shows the per-class accuracy of the combined-scenario classification. It separates
the nonground and ground classes accuracies of scenario 9 and scenario 10, respectively, from
Fig. 14 for better visualization of the final map’s per-class figures visualized in a bar chart.

Figure 17 reflects on the learning curves of the MLP neural networks of the ground and
nonground classifications, which we used to produce the final urban map. Both models show
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good performance on training and validation samples since both reach minimal losses (errors).
However, good learning is revealed here by the loss convergence of the training and validation
datasets around a relative value each time the epochs increase. On the contrary, overfitting occurs
when the validation curve deviates with higher loss values from the training curve after a con-
vergence. In comparison, underfitting happens when training data always show lower loss values
than the validation samples. In this case, the validation curve either declines or levels off with the
increase in epochs.55

Figure 18 shows the classified LiDAR point cloud as the final produced urban thematic map,
also used for the qualitative assessment of the classification. The map [Fig. 18(a)] shows the
eight classes accurately placed as the quantitative evaluation results suggest, in comparison with
the corresponding aerial image [Fig. 18(b)] used in the data registration process. We highlight on
the map example locations of five misclassification cases explained as follows:
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Vegetation

Low
Vegetation

Dark
asphalt

Light
asphalt Sidewalks Grass Ground

accuracy

Non-
ground

accuracy

Overall
accuracy

Best scenario 99.55% 92.55% 98.94% 97.85% 92.94% 95.54% 100.00% 99.90% 97.84% 98.74% 98.17%
Worst scenario 95.16% 0.00% 80.95% 85.60% 0.00% 0.00% 0.00% 72.78% 61.01% 89.68% 79.92%
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Fig. 15 Summary of LiDAR multilevel classification’s best and worst achieved results: F 1-score
(test 1 set). (a) Scenario perspective. (b) Class perspective.
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1. Misclassification of the vehicles and low vegetation classes is still casually spotted even
when including geometric indices in the classification feature space. The misclassifica-
tion affects both classes’ accuracy in comparison with the remaining classes (Fig. 16).

2. LiDAR points happen to appear at shadow positions in the corresponding aerial image.
They accordingly inherited a spectrum similar to the dark asphalt’s, leading to light-/
dark-asphalt and grass/dark-asphalt misclassifications. Some of these locations are for
asphalt-parking vehicles in the aerial image that did not show up at the acquisition time
of the LiDAR data. They also inherited a spectrum close to the dark asphalt’s, causing a
light-/dark-asphalt misclassification. Both classes appear with lower accuracies relative
to the other classes (Fig. 16).

3. Building points are misclassified as high vegetation due to inaccurate aerial photo orthor-
ectification. The misclassification still shows up despite the inclusion of geometric indi-
ces in the classification. Figure 16 does not reflect this misclassification, as its locations
are not covered within the testing data.

4. The oval mark covers a seesaw in a playground, while the rectangular marks include
transmission towers. These objects do not frequently appear in the scene; thus, we did
not assign them separate classes. Consequently, the seesaw’s segments are labeled low
vegetation and vehicles, and the tower segments are classified as buildings and high
vegetation.
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Fig. 16 Produced urban thematic map’s per-class accuracies: F 1-score (test 1 set).

Fig. 17 Produced urban thematic map’s MLP learning curves. (a) Nonground model (scenario 9).
(b) Ground model (scenario 10).
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5. High vegetation segments are misclassified as buildings. The ovals mark LiDAR points
of trees that were not planted at the acquisition time of the aerial photo. They obtained
the spectrum of dark asphalt after registration, which is radiometrically close to building
roofs. The height-derived geometric indices solved the problem; however, a few mis-
classified spots are still located.

Nonetheless, our results based on the qualitative and quantitative assessments outperform
the nonground and overall accuracies achieved by Megahed et al.,35 who carried out a point-
based classification with scenario 8 on the same LiDAR point cloud using the same classifier.
This comparison underlines the efficiency of introducing height-derived geometric features in
classifying urban objects that vary in height values.
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Fig. 18 Produced urban thematic map. (a) Classified point cloud with examples of misclassifica-
tion locations: (1) vehicles/low-vegetation; (2) shadow and different acquisition time of data;
(3) buildings/high-vegetation; (4) objects with no class representation; and (5) buildings/high-
vegetation. (b) Corresponding aerial image: R, G, and B bands visualized in RGB colors.56
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5 Conclusions

