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Abstract. In general, considerable human and material resources are required for performing
a forest inventory survey. Using remote sensing technologies to save forest inventory costs has
thus become an important topic in forest inventory-related studies. Leica ADS-40 digital aerial
photographs feature advantages such as high spatial resolution, high radiometric resolution, and
a wealth of spectral information. As a result, they have been widely used to perform forest inven-
tories. We classified ADS-40 digital aerial photographs according to the complex forest land
cover types listed in the Fourth Forest Resource Survey in an effort to establish a classification
method for categorizing ADS-40 digital aerial photographs. Subsequently, we classified the
images using the knowledge-based classification method in combination with object-based
analysis techniques, decision tree classification techniques, classification parameters such as
object texture, shape, and spectral characteristics, a class-based classification method, and geo-
graphic information system mapping information. Finally, the results were compared with man-
ually interpreted aerial photographs. Images were classified using a hierarchical classification
method comprised of four classification levels (levels 1 to 4). The classification overall accuracy
(OA) of levels 1 to 4 is within a range of 64.29% to 98.50%. The final result comparisons showed
that the proposed classification method achieved an OA of 78.20% and a kappa coefficient of
0.7597. On the basis of the image classification results, classification errors occurred mostly in
images of sunlit crowns because the image values for individual trees varied. Such a variance was
caused by the crown structure and the incident angle of the sun. These errors lowered image
classification accuracy and warrant further studies. This study corroborates the high feasibility
for mapping complex forest land cover types using ADS-40 digital aerial photographs. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JRS.11.015001]
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classification.
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1 Introduction

Aerial photography technology has undergone sophisticated development in recent years. The
use of aerial photography to classify forest types, perform land cover change studies, and
monitor disaster areas for the forestry industry subsequently becomes a crucial source of forest
inventory-related information.1–6 The forest land cover situation in Taiwan is remarkably com-
plex, and mixed forest types are markedly prevalent. The artificial stereoscopic interpretation
method is generally adopted in the use of aerial photographs to determine forest types in
Taiwan; however, this method creates interpretation results that are often inconsistent. Image
classification is another method that can be employed to determine forest types. This method
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generally examines differences in image pixel values in which the results are used for subsequent
analyses. When high-resolution images are used for analyses, they provide more detailed spatial
information. However, conventional pixel value-based classification methods create excessively
large data volumes during calculations and ignore the implication of adjacent pixels, which
results in errors.7,8When performing image classifications, the use of spatial correlation can
effectively elevate classification result accuracy.7–10 In high-resolution images, because terrain
features may consist of several pixels, the characteristics of objects forming the terrain features
can be identified more easily through manual interpretation. Therefore, many studies performed
high-resolution image classifications using object-based image analysis (OBIA).11–13 OBIA pri-
marily uses image segmentation techniques to divide highly homogenous adjacent pixels of an
image into spatially correlated objects.11 Next, the unequally sized image objects are separated
into different categories. The image segmentation techniques are thus viewed as a type of clas-
sification technique that integrates spatial and spectral information.7,8,11–13 In addition, shapes of
image blocks obtained from the image segmentation process can be used to identify terrain fea-
tures, and the interpretation process is similar to a manual-like interpretation process.7 All image
blocks feature their own spectra and shapes.14 Similarly, knowledge-based systems can be used to
interpret and classify the terrain features of image blocks. By adopting hierarchical logic and add-
ing appropriate spatial characteristic-related information, classification result accuracy can be
improved1,12,13,15 and combined with some statistical models, such as classification and regression
tree (CART)16–18 and random forest.13

This study investigated the feasibility of using high-resolution digital images in forest land
cover classification. The feasibility test procedure is as follows: first, we selected ADS-40 digital
airborne multispectral photographs as the study materials. Next, we combined OBIA techniques
with a knowledge-based classification method. Finally, we performed forest land cover classi-
fication using a stratified classification method.

2 Research Area and Materials

2.1 Overview of the Research Area

The research site is located at the Da-Chia stream working cycle, Central Taiwan (longitude 120°
43′ to 121°26′; latitude 24°03′ to 24°28′). This area is under the jurisdiction of the Dongshih
Forest District Office (of the Forestry Bureau) and faces the Liwuhsi Business Area to the
East, the Luanta Business Area to the southwest, the Puli Business Area to the south,
and the Nanchuang, Taipingshan, Nan’ao, and Ta’anhsi Right Bank Business Areas to the
north (Fig. 1). The forest land cover for this site primarily includes coniferous tree, broadleaf
tree, bamboo forest, fruit tree, farmland, grassland, landslide area, wetland, roads, and bare
grounds.

