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Abstract. Hyperspectral (HS) images are highly accurate for mineral discrimination, but avail-
able areas are limited. For this reason, several methods have been proposed to extend the mineral
map of the overlap region between HS and multispectral (MS) images to the surrounding area
with no HS image. One such method, proposed by Hirai and Tonooka, discriminates minerals
using MS images by obtaining the endmembers of MS images from the positions of the end-
member pixels of HS images in the overlap region. While this method (referred to as HT method)
has the advantage of being less susceptible to the spectral distortions of HS and MS images, it
also has the problem of reduced accuracy due to misalignment between HS and MS images. We
proposed an improved HT method that reduces the effects of the above problems by incorpo-
rating a process that improves the robustness against misalignment by searching for the best MS
endmember pixel around the position of the HS endmember pixel and a process that determines
more optimum threshold value of each mineral in the spectral angle mapper method used in the
HT method. As a result of evaluation using an AVIRIS image as an HS image and a World View-
3 image as an MS image at Cuprite, Nevada, the improved method improved the overall accuracy
by 2.6% compared with the original HT method, and in the case that the HS and the MS images
were misaligned, the overall accuracy of the original method decreased by 7.0%, while the
improved method decreased by only 1.5%. These results indicate that the improved method can
perform as expected. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
International License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.15.040501]
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1 Introduction

Although multispectral (MS) images are useful for mineral discrimination by remote sensing,
some minerals may be difficult to discriminate due to limitations caused by the small number of
bands and wide band widths.1 For example, Vural et al. succeeded in detecting the distribution
areas of clay minerals in northeastern Turkey using MS images of Landsat 7 and 8, but detailed
clay mineral classification has not been achieved.2 On the other hand, hyperspectral (HS) images
provide more detailed spectral features and are useful for mineral discrimination.3–6 However,
as a trade-off for increasing the number of wavelengths, HS sensors have a narrower swath
width, such as 7.6 km for Hyperion on EO-1,7 30 km for Environmental Mapping and Analysis
Program (EnMAP)8 and PRecursore IperSpettrale della Missione Applicativa (PRISMA),9 and
20 km for Hyperspectral Imager Suite (HISUI)10 on the International Space Station. In addition,
since there are few HS sensors that have been operated so far, archived HS images are limited
compared to MS images, and there are many unobserved regions in the world. As a counter-
measure to these problems, Kruse and Perry developed a method to extend mineral maps in an
overlapped area of HS and MS to the surrounding area with an MS image and no HS image.11,12

The effectiveness of this method has been verified in the Cuprite region of Nevada, using images
in the short-wave infrared (SWIR) band from the Airborne Visible/Infrared Imaging
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Spectrometer (AVIRIS) and the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER). On the other hand, because Kruse and Perry’s method (referred to as
KP method) can degrade due to the influence of spectral distortions caused by calibration errors,
atmospheric correction errors etc., Hirai and Tonooka proposed an alternate method that clas-
sifies minerals from the MS image using MS-based endmember pixels extracted based on the
locations of endmember pixels in the HS image.13 As a result of evaluation using AVIRIS and
ASTER/SWIR images in the Cuprite region, Hirai and Tonooka’s method (referred to as HT
method) showed higher accuracy than KP method for data with spectral distortions, but the
registration error between HS and MS images caused a decrease in accuracy. Under such back-
ground, in this study, we propose an improved HT method that improves the robustness against
registration errors and also optimizes the threshold of each mineral used in the spectral angle
mapper (SAM) method14 included as a part of the HT method.

2 KP and HT Methods

Both the KP and HT methods use the analysis results of the overlapped area of MS and HS
images to discriminate minerals in the neighboring area where only MS images are available.
The KP method extracts the endmember spectrum of each mineral from the HS image in the
overlapped area and multiplies it by the spectral response function of the MS sensor to obtain the
endmember spectrum of each mineral in the MS image, while the HT method extracts the end-
member pixels of each mineral from the MS image based on the locations of the endmember
pixels derived from the HS image in the overlapped area. For spectral mismatch between MS and
HS images due to calibration error, atmospheric correction error, etc., the latter is not affected
while the former is affected and degraded.13

The following is a schematic procedure of the HT method. More details can be found
in Ref. 13.

[Step 1] Atmospheric correction and surface reflectance transformation are applied to the HS and
MS images to be used. Then, the alignment between the two images is strictly performed.

[Step 2] The endmember pixels are extracted from the HS image through the following process:
(1) the extraction of signal information and the reduction of spectral data volume by the
minimum noise fraction transformation,15 (2) the extraction of spectrally pure pixels by the
pixel purity index analysis,16 and (3) the extraction of endmember pixels by n-dimensional
visualization.16

[Step 3] The pixels of the MS image at the same position as the endmember pixels obtained
from the HS image are selected as the MS-based endmember pixels.