This study investigates the effect of fusing LiDAR and imagery data on the object-based clas-
sification of LiDAR point clouds acquired for urban scenes. A multispectral LiDAR point cloud
for a residential area expanded its height and three spectra with R, G, B, and NIR properties from
a previous georegistration to an aerial photo covering the same study zone. We filtered ground
points from nonground points using the progressive TIN densification approach. Then, we
applied the color-based segmentation algorithm on the LiDAR data by calculating the RD
between the points based on their R, G, B, and NIR characteristics, in addition to the geometric
3D Euclidian distance. Afterward, we computed geometric and radiometric indices from the
LiDAR’s height and three channels, besides the R, G, B, and NIR imagery spectra, respectively.
We constructed 10 different feature sets representing 10 classification scenarios, some gradually
accumulating the geo-registered LiDAR data’s spectra to the height feature. The rest of the sce-
narios accumulated the calculated geometric and radiometric indices (full space), and the last
scenario’s feature space was the PCA’s projection of the full space using the most significant
PCs. Subsequently, we collected segments for classification models’ training, validation, and
testing. Finally, we conducted a supervised object-based classification on the LiDAR point cloud
for each considered scenario using MLP neural networks, based on eight observed classes: build-
ings, vehicles, high vegetation, low vegetation, dark asphalt, light asphalt, sidewalks, and grass.
We verified the 10 classification models by two testing sets in segment and point formats, in
addition to the k-fold cross-validation.

The models’ evaluation on the validation and testing sets and the k-fold approach showed
consistent results, indicating reliable models for classifying unseen data. In general, the overall
accuracy increased with the gradual expansion of the feature spaces, from ≈80% in a single
LiDAR channel scenario to >98% in a full feature space. However, high accuracies were more
pronounced in the nonground classification (from ≈90% to >98%) than the ground classification
(from ≈61% to >97%). The reason is that the height and height-derived features were not pre-
dominant in classifying ground classes, as they insignificantly varied in height values. In contrast,
radiometric features were principal in classifying ground objects; consequently, ground accuracy
saw a peak in the dual LiDAR channel scenarios (≈85%), followed by another improvement when
the inherited aerial photo characteristics were introduced (>97%). Whereas nonground classifi-
cation also witnessed a peak by including the inherited aerial photo’s spectra but less tangibly
(>97%). The full feature space marked another peak for the nonground classification (>98%).

Some misclassifications were noticed among classes due to acquiring aerial and LiDAR data
separately and shadow and orthorectification issues with the aerial image. Vehicles, dark, and
light asphalts were the most problematic classes; nevertheless, they exceeded 90% with the
inclusion of the LiDAR and imagery data’s spectra and the full feature space.

Buildings were the best-detected class by majority scenarios, starting with a >95% accuracy
that grew with the expansion in the feature space. High vegetation and low vegetation were
captured with >80% in all scenarios, whose accuracies also rose when input features accumu-
lated. Sidewalks were big hits (>97%) in the single LiDAR channel (C3), dual LiDAR channels
(C1,C3), and the PC scenarios. The grass was a remarkable success (>99%) with the inclusion of
the LiDAR and imagery data’s spectra and the full feature space. Depending on the class accu-
racy threshold of the mapping application, C1 may be an option to identify sidewalks (≈88%)
and grass (≈81%). C2 fairly detected grass (≈78%) and light asphalt (≈66%). Likewise, C3

moderately detected grass (≈72%) and somewhat vehicles (≈64%), with the height included.
Dual and triple LiDAR channels can be alternative scenarios for targeting light asphalt (from
≈73% to ≈78%). C2, and C3 provided another somewhat vehicle detection (≈68%), with the
height included. Introducing the LiDAR and imagery data’s spectra granted outstanding overall
and per-class accuracies. However, the full feature space better solved misclassified classes, and
the projected feature space in the 10th scenario presented the highest ground classification fig-
ures. The highest accuracy achieved for vehicles and dark asphalt (>92%) was relatively low and
could be enhanced by incorporating hyperspectral features.

We produced the final map applying mixed scenarios: full and projected feature spaces for
nonground (98.74%) and ground (97.84%) classifications. The overall mapping accuracy
reached 98.43%.
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6 Appendix

Table 2 provides the confusion matrixes resulting from the segments and points validation data-
sets; Test 1 and Test 2, respectively. They show the per-class and overall accuracies of each

Table 2 Confusion matrixes (ground truth: rows; predictions: columns) of testing analysis for all
classification scenarios. (Class 1: buildings, class 2: vehicles, class 3: high vegetation, class 4: low
vegetation, class 5: dark asphalt, class 6: light asphalt, class 7: sidewalks, class 8: grass).