2.2 Images

This study used aerial photographs taken by the Aerial Survey Office on September 21, 2008,
using a Leica ADS-40 airborne digital scanner and performed a series of orthorectification-
related image processing to create orthoimages.19 The spatial resolution of the Leica ADS-
40 ortho-images was 25 cm, providing detailed surface properties. The Leica ADS-40 airborne
digital scanner was able to simultaneously acquire information from 11 wave bands. The pan-
chromatic charge-coupled device (CCD) of the scanner contained three line scan cameras that
captured images observed by the aircraft from a forward view angle of 27 deg, a nadir view angle
of 2 deg, and a backward view angle of 14 deg. In addition, four multispectral line scan CCDs
were installed at a nadir view angle of 0 deg and a backward view angle of 16 deg to provide red,
green, and blue lights as well as capture near-infrared (NIR) light-related wave band information.
The wavelength of each light type is listed as follows: panchromatic light, 465 to 680 nm;
red light, 610 to 660 nm; green light, 535 to 585 nm; blue light, 430 to 490 nm, and NIR light,
835 to 885 nm. In addition, the images presented 14-bit radiometric resolution and excellent
signal-to-noise ratios. The multispectral band was analyzed in this study. The images were
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stored in a 16-bit format but retained their original radiometric resolutions (multispectral band =
13 bits).

2.3 Ground Truth Data and Supporting Images

Ground truth data used by the Dajia River Business Area (i.e., the sample area) are mainly com-
prised of land cover type mapping (prepared by the Taiwan Aerial Survey Office) as well as
national land cover mapping, natural vegetation mapping, and the Third Forest Resource
Survey mapping (compiled by the National Land Surveying and Mapping Center). Such reference
data were then combined with aerial photographs to determine terrain object and type, and the
ground verification was carried out between September 16, 2011, and September 17, 2011 (Fig. 2).

In addition, the digital elevation model data for the area of Taiwan were collected by the
Aerial Survey Office, Forestry Bureau. Analysis and digitization of the 3-D aerial photos resulted
in a resolution of 20 m × 20 m and files with a scale of 1∕5000.

3 Research Method

3.1 Object-Based Image Analysis Performed During the Image
Preprocessing Stage

3.1.1 Image segmentation

This study performed an image segmentation scale experiment for image terrain boundaries. The
segmentation method primarily used the discontinuity and heterogeneity observed in the spectral
responses of original images to break the images into smaller blocks. These small blocks were
then set as a basic unit in subsequent classifications for image reconstruction. To effectively
extract complete terrain features, users were required to carefully assess the image segmentation
situation and set the appropriate segmentation criteria. Likewise, the selection of a favorable
segmentation scale facilitated the extraction of desired terrain features.

This study performed image segmentation using the remote sensing software ERDAS
IMAGINE® image segmentation module and assessed the image segmentation situations using
parameter adjustments. For example, the “edge detection threshold” function was used to deter-
mine whether the edge threshold existed between two pixels; the “minimal value difference” func-
tion was used to identify the difference between an object and its surrounding objects; and the
variance factor was used to identify the extent of pixel value changes in images. The extent

Fig. 1 Image and map of the research area.
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of pixel value changes in images was assessed to determine whether it fell within the threshold and,
subsequently, ascertain whether the object block range was to be extended. The parameter settings
influenced the number of object blocks segmented. To find the optimal image segmentation scale
to objectify the images, the following segmentation parameters were used, as shown in Table 1.

Fig. 2 Ground verification photos for each land cover type with coordinates (WGS 84: x , y ).

Table 1 Segmentation parameter settings for the images.

Code

Segmentation parameters

Threshold Minimum length Minimal value difference Coefficient of variation

Segment200 200 3 200 3.5

Segment250 250 3 250 3.5

Segment260 260 3 260 3.5

Segment280 280 3 280 3.5

Segment330 330 3 330 3.5

Segment350 350 3 350 3.5

Segment370 370 3 370 3.5

Segment400 400 3 400 3.5
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3.1.2 Creating object images

After ADS-40 digital aerial photographs were segmented using segmentation scales of varying
sizes, the object image creation process began. The original four wave bands, vegetation index,
gray-level cooccurrence matrix (GLCM), and block area (i.e., areas of blocks created by
the respective segmentation scale) of the images were obtained to create the object images.
In this study, classification image-related data from 26 wave bands were obtained, as shown
in Table 2.