[Step 4] The SAMmethod is applied to the MS image, and the cosine similarity of each mineral
is calculated for each pixel by

EQ-TARGET;temp:intralink-;e001;116;283

cosine similarity ¼ cos θ ¼ P·E
jPjjEj ; (1)

where P is the spectral vector of the pixel, E is the mean spectral vector of the endmembers
of the mineral, respectively, and θ is the angle between these vectors. If it is greater than
or equal to the threshold value set for each mineral, the mineral is selected as a candidate
mineral, where the threshold value of the cosine similarity of the mineral k is set so the
distribution of the mineral k by this processing is consistent with the distribution of
the mineral k obtained from the HS image in the overlapped area.13 Then, for each pixel,
the mineral with the maximum cosine similarity among the candidate minerals is basically
selected as the mineral of the pixel, where the mineral with the second or later cosine sim-
ilarity among the candidate minerals may be selected if the consistency with the HS-based
mineral map can be improved.13

3 Improvement of the HT Method

The HT method assumes that the HS and MS images are accurately aligned, so if there is any
misalignment, an error will occur in the selection of endmember pixels in Step 3. This is not a
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major problem if the geological unit has a relatively large area, because the same minerals are
likely to be selected even if there is some misalignment. However, if the distribution range of the
target mineral is narrow or if multiple minerals are distributed in a mixed manner, minerals differ-
ent from those in the HS image may be erroneously selected as endmembers in the MS image. In
addition, in setting the threshold of the SAM method for each mineral in Step 4, the method by
which the analyst can match the distribution of the relevant mineral in the HS image with that in
the MS image depends on the experience of the analyst. As countermeasures to these issues, we
propose to apply the following two improvements to the HT method: (1) the MS-based end-
member pixels are selected not from only the position of each endmember pixel in the HS image
but also from the neighboring region of that based on the overall accuracy which can be calcu-
lated from provisional mapping results by the SAMmethod (see steps 3 and 4 below), and (2) the
optimum threshold of the SAM method is selected not manually but by automatic search based
on the overall accuracy (see steps 5 and 6 below). The following is the flow of the improved HT
method, where steps 1 and 2 are the same as the original HT method (see the previous section),
and steps 3 and after are updated.

[Step 3] For each mineral obtained in step 2, the pixel in the MS image located at the same
position as each endmember pixel in the HS image is selected as an MS-based endmember
candidate.

[Step 4] For each mineral, the individual map of only the mineral is temporally generated from
the MS image for each MS-based endmember candidate and its neighboring pixels (e.g.,
5 × 5, 7 × 7 pixels) (referred to as a candidate pixel group) using the SAM method, and the
overall accuracy is calculated by comparing with the individual mineral map of the mineral
which is extracted from the HS-based mineral map generated in step 2. As many as the
number of the HS-based endmember pixels of the mineral found in step 2 is selected
from the pixels with higher accuracy in all the candidate pixel groups of the mineral, and
the average value of the spectra of the selected ones is used as the MS-based endmember
spectrum of the mineral.

[Step 5] For each mineral, the threshold used in the SAM method is determined so the
overall accuracy of the individual map of the mineral is maximized, by the following
procedure:

(1) For all pixels in the MS image, the cosine similarity to the MS-based endmember
spectrum of the mineral is calculated.

(2)While lowering the cosine similarity threshold from the maximum value, the over-
all accuracy against the HS-based individual map of the mineral is calculated for the
MS-based individual map of the mineral derived from each threshold.

(3) The threshold that shows the maximum overall accuracy is adopted as the threshold
of the mineral. That is, the threshold Tk of mineral k is determined by

EQ-TARGET;temp:intralink-;e002;116;280Tk ¼ arg maxa≤t≤bOAkðtÞ; (2)

EQ-TARGET;temp:intralink-;e003;116;236OAkðtÞ ¼
pkðtÞ þ qkðtÞ

N
; (3)

where a and b are the min and the max of the range that a threshold t can take,
OAkðtÞ is the overall accuracy for mineral k under a threshold t; N is the total
number of MS pixels, and pkðtÞ and qkðtÞ are the numbers of the MS pixels cor-
rectly classified as mineral k and as not mineral k, respectively, under a threshold
of t.