Scenario

Testing datasets

Test 1 Test 2

1 2 3 4 5 6 7 8

F 1-
score
(%) 1 2 3 4 5 6 7 8

F 1-
score
(%)

Scenario
1

1 1100 0 16 5

ϕ

95.16 1770 0 18 1

ϕ

95.42

2 0 32 0 63 47.76 0 45 0 83 50.00

3 80 0 204 0 80.95 146 0 347 0 80.89

4 11 7 0 304 87.61 5 7 0 376 88.68

5

ϕ

71 0 0 68 31.14

ϕ

141 0 0 230 20.66

6 191 0 0 39 0.00 794 0 0 113 0.00

7 0 0 98 9 88.29 0 0 291 24 85.09

8 55 0 17 424 81.85 59 0 78 809 76.25

Overall accuracy (%) = 79.92 Overall accuracy (%) = 70.81

Scenario
2

1 1085 0 28 8

ϕ

95.89 1735 0 47 7

ϕ

96.52

2 0 0 0 95 0.00 0 0 0 128 0.00

3 53 0 231 0 85.08 69 0 423 1 87.85

4 4 0 0 318 85.60 2 0 0 386 84.84

5

ϕ

0 115 0 24 0.00

ϕ

0 273 0 98 0.00

6 0 214 0 16 66.56 0 842 0 65 77.93

7 0 0 0 107 0.00 0 0 0 315 0.00

8 0 84 0 412 78.10 0 139 0 807 72.34

Overall accuracy (%) = 80.89 Overall accuracy (%) = 87.56

Scenario
3

1 1098 0 17 6

ϕ

96.40 1771 0 16 2

ϕ

97.23

2 0 51 0 44 64.15 0 71 0 57 63.11

3 58 0 226 0 85.77 82 1 408 2 88.99

4 1 13 0 308 90.59 1 25 0 362 89.27

5

ϕ

0 0 0 139 0.00

ϕ

0 0 0 371 0.00

6 0 0 0 230 0.00 0 0 0 907 0.00

7 2 0 103 2 98.10 1 0 311 3 98.57

8 0 0 0 496 72.78 4 0 5 937 59.23

Overall accuracy (%) = 81.68 Overall accuracy (%) = 72.33
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Table 2 (Continued).

Scenario

Testing datasets

Test 1 Test 2

1 2 3 4 5 6 7 8

F 1-
score
(%) 1 2 3 4 5 6 7 8

F 1-
score
(%)

Scenario
4

1 1091 0 26 4

ϕ

96.63 1731 0 54 4

ϕ

96.38

2 0 34 0 61 45.33 0 45 0 83 46.39

3 43 0 241 0 87.48 70 0 422 1 87.10

4 3 21 0 298 87.01 2 21 0 365 86.80

5

ϕ

2 119 0 18 2.84

ϕ

0 338 0 33 0.00

6 0 225 0 5 73.89 0 900 0 7 81.97

7 0 2 101 4 92.24 0 7 304 4 97.12

8 0 33 11 452 92.72 3 44 7 892 94.79

Overall accuracy (%) = 87.47 Overall accuracy (%) = 87.30

Scenario
5

1 1090 4 21 6

ϕ

97.41 1753 0 30 6

ϕ

97.80

2 0 44 0 51 59.06 0 63 0 65 64.62

3 23 0 261 0 92.06 42 0 451 0 92.61

4 4 6 1 311 90.14 1 4 0 383 90.97

5

ϕ

26 102 1 10 30.77

ϕ

49 306 0 16 23.06

6 2 222 0 6 76.16 2 898 0 7 84.32

7 0 4 103 0 97.63 0 5 310 0 98.73

8 2 25 0 469 95.62 3 14 3 926 97.73

Overall accuracy (%) = 90.41 Overall accuracy (%) = 90.56

Scenario
6

1 1104 0 12 5

ϕ

98.18 1770 0 18 1

ϕ

98.39

2 0 61 0 34 68.16 1 73 0 54 64.32

3 22 0 262 0 93.57 36 0 456 1 94.31

4 2 23 2 295 89.94 2 26 0 360 89.55

5

ϕ

28 103 0 8 29.47

ϕ

70 279 0 22 28.99

6 18 208 0 4 76.47 35 866 0 6 84.08

7 3 0 104 0 97.65 2 0 312 1 99.05

8 2 3 2 489 98.09 5 8 3 930 97.64

Overall accuracy (%) = 91.30 Overall accuracy (%) = 90.63
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Table 2 (Continued).