3.2 Training Data Assessment

In this study, aerial photographs were used to interpret and determine the training data, and land
cover mapping was used to support the interpretation process. The nine land use classes which
primarily include coniferous tree, broadleaf tree, bamboo forest, fruit tree, farmland, grassland,
landslide area, wetland, roads, and bare grounds. The training data (50 training points for each
class) were used to analyze each variable in this study.

To elevate the image classification accuracy, the training data underwent assessment in
which a transformed divergence (TD) test was performed on each type of training data. TD
indicies are shown as follows:

EQ-TARGET;temp:intralink-;e007;116;512DT
ij ¼ 2000

�
1 − Exp

�
−Dij

8

��
; (7)

EQ-TARGET;temp:intralink-;e008;116;465Dij∶
1

2
tr½ðCi − CjÞðC−1

i − C−1
j Þ� þ 1

2
tr½ðC−1

i − C−1
j Þðμi − μjÞðμi − μjÞT�; (8)

where i and j are the categories being compared; Ci is the covariance matrix of category i;
μi is the mean vector of category i; tr is the sum of the trace and diagonal lines of a matrix;
and DT

ij is the TD between categories i and j.

3.3 Image Classification

3.3.1 Classification rules

The classification method first selected terrains that possessed unique features and were highly
distinguishable. Next, terrain type was divided into different subcategories in a hierarchical
format, which effectively reduced terrain type-related confusions. Subsequently, logical classi-
fication rules were set by referring to expert interpretation knowledge, and a logical procedure
was established by making logical inferences. This simplified the complex classification process
and allowed intricate terrain features to be effectively classified.

The stratified classification method was divided into four levels: level 1 was comprised of
shaded and nonshaded areas; level 2 consisted of vegetation-covered and nonvegetation-covered
areas; level 3 incorporated high and low biomass areas; and level 4 involved terrain feature-
related classifications. The stratified classification diagram is shown in Fig. 3.

3.3.2 Knowledge-based classification

This study employed a knowledge-based classification and constructed a stratified classifica-
tion model using known classification knowledge. Next, the CART algorithm was used to
assess training data of each terrain type from which classification rules were established.
Concurrently, supporting mapping data were used to create the classification criteria.
Classification methods for levels 1 to 4 were shown in Table 3.

Level 1 classification. In level 1 classification, the researchers initially performed shadow
detection procedures to divide images into the shadow and non-shadow image areas. Shadow

Hsieh, Chen, and Chen: Applying object-based image analysis and knowledge-based classification. . .

Journal of Applied Remote Sensing 015001-7 Jan–Mar 2017 • Vol. 11(1)



detection procedures were conducted using brightness. This study defined brightness as the
mean of the R, G, B, and NIR wavebands [Eq. (1) in Table 2].

The difference between the shadow and the nonshadow areas was enhanced using the bright-
ness of the image before dividing the image into the respective shadow and nonshadow areas.
Because the brightness values for the shadow and nonshadow areas presented bimodal distri-
bution, the brightness thresholds of these areas can be determined using the bimodal histogram
splitting method. The minimum or trough value between two brightness peaks in the histogram
can be used as the threshold value to differentiate between the shadow and the nonshadow areas.

Levels 2 to 4 classification. After level 1 classification, the image was divided into the
respective shadow and nonshadow areas, and the nonshadow areas were used for the classifi-
cation of levels 2 to 4. The classification of levels 2 to 4 were performed using CART algorithm.
First, by selecting the training data of each terrain type, classification variables or wave band
image-related data were extracted. Next, the CART algorithm proposed by Breiman et al.24 was
used to establish classification rules. The CART is a technique that can be used to make clas-
sifications and predictions in the field of data mining-related research. By analyzing original
data, appropriate classification rules are established and used to make predictions for data
with an unknown outcome; the process also involves the use of single input variable functions
to construct dichotomous decision trees. Using cross validation, this study randomly distributed
data to n groups. A total of n − 1 groups were then used to build a model in which the remaining
group was selected to verify the model; the verification process continued until all groups had

Fig. 3 Stratified classification rules.

Table 3 Classification methods for different classification level.

Classification level Classification algorithm

Level 1 Brightness with bimodal histogram splitting method

Level 2 CART algorithm

Level 3 CART algorithm

Level 4 CART algorithm
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been chosen as a model verifier. The maximum difference in risk was selected as the postpruning
rule to create tree structures with minimum risk values. Next, changes in the misclassification
rate were investigated for all tree structure sizes, and models were corrected to identify the opti-
mal model size. The classification threshold values provided by decision trees can be used to set
up classification rules. In addition, supporting data or classification conditions may be added
according to the literature or expert experience to enhance image classification accuracy.

