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Abstract. The current study evaluates the application of a moderate resolution imaging spec-
troradiometer (MODIS) triangle-based method to estimate evapotranspiration (ET) in subalpine
environments. Topographic corrections and improved soil moisture representation are applied to
a previously developed net radiation (Rn) model and triangle algorithm to develop an 8-day
average ET product based solely on satellite products. We evaluate modeled Rn and MODIS
ET (MOD-ET) against ground-based values at four sites in the Sierra Nevada of northern
California and also present a comparison between two monthly distributed ET datasets [opera-
tional simplified surface energy balance (SSEBop) and MODIS MOD16]. Modeled daily Rn

results indicate a systematic underestimation (between −83 and −110 W∕m2 bias).
Consequently, Rn is bias-corrected before calculating MOD-ET. MOD-ET validation shows cor-
relations between 0.15 and 0.45 with errors between 73 and 126 W∕m2. MOD-ET and SSEBop
ET report correlations of 0.36 and 0.20, respectively, on average, compared to ground-based
monthly ET. MOD16 underestimates monthly totals, with bias values on the range of −14
to −144 W∕m2. Semiarid conditions and scale differences between the MODIS pixel and station
contribute to errors with respect to observation. Overall, MOD-ET provides reasonable ET esti-
mates and may better capture temporal dynamics in environments undergoing chronic disturb-
ance. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JRS.10.016002]
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1 Introduction

Evapotranspiration (ET) is a key variable of study within multiple disciplines, including hydrol-
ogy, meteorology, agriculture, and climate change science. ET governs the water cycling and
energy transport among the biosphere, atmosphere, and hydrosphere and contributes largely to
the prediction and estimation of regional-scale hydrologic processes, large-scale atmospheric
circulation, and global climate change.1–3 The accurate characterization of ET flux across spatial
and temporal scales is critical, especially in arid and semiarid environments where water defi-
ciency may cause economic and political stress and constraints on sustainable development.4

ET remains one of the most challenging hydrologic components to estimate as it depends on
various climatological parameters such as temperature, solar radiation, wind speed, and vapor
pressure, and also physical soil properties, land cover, and heterogeneity of the surrounding
environment.4–6 Conventional ground-based measurement techniques, such as pan estimates,
weighing lysimeters, eddy covariance systems, and the Bowen ratio system, are well-established
methods for observing energy fluxes between the land surface and atmosphere.7 However, these
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techniques are point measurements with relatively small footprints that rarely exceed 1 to
2 km.8,9 These traditional ground-based systems provide accurate estimates over constrained,
homogeneous areas, but are not capable of representing ET dynamics over large heterogeneous
areas. Alternatively, satellite remote sensing is recognized as a viable means to acquire large-
scale distributed data in a globally consistent and economically feasible manner3,10 due to its
expansive global coverage, frequent estimates, and various spatial and temporal resolutions.3,11,12

A number of models with varying complexity have been developed to estimate regional ET
by combining remote sensing observations with ancillary surface and atmospheric data. These
models include mapping ET at high resolution with internalized calibration,13 surface energy
balance algorithm for land,14,15 simplified surface energy balance (SSEB)16 and its operationally
applied byproduct SSEBop,17 and temperature–vegetation indices (Ts − VI) triangular and trap-
ezoidal methods.18–22 Due to its simplicity, the Ts − VI triangle method has been widely used as
a practical means to provide a regional parameterization of ET. The triangle approach is based on
the derivation of an evaporative fraction (EF) using primarily satellite-derived surface parameters
and limited ground-based measurements.18–22

The Ts − VI triangle method uses a triangular or trapezoidal domain created when Ts is
plotted with VI and assumes a full range of soil moisture availability and fractional vegetation
cover.4,23,24 The domain is characterized by two physical bounds: the upper dry (warm) and lower
wet (cold) edges that represent limiting cases of soil moisture and EF by varying vegetation
cover.3,4,21 The Ts − VI triangle relationship has been applied successfully in the study of
soil moisture, land use, and drought monitoring.23,25–29 Since its introduction, the triangle
method has undergone numerous modifications to derive regional ET estimates without ancillary
data.4,6,9,20,22,30 Regardless of the modification, the general approach assumes that variations in
surface temperature, from maxima to minima for a given vegetation index, are due to evaporative
cooling effects rather than elevation variations.4,19–22 Consequently, a majority of studies have
applied the triangle method over uniform topography, focusing on the effects of varying veg-
etation cover, spatial domain size, and climate.4,6,30,31

The current study investigates the robustness of the triangle methodology for application in
subalpine regions. An ET model by Kim and Hogue6 was successfully applied in southern
Arizona and consists of a combination of the triangle method developed by Jiang and
Islam20 and an improved interpolation method of the distribution of day and night land surface
temperature (LST) difference developed by Wang et al.22 The approach by Kim and Hogue6 is
novel due to its sole use of moderate resolution imaging spectroradiometer (MODIS) remote-
sensing data to estimate Rn, ground heat flux, and EF (through the Ts − NDVI spatial distribu-
tion). In the current study, we apply two variations to the framework outlined in Kim and Hogue.6