Scenario

Testing datasets

Test 1 Test 2

1 2 3 4 5 6 7 8

F 1-
score
(%) 1 2 3 4 5 6 7 8

F 1-
score
(%)

Scenario
7

1 1100 1 15 5

ϕ

97.86 1770 0 15 4

ϕ

98.44

2 4 41 0 50 58.99 2 53 0 73 57.30

3 19 0 265 0 93.97 33 0 460 0 95.04

4 4 2 0 316 91.20 2 4 0 382 90.20

5

ϕ

31 88 0 20 33.33

ϕ

50 275 0 46 22.27

6 12 212 0 6 78.81 26 872 1 8 84.41

7 1 2 101 3 97.12 0 3 311 1 99.04

8 3 6 0 487 96.25 2 9 1 934 96.54

Overall accuracy (%) = 91.37 Overall accuracy (%) = 90.54

Scenario
8

1 1108 3 6 4

ϕ

98.80 1781 0 8 0

ϕ

99.25

2 2 83 0 10 88.30 0 118 0 10 87.41

3 11 0 273 0 96.98 14 0 478 1 97.65

4 1 7 0 314 96.62 5 24 0 359 94.72

5

ϕ

129 7 0 3 90.85

ϕ

344 23 0 4 92.97

6 15 215 0 0 95.13 24 883 0 0 97.41

7 0 0 107 0 100.00 0 0 315 0 100.00

8 1 0 0 495 99.60 1 0 0 945 99.74

Overall accuracy (%) = 97.49 Overall accuracy (%) = 97.86

Scenario
9

1 1116 2 1 2

ϕ

99.55 1787 2 0 0

ϕ

99.83

2 0 87 1 7 92.55 1 117 1 9 84.78

3 5 0 278 1 98.58 0 0 491 2 99.70

4 0 4 0 318 97.85 3 29 0 356 94.30

5

ϕ

122 17 0 0 91.39

ϕ

365 4 0 2 87.74

6 5 223 2 0 94.29 92 815 0 0 94.27

7 0 3 104 0 97.65 0 3 312 0 99.52

8 1 0 0 495 99.90 4 0 0 942 99.68

Overall accuracy (%) = 98.17 Overall accuracy (%) = 97.15
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classification scenario. Both validation datasets produce comparable accuracy figures, which
reflects the consistency of the designed classification models and their reliability to predict
unseen data.

Acknowledgments

This research was funded by the Discovery Grant from the Natural Sciences and Engineering
Research Council of Canada (NSERC) (RGPIN-2015-03960), the FCE Start-up Fund of the
Hong Kong Polytechnic University (BE2U), and the Early Career Scheme (Project Number:
25213320) by the Research Grants Council of the Hong Kong Special Administrative Region.
The authors would also like to thank Dr. Ernest Ho for his contribution in proofreading the paper.

References

1. K. Krishnaveni and P. Anilkumar, “Managing urban sprawl using remote sensing and GIS,”
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-3/W11, 59–66 (2020).

2. M. Steurer and C. Bayr, “Measuring urban sprawl using land use data,” Land Use Policy 97,
104799 (2020).

Table 2 (Continued).

Scenario

Testing datasets

Test 1 Test 2

1 2 3 4 5 6 7 8

F 1-
score
(%) 1 2 3 4 5 6 7 8

F 1-
score
(%)

Scenario
10

1 1108 3 2 8

ϕ

99.02 1782 3 2 2

ϕ

99.47

2 6 77 0 12 87.01 8 110 0 10 90.16

3 2 0 281 1 98.94 1 0 491 1 99.59

4 1 2 1 318 96.22 3 3 0 382 97.57

5

ϕ

125 14 0 0 92.94

ϕ

338 31 0 2 93.89

6 5 22 0 0 95.54 11 896 0 0 97.55

7 0 0 107 0 100.00 0 2 313 0 99.68

8 0 2 0 494 99.80 0 1 0 945 99.84

Overall accuracy (%) = 97.89 Overall accuracy (%) = 98.50

Final
map

1 1116 2 1 2

ϕ

99.55 1787 2 0 0

ϕ

99.83

2 0 87 1 7 92.55 1 117 1 9 84.78

3 5 0 278 1 98.58 0 0 491 2 99.70

4 0 4 0 318 97.85 3 29 0 356 94.30

5

ϕ

125 14 0 0 92.94

ϕ

338 31 0 2 93.89

6 5 22 0 0 95.54 11 896 0 0 97.55

7 0 0 107 0 100.00 0 2 313 0 99.68

8 0 2 0 494 99.80 0 1 0 945 99.84

Overall accuracy (%) = 98.43 Overall accuracy (%) = 98.24

Megahed, Yan and Shaker: Detection of urban features by multilevel classification. . .