3.3.3 Classification accuracy assessment

Image classification accuracy assessment refers to the process in which the image results
obtained from the image classification process are compared with current ground truth data
to determine the classification accuracy. In this study, 633 sample location data were randomly
selected and paired with aerial photographs for verification. The verification indicators that
measured the accuracy of the classification results consisted of producer’s accuracy, omission
error, user’s accuracy, commission error (CE), overall accuracy (OA), and the kappa index.

4 Results

4.1 Image Segmentation

The selection of a favorable segmentation scale facilitates the extraction of terrain features.
Images that underwent image segmentation using the segmentation scale 200 generated a higher
number of image blocks, whereas those that underwent image segmentation using the segmen-
tation scale 400 produced a lower number of image blocks because its parameter values were
more tolerant of image pixel value changes (Table 4).

Figure 3 shows the segmented blocks of forest lands obtained using segmentation scales 200
and 400. According to the figure, the segmentation scale 200 produced more intricate images in
which each canopy crown was segmented into multiple blocks. Conversely, the segmentation
scale 400 produced more complete images in which each crown was segmented into one block;
however, many crown clusters were not segmented. Figure 4 also compared the segmentation
results of coniferous and broadleaf forests; the segmentation scale 200 oversegmented the broad-
leaf forests but favorably segmented the coniferous forests. Such a result may be caused by
coniferous trees featuring smaller crowns, which enabled the smaller segmentation scale to dis-
play superior results. By contrast, the segmentation scale 400 produced more favorable broadleaf
forest segmentation results but failed to segment a number of crowns in coniferous forests.

Concerning segmentation images of landslide areas and wetlands, the segmentation scale 400
produced more complete object blocks than the segmentation scale 200. However, the former
showed slight boundary confusions at the boundary between the landslide areas and wet lands,
whereas the latter showed no boundary confusions (Fig. 5).

Both segmentation scales 200 and 400 showed favorable terrain boundary detection results
for roads, buildings, and farmlands in which the latter produced more complete blocks (Fig. 6).
Regarding the segmentation results for farmlands, the segmentation scale 200 was able to accu-
rately detect terrain boundary between vegetation and nonvegetation farmlands but overseg-
mented farmlands that grew the same crops. Conversely, the segmentation scale 400 showed
more complete farmland segmentation blocks (Fig. 6). The completeness of the segmentation
blocks improved the accuracy of the image classification results and prevented fragmented pixels
of images from other image categories from affecting the classification accuracy.7

Table 4 Comparison between the number of segmented blocks.

Segmentation scale Number of segmented blocks

Segment200 3,381,578

Segment400 1,117,689
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Fig. 5 Boundary detection results of landslide areas and wetlands produced using segmentation
scales (a and b) 200 and (c and d) 400.

Fig. 4 Segmentation results for a coniferous forest obtained using segmentation scales (a) 200
and (b) 400; segmentation results for a broadleaf forest obtained using segmentation scales
(c) 200 and (d) 400.
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4.2 Divergence Test

To understand the image divergence situation for each terrain category, this study performed
a divergence test on the training data in which 26 wave bands of the multiscale images were
assessed. The TD value was 2000 for all terrain categories, showing that all the categories shared
an identical divergence value.

4.3 Classification Accuracy Assessment

In this study, images were classified using a hierarchical classification method comprised of four
classification levels. The OA and the kappa coefficients for each level and classification are
shown in Table 5, whereas the classification results for levels 1, 2, and 3 are shown in Fig. 7.

The classification results for vegetation-covered and nonvegetation-covered areas were
combined in Fig. 8. A total of 633 inspection areas were selected for a classification accuracy
assessment; the results showed an OA of 78.20% and an overall kappa coefficient of 0.7597.
The confusion matrix is shown in Table 6.

5 Discussion

Among vegetation types, the classification results for farmlands, fruit trees, and grasslands were
superior. Their omission rates were 1.67%, 4.92%, and 13.04%, respectively, whereas their CE
rates were 9.23%, 6.45%, and 2.44%, respectively (Table 6). The use of support mapping and
stratified classification allowed the aforementioned terrain types to achieve superior

Fig. 6 Image segmentation results for nonforest areas obtained using segmentation scales
(a) 200 and (b) 400.

Table 5 Classification results of different level classifications.