First, thermal inertia information from the MODIS sensor is corrected for terrain-induced angular
effects through the cosine method.32,33 Second, the Ts − VI triangular domain is interpreted
through a modified two-step interpolation scheme that (1) assumes nonlinearity between the
Priestley–Taylor parameter and vegetation indices and (2) assumes the Priestley–Taylor param-
eter ranges from 0 to (slope of saturated vapor pressure þ psychrometric constant) / slope of
saturated vapor pressure.34 The objectives of the current work are to test the performance of the
modified Kim and Hogue6 MODIS ET framework for its suitability in subalpine regions and
evaluate its performance relative to common distributed ET products, the MODIS-based
MOD16 (MOD16), and the operational simplified surface energy balance (SSEBop).

2 Study Area

The Sagehen Creek watershed is located 32 km north of Truckee, California on the eastern slope
of the northern Sierra Nevada (Fig. 1). The aspect, elevation, and slope in the selected area range
from 0 deg to 360 deg, 1870 to 2650 m (2125 m on average), and 0 deg to 37 deg (8.0 deg on
average), respectively (Fig. 2). Larger slopes correlate with higher elevations for all aspects, with
an overall increase in slope with elevation [Fig. 2(d)]. Most of the area (77%) is located below a
2200-m elevation, and less than 3% of area is higher than 2500 m [Fig. 2(c)]. More than 93% of
the area has a slope less than 15 deg, with sites located on and immediately surrounded by flat
terrain (slope < 6 deg) [Fig. 2(a)]. The climate is characterized by dry summers with moderate
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temperatures (3°C to 24°C) and wet winters with cooler temperatures (−8°C to 7°C).35 The most
common forms of precipitation are light to moderate snow, light rain, and occasional summer
thunderstorms. A majority of the precipitation occurs as snow (∼85%), which accounts for
512 of the 590 mm of annual average total precipitation.35 Vegetation consists largely of ever-
green forest (89%), with shrub-land scattered throughout (11%).36

Fig. 1 Sagehen Creek watershed with study site locations 1, 3, 8, and 11 marked as circles.
Elevation contours within the watershed are 100 m.

Fig. 2 Frequency of (a) slope, (b) aspect, (c) elevation, and (d) the change in slope with elevation
for north, east, south, and west aspects.
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3 Data

3.1 Ground-Based Evapotranspiration and Net Radiation

The Sagehen watershed includes weather stations that provide wind speed, short wave radiation,
air temperature, and relative humidity; here, we focus on sites 1, 3, 8, and 11 (Table 1). These
parameters are used to mathematically estimate net radiation through parameterization schemes
outlined in Brutsaert,37 and ET using the Food and Agriculture Organization (FAO) Penman–
Monteith standardization calculation of reference ET (ET0)

38 (see Appendix for details).
Reported ET0 at each site is set as the standardized crop ET for short crop, with the crop coef-
ficient designated as the grass reference value during midgrowing season.38 Reported ET0 values
at each site are scaled by a soil stress coefficient (Ks) following FAO procedures38 to estimate
actual ET (see Appendix for details). Additional measures are taken to confirm reliability by
replacing tenuous data points (magnitudes greater than antecedent and subsequent data points)
and missing data points with data points of no value. This ET is then aggregated to an 8-day
daytime average ET and a total monthly ET product.

3.2 Moderate Resolution Imaging Spectroradiometer Satellite Observations

MODIS provides unprecedented high-quality landscape to global-scale land observations,39–41

as well as information regarding vegetation and surface energy,6,42 which are critical to
the development of a remotely sensed ET model. A total of 10 variables obtained from
MODIS atmospheric and land surface products are used in the MODIS ET (MOD-ET) model
by Kim and Hogue6 and utilized in this study (Table 2). A combination of these variables is
used to estimate Rn, ground-heat flux, and EF for the development of an 8-day and monthly
ET product.

All MODIS products are acquired from the NASA Reverb ECHO site43 in the standard
hierarchical data format between June and October of 2010 to 2014. Eight-day composite
(MYD11A2) LST products have 1 km spatial resolution, which include daytime and nighttime
products used to calculate the difference between daytime and nighttime LST. Air temperature
(Ta) is back-calculated using an interpolated ratio between air temperature from MYD07 data
and surface temperature from MYD06 based on Kim and Hogue.6 Actual (blue-sky) albedo
(MCD43B3) is estimated using a solar zenith angle equal to solar noon and an optical
depth of 0.2 based on a known black-and-white sky albedo.6 Due to the optimization of enhanced
vegetation index (EVI) in improving the vegetation signal and reducing soil background influ-
ence,40 we substitute EVI in the algorithm in place of normalized difference vegetation index
(NDVI). EVI is obtained through both terra (MOD13Q1) and aqua (MYD13Q1) platforms. Each
product provides a 16-day composite dataset with