Journal of Applied Remote Sensing 044521-35 Oct–Dec 2021 • Vol. 15(4)

https://doi.org/10.5194/isprs-archives-XLII-3-W11-59-2020
https://doi.org/10.1016/j.landusepol.2020.104799


3. United Nations, Department of Economic and Social Affairs. Population Division, World
Urbanization Prospects – The 2018 Revision (2019).

4. M. Acuto et al., “Seeing COVID-19 through an urban lens,” Nat. Sustainability 3(12),
977–978 (2020).

5. S. D. Whitaker, “Did the COVID-19 pandemic cause an urban exodus?” Cfed District Data
Briefs (cfddb 20210205) (2021).

6. J. A. Leech et al., “It’s about time: a comparison of Canadian and American time–activity
patterns,” J. Exposure Sci. Environ. Epidemiol. 12(6), 427–432 (2002).

7. T. Peters and A. Halleran, “How our homes impact our health: using a COVID-19 informed
approach to examine urban apartment housing,” Archnet-IJAR 15, 10–27 (2020).

8. L. Guo et al., “Relevance of airborne LiDAR and multispectral image data for urban scene
classification using random forests,” ISPRS J. Photogramm. Remote Sens. 66(1), 56–66 (2011).

9. T. Long et al., “A generic framework for image rectification using multiple types of feature,”
ISPRS J. Photogramm. Remote Sens. 102, 161–171 (2015).

10. R. Huang et al., “Semantic labeling and refinement of LiDAR point clouds using deep neu-
ral network in urban areas,” ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. IV-2/
W7, 63–70 (2019).

11. A. Sen, B. Suleymanoglu, and M. Soycan, “Unsupervised extraction of urban features from
airborne LiDAR data by using self-organizing maps,” Surv. Rev. 52(371), 150–158 (2020).

12. Z. Kang, J. Yang, and R. Zhong, “A Bayesian-network-based classification method inte-
grating airborne LiDAR data with optical images,” IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 10(4), 1651–1661 (2017).

13. S. Sanlang et al., “Integrating aerial LiDAR and very-high-resolution images for urban func-
tional zone mapping,” Remote Sens. 13(13), 2573 (2021).

14. F. Rodríguez-Puerta et al., “Comparison of machine learning algorithms for wildland-urban
interface fuelbreak planning integrating ALS and UAV-borne LiDAR data and multispectral
images,” Drones 4(2), 21 (2020).

15. R. Pu and S. Landry, “Mapping urban tree species by integrating multi-seasonal high res-
olution pléiades satellite imagery with airborne LiDAR data,” Urban For. Urban Greening
53, 126675 (2020).

16. Y. Zhang and Z. Shao, “Assessing of urban vegetation biomass in combination with LiDAR
and high-resolution remote sensing images,” Int. J. Remote Sens. 42(3), 964–985 (2021).

17. Y. He et al., “Integration of InSAR and LiDAR technologies for a detailed urban subsidence
and hazard assessment in Shenzhen, China,” Remote Sens. 13(12), 2366 (2021).

18. Q. Zhan, Y. Liang, and Y. Xiao, “Color-based segmentation of point clouds,” Laser
Scanning 38(3), 155–161 (2009).

19. Y. Megahed, A. Shaker, and W. Y. Yan, “A phase-congruency-based scene abstraction
approach for 2D-3D registration of aerial optical and LiDAR images,” IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 14, 964–981 (2021).

20. A. M. Ramiya, R. R. Nidamanuri, and R. Krishnan, “Object-oriented semantic labelling of
spectral–spatial LiDAR point cloud for urban land cover classification and buildings detec-
tion,” Geocarto Int. 31(2), 121–139 (2016).

21. H. Nakawala, G. Ferrigno, and E. De Momi, “Toward a knowledge-driven context-aware
system for surgical assistance,” J. Med. Rob. Res. 2(3), 1740007 (2017).