Level Classification Overall accuracy (%) Kappa coefficient

1 Shaded and nonshaded areas 98.50 0.9608

2 Vegetation-covered and nonvegetation-covered areas 96.67 0.9333

3 Woody and herbaceous species areas 95.00 0.8854

4 Herbaceous species areas 93.40 0.8639

4 Woody species areas 64.29 0.5229

4 Nonvegetation-covered areas 85.09 0.8125

4 Terrain types 78.20 0.7597
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classification accuracy. However, farmlands and grassland with herbaceous species showed
poorer classification results when the general classification model was used because they fea-
tured similar spectral reflectance values. The use of geographical data as supporting data reduces
classification errors, showing that the use of such data is a key to improving knowledge-based
classification accuracy.25,26 Therefore, this study formulated classification rules by combining
empirical knowledge and logic with support mapping using the knowledge-based system in
which the classification range for farmlands was controlled.

The classification results for coniferous trees, broadleaf trees, and bamboo forests were
inferior. Their omission rates were 40.38%, 53.33%, and 10.53%, respectively, whereas their
CE rates were 49.18%, 13.85%, and 73.44%, respectively (Table 6). Coniferous trees were

Fig. 7 Classification results for levels 1, 2, and 3.

Fig. 8 (a) Original image and (b) image classification results.
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misclassified as broadleaf trees and bamboo forests; the misclassification of coniferous trees as
bamboo forests was the most substantial. Similarly, broadleaf trees were misclassified as conif-
erous trees, bamboo forests, and fruit trees; the misclassification of broadleaf trees as bamboo
forests was the most severe. However, misclassification of fruit trees was observed less, which
was attributed to the inclusion of support mapping data. According to Fig. 9, misclassification of
broadleaf trees generally occurred in blocks with bright crowns.

In a study on the use of digital aerial photographs to detect pests and diseases in trees of
different classifications, Meddens et al.24 showed that misclassifications were prone to occur in
pixels containing bright crowns as a result of strong sunlight. Similar results were observed in
this study in which both segmentation scales 200 and 400 segmented crowns with relatively
brighter pixels into independent object blocks; misclassifications were also more likely to
occur in such blocks, confirming the effect of bright crown blocks on classification accuracy.
Figure 9 shows how the bright crown blocks of broadleaf trees were more prone to being clas-
sified as bamboo forests, which contributed to the high CE rates of bamboo forests and the high
omission rates of broadleaf trees.

For nonvegetation-covered areas, wetlands showed the highest classification accuracy,
followed by buildings, landslide areas, roads, and bare grounds. Misclassifications were effec-
tively lowered for roads and buildings because of the inclusion of support mapping, which lim-
ited the distribution range for each terrain feature and lowered the CEs between the terrain
features.

Wetlands were sometimes misclassified as landslide areas and vice versa. However, for other
terrain features, misclassifications were less observed. Reference 27 performed image classifi-
cation using an unsupervised classification method in which they found that the misclassification
of water bodies as roads (and vice versa) was frequently observed. Conversely, in this study, the
use of the knowledge-based classification in combination with classification rules established
using support mapping effectively reduced the misclassification of wetlands as roads (and vice
versa). Concerning wetlands that were misinterpreted as landslide areas, we compared the origi-
nal images of such wetlands and found that image blocks with CEs were generally comprised of
terrains with brighter image blocks. For example, CEs were mostly observed in wetlands con-
taining a water body reflecting strong sunlight. Bare grounds displayed the lowest classification
accuracy. The instances in which they were repeatedly misclassified as landslide areas or roads
may be attributed to the three land types sharing similar spectral characteristics.

The aforementioned terrain classification results showed that by adopting knowledge-based
classification rules and limiting the distribution areas for each terrain feature, the complexity of
terrain classification can be lowered and classification accuracy can be elevated.

Fig. 9 Misclassification of broadleaf trees because of crowns; (a) original image, (b) object image
obtained using segmentation scale 200, (c) object image obtained using segmentation scale 400,
and (d) image classification.
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6 Conclusion

In this study, we classified images using the knowledge-based classification method in combi-
nation with object-oriented analysis techniques, hierarchical classification rules, and decision
tree classification techniques. Subsequently, classification parameters, such as object texture,
shape, and spectral characteristics, were used to form a class-based classification method
and used together with geographic information system mapping information. The results
were then compared with manually interpreted aerial photographs. The result comparisons
showed that the above classification method achieved an OA of 78.20% and a kappa coefficient
of 0.7597. Such results indicate that using knowledge-based classification method, formulating
classification rules using geographical and system data as support mapping, and including the
concept of stratified classification, the likelihood of misclassification can be reduced and clas-
sification accuracy can be enhanced. On the basis of the image classification results, some clas-
sification errors occurred in images of sunlit crowns because the image values for individual trees
varied. Such a variance was caused by the crown structure and the incident angle of the sun.
These errors lowered image classification accuracy and warrant further studies.
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