[Step 6] For each pixel in the MS image, a mineral with a cosine similarity greater than the
threshold of that mineral is assigned. Since the thresholds are determined on a mineral-
by-mineral basis in step 5, two or more minerals may exceed each threshold. In this case,
the mineral with the larger cosine similarity is selected for the pixel.
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4 Evaluation

4.1 Test Site and Data Used

To evaluate the improved HT method, the Cuprite region in Nevada, was selected as a test site,
and the AVIRIS image (wavelength range: 1967 to 2496 nm, spatial resolution: 15.7 m) observed
on September 20, 2006, was used as the HS image, and the World View-3 (WV-3) ortho-ready
image (spectral region: shortwave infrared, spatial resolution: 7.5 m) observed on September 19,
2014, was used as the MS image. Each image was then converted to surface reflectance by
atmospheric correction using the ENVI FLAASH software. The WV-3 image was also registered
to match the spatial resolution of the AVIRIS image.

4.2 HS-Based Mineral Map

Figure 1 shows the HS-based mineral map obtained from the AVIRIS surface reflectance image
by steps 1 and 2, mapping five minerals, kaolinite, calcite, alunite, muscovite, and buddingtonite,
where the number of endmember pixels for each mineral is 7, 1, 5, 1, and 3, respectively. This
image is used as the true mineral map for evaluating the MS-based mineral maps obtained by the
original and improved HT methods.

4.3 Evaluation of the MS-Based Mineral Maps

The MS-based mineral maps obtained by the original and improved HT methods can be evalu-
ated by examining the validity of the MS-based endmember obtained, i.e., the consistency in the
overlapping area between the mineral map generated from the MS-based endmember by these
methods and the HS-based mineral map. Here, since the improved method was developed for
increase of robustness against misalignment, the methods were evaluated in two cases: (case A)
the case where the HS and MS images are accurately registered, and (case B) the case where they
are misaligned. In case B, the misalignment was given by moving the MS image one pixel to the
right and two pixels to the up.

The upper two images of Fig. 2 were obtained in case A (accurate registration) and the lower
two images were obtained in case B (misalignment), where the mineral maps by the original

Fig. 1 HS-based mineral map obtained from the AVIRIS image (blue: kaolinite; green: calcite; red:
alunite; magenta: muscovite; yellow: buddingtonite).
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Fig. 2 Mineral maps obtained by the original and the improved HT methods in cases A and B
(blue: kaolinite; green: calcite; red: alunite; magenta: muscovite; yellow: buddingtonite).

Table 1 Producer’s and user’s accuracy (%) in cases A and B for the original and the improved
HT methods (larger values are shown in bold).

Mineral Kind of accuracy

Original HT method Improved HT method

Case A Case B Case A Case B

Kaolinite Producer 33.5 27.2 28.5 29.3

User 33.6 27.1 55.7 53.5

Calcite Producer 69.7 60.4 65.5 53.3

User 69.7 60.5 74.6 66.3

Alunite Producer 69.3 72.0 76.8 73.4

User 79.8 72.5 76.6 73.7

Muscovite Producer 78.9 64.5 82.4 79.4

User 78.9 64.4 85.0 84.5

Buddingtonite Producer 35.2 28.0 40.0 24.8

User 34.9 28.2 36.5 31.3

Overall accuracy 86.3 79.3 88.9 87.4
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method are on the left and those the improved method are on the right. In the improved method,
the candidate pixel group was given as 7 × 7 pixels centering each HS-based endmember pixel.
As shown in the figure, there is a large difference in the distribution of muscovite and kaolinite
between cases A and B in the original method, while there is not much difference between cases
A and B in the improved method. Table 1 also shows the producer’s and user’s accuracies for
each mineral and the overall accuracy for each method in cases A and B. In case A, except for the
producer’s accuracy of kaolinite and calcite, the accuracy is improved by the improved method,
and the overall accuracy is improved by 2.6%. On the other hand, in case B with misalignment,
the accuracy of the original method was 7.0% lower than that of case A, but the accuracy of the
improved method was only 1.5% lower, and the overall accuracy of the improved method was
8.1% higher than that of the original method. These results show that the improved method can
discriminate minerals with higher accuracy than the original method and is robust to HS-MS
image misalignment which is a major error factor in the original method.

5 Conclusions

Although the original HT method is robust against spectral distortions, there are two issues:
(1) the accuracy decreases due to registration errors between HS and MS images, and (2) the
threshold setting for each mineral in the SAM method depends on the analyst. In this study, we
proposed an improved HT method to mitigate these effects. As a result of evaluation using
AVIRIS and World View-3/SWIR images from the Cuprite region, Nevada, it was confirmed
that the improved method has higher accuracy than the original method, and in particular, the
accuracy decrease is suppressed even when there is misalignment between HS and MS images,
concluding that the improved HT method can discriminate minerals more robustly than the origi-
nal HT method.
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