22. G. Sanderson, “3Blue1Brown Channel,” 3Blue1Brown Channel Website, https://www
.3blue1brown.com/ (accessed 23 June 2021).

23. G. Sanderson, “Eigenvectors and eigenvalues – chapter 14: Essence of linear algebra,”
YouTube Website, https://www.youtube.com/watch?v=PFDu9oVAE-g (accessed 23 June
2021).

24. V. Spruyt, “Ageometric interpretation of the covariance matrix,”Computer Vision for Dummies
Website, https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/
(accessed 23 June 2021).

25. H. Abdullatif, “Dimensionality reduction for dummies—part 3: connect the dots,” Towards
Data ScienceWebsite, https://towardsdatascience.com/dimensionality-reduction-for-dummies-
part-3-f25729f74c0a (accessed 28 June 2021).

Megahed, Yan and Shaker: Detection of urban features by multilevel classification. . .

Journal of Applied Remote Sensing 044521-36 Oct–Dec 2021 • Vol. 15(4)

https://doi.org/10.1038/s41893-020-00620-3
https://doi.org/10.1038/sj.jea.7500244
https://doi.org/10.1016/j.isprsjprs.2010.08.007
https://doi.org/10.1016/j.isprsjprs.2015.01.015
https://doi.org/10.5194/isprs-annals-IV-2-W7-63-2019
https://doi.org/10.1080/00396265.2018.1532704
https://doi.org/10.1109/JSTARS.2016.2628775
https://doi.org/10.1109/JSTARS.2016.2628775
https://doi.org/10.3390/rs13132573
https://doi.org/10.3390/drones4020021
https://doi.org/10.1016/j.ufug.2020.126675
https://doi.org/10.1080/01431161.2020.1820618
https://doi.org/10.3390/rs13122366
https://doi.org/10.1109/JSTARS.2020.3033770
https://doi.org/10.1109/JSTARS.2020.3033770
https://doi.org/10.1080/10106049.2015.1034195
https://doi.org/10.1142/S2424905X17400074
https://www.3blue1brown.com/
https://www.3blue1brown.com/
https://www.3blue1brown.com/
https://www.youtube.com/watch?v=PFDu9oVAE-g
https://www.youtube.com/watch?v=PFDu9oVAE-g
https://www.youtube.com/watch?v=PFDu9oVAE-g
https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/
https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/
https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/
https://towardsdatascience.com/dimensionality-reduction-for-dummies-part-3-f25729f74c0a
https://towardsdatascience.com/dimensionality-reduction-for-dummies-part-3-f25729f74c0a
https://towardsdatascience.com/dimensionality-reduction-for-dummies-part-3-f25729f74c0a


26. J. Brownlee, “How to choose a feature selection method for machine learning,” Machine
Learning Mastery Website, https://machinelearningmastery.com/feature-selection-with-real-
and-categorical-data/ (accessed 14 July 2021).

27. J. Brownlee, “Introduction to dimensionality reduction for machine learning,” Machine
Learning Mastery Website, https://machinelearningmastery.com/dimensionality-reduction-
for-machine-learning/ (accessed 14 July 2021).

28. J. Brownlee, Basics of Linear Algebra for Machine Learning, Machine Learning Mastery
(2018).

29. J. Brownlee, “What is deep learning?” Machine Learning Mastery Website, https://
machinelearningmastery.com/what-is-deep-learning/ (accessed 21 July 2021).

30. J. Brownlee, Deep Learning with Python: Develop Deep Learning Models on Theano
and TensorFlow using Keras, Machine Learning Mastery (2016).

31. A. Sharma, “Understanding activation functions in deep learning,” Learn OpenCVWebsite,
https://learnopencv.com/understanding-activation-functions-in-deep-learning/ (accessed 21
July 2021).

32. K. Vu, “Activation functions and optimizers for deep learning models,” DZone Website,
https://dzone.com/articles/activation-functions-and-optimizers-for-deep-learn (accessed 21
July 2021).

33. J. Brownlee, “Difference between a batch and an epoch in a neural network,” Machine
Learning Mastery Website, https://machinelearningmastery.com/difference-between-a-batch-
and-an-epoch/ (accessed 30 October 2020).

34. Y. Megahed, W. Y. Yan, and A. Shaker, “Semi-automatic approach for optical and LiDAR
data integration using phase congruency model at multiple resolutions,” ISPRS Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. XLIII-B3-2020, 611–618 (2020).

35. Y. Megahed, A. Shaker, and W. Y. Yan, “Fusion of airborne LiDAR point clouds and
aerial images for heterogeneous land-use urban mapping,” Remote Sens. 13(4), 814
(2021).

36. LAStools, “Lasground-New,” Rapidlasso GmbH, https://rapidlasso.com/lastools/lasground
(accessed 1 October 2020).

37. P. Axelsson, “DEM generation from laser scanner data using adaptive TIN models,” ISPRS
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 33, 110–117 (2000).

38. O. Harrison, “Machine learning basics with the k-nearest neighbors algorithm,” Towards
Data Science Website, https://towardsdatascience.com/machine-learning-basics-with-the-
k-nearest-neighbors-algorithm-6a6e71d01761 (accessed 17 May 2021).

39. N. Bhatia, “Survey of nearest neighbor techniques,” arXiv:1007.0085 (2010).
40. R. F. Sproull, “Refinements to nearest-neighbor searching in k-dimensional trees,”

Algorithmica 6(1), 579–589 (1991).
41. Algokodabra, “K-D Tree: build and search for the nearest neighbor,” YouTube Website,

https://www.youtube.com/watch?v=ivdmGcZo6U8 (accessed 18 May 2021).
42. The SciPy Community, “scipy.spatial.cKDTree,” SciPy. Org Website, https://docs.scipy.org/

doc/scipy/reference/generated/scipy.spatial.cKDTree.html (accessed 18 May 2021).
43. S. Maneewongvatana and D. M. Mount, “Analysis of approximate nearest neighbor

searching with clustered point sets,” in Data Structures, Near Neighbor Searches, and
Methodology, Vol. 59, pp. 105–123 (2002).

44. ENVI – Environment for Visualizing Images, “Broadband greenness,” L3 Harris Geo-
spatial Documentation Center Website, https://www.l3harrisgeospatial.com/docs/Broadband
Greenness.html (accessed 29 June 2021).

45. P. Zhang et al., “A strategy of rapid extraction of built-up area using multi-seasonal landsat-8
thermal infrared band 10 images,” Remote Sens. 9(11), 1126 (2017).

46. M. Weinmann, B. Jutzi, and C. Mallet, “Feature relevance assessment for the semantic inter-
pretation of 3D point cloud data,” ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 5,
II-5/W2 (2013).

47. Scikit-Learn Developers, “sklearn.decomposition.PCA,” Scikit Learn Website, https://
scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html (accessed 15
July 2021).

Megahed, Yan and Shaker: Detection of urban features by multilevel classification. . .

Journal of Applied Remote Sensing 044521-37 Oct–Dec 2021 • Vol. 15(4)

https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/
https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/
https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/
https://machinelearningmastery.com/dimensionality-reduction-for-machine-learning/
https://machinelearningmastery.com/dimensionality-reduction-for-machine-learning/
https://machinelearningmastery.com/dimensionality-reduction-for-machine-learning/
https://machinelearningmastery.com/what-is-deep-learning/
https://machinelearningmastery.com/what-is-deep-learning/
https://machinelearningmastery.com/what-is-deep-learning/
https://learnopencv.com/understanding-activation-functions-in-deep-learning/
https://learnopencv.com/understanding-activation-functions-in-deep-learning/
https://dzone.com/articles/activation-functions-and-optimizers-for-deep-learn
https://dzone.com/articles/activation-functions-and-optimizers-for-deep-learn
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-611-2020
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-611-2020
https://doi.org/10.3390/rs13040814
https://rapidlasso.com/lastools/lasground
https://rapidlasso.com/lastools/lasground
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://doi.org/10.1007/BF01759061
https://www.youtube.com/watch?v=ivdmGcZo6U8
https://www.youtube.com/watch?v=ivdmGcZo6U8
https://www.youtube.com/watch?v=ivdmGcZo6U8
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html
https://www.l3harrisgeospatial.com/docs/BroadbandGreenness.html
https://www.l3harrisgeospatial.com/docs/BroadbandGreenness.html
https://www.l3harrisgeospatial.com/docs/BroadbandGreenness.html
https://www.l3harrisgeospatial.com/docs/BroadbandGreenness.html
https://www.l3harrisgeospatial.com/docs/BroadbandGreenness.html
https://doi.org/10.3390/rs9111126
https://doi.org/10.5194/isprsannals-II-5-W2-313-2013
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html


48. J. Brownlee, “Ordinal and one-hot encodings for categorical data,”Machine Learning Mastery
Website, https://machinelearningmastery.com/one-hot-encoding-for-categorical-data/ (accessed
30 October 2020).

49. Keras, “About Keras,” Keras Website, https://keras.io/about/ (accessed 22 July 2021).
50. Keras, “Adam,” Keras Website, https://keras.io/api/optimizers/adam/ (accessed 1 November

2020).
51. Keras, “Probabilistic losses,” Keras Website, https://keras.io/api/losses/probabilistic_losses/

(accessed 1 November 2020).
52. Keras, “Layer activation functions,” Keras Website, https://keras.io/api/layers/activations/

#relu-function (accessed 22 July 2021).
53. J. Brownlee, Machine Learning Mastery with Python: Understand Your Data, Create

Accurate Models, and Work Projects End-to-End, Machine Learning Mastery (2016).
54. J. Brownlee, “Why do I get different results each time in machine learning?” Machine

Learning Mastery Website, https://machinelearningmastery.com/different-results-each-time-
in-machine-learning/ (accessed 4 August 2021).

55. J. Brownlee, “How to use learning curves to diagnose machine learning model performance,”
Machine Learning Mastery Website, https://machinelearningmastery.com/learning-curves-
for-diagnosing-machine-learning-model-performance/ (accessed 21 September 2021).

56. Ontario Ministry of Natural Resources, “Greater Toronto Area (GTA) orthophotography
project 2013,” Peterborough Region, http://geo2.scholarsportal.info.ezproxy.lib.ryerson.ca
(accessed 8 October 2020).

Yasmine Megahed received her MSc degree in geospatial technologies with a major in remote
sensing from the NOVA IMS Information Management School, Lisbon, Portugal, in 2015. She
is currently working toward her PhD with the Department of Civil Engineering, Ryerson
University, Toronto, Ontario, Canada. Her research focuses on remote sensing applications,
especially digital urban mapping that integrates LiDAR and imagery data in the point cloud
classification of urban morphologies.

Wai Yeung Yan received his PhD in civil engineering from Ryerson University, Toronto, ON,
Canada, in 2012. He is currently an assistant professor with the Department of Land Surveying
and Geo-Informatics, The Hong Kong Polytechnic University, and an adjunct professor with the
Department of Civil Engineering, Ryerson University. His research interests include point cloud
processing, laser scanning, and remote sensing.

Ahmed Shaker received his PhD in satellite sensor modeling from the Department of Land
Surveying and Geo-Informatics, the Hong Kong Polytechnic University, Hong Kong, in 2004.
He is currently a professor with the Department of Civil Engineering and an associate dean of the
Faculty of Engineering and Architecture Science, Ryerson University, Toronto, Ontario, Canada.
He holds two patents and has more than 130 publications in international journals and confer-
ences. His research interests include LiDAR data processing, satellite sensor modeling, image
segmentation and classification, and 3-D modeling. He was the recipient of a number of national
and international awards. He is currently serving as the president of the Canadian Remote
Sensing Society (2020–2022).

Megahed, Yan and Shaker: Detection of urban features by multilevel classification. . .

Journal of Applied Remote Sensing 044521-38 Oct–Dec 2021 • Vol. 15(4)

https://machinelearningmastery.com/one-hot-encoding-for-categorical-data/
https://machinelearningmastery.com/one-hot-encoding-for-categorical-data/
https://keras.io/about/
https://keras.io/about/
https://keras.io/api/optimizers/adam/
https://keras.io/api/optimizers/adam/
https://keras.io/api/losses/probabilistic_losses/
https://keras.io/api/losses/probabilistic_losses/
https://keras.io/api/layers/activations/#relu-function
https://keras.io/api/layers/activations/#relu-function
https://keras.io/api/layers/activations/#relu-function
https://machinelearningmastery.com/different-results-each-time-in-machine-learning/
https://machinelearningmastery.com/different-results-each-time-in-machine-learning/
https://machinelearningmastery.com/different-results-each-time-in-machine-learning/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
http://geo2.scholarsportal.info.ezproxy.lib.ryerson.ca
http://geo2.scholarsportal.info.ezproxy.lib.ryerson.ca
http://geo2.scholarsportal.info.ezproxy.lib.ryerson.ca
http://geo2.scholarsportal.info.ezproxy.lib.ryerson.ca
http://geo2.scholarsportal.info.ezproxy.lib.ryerson.ca
http://geo2.scholarsportal.info.ezproxy.lib.ryerson.ca
http://geo2.scholarsportal.info.ezproxy.lib.ryerson.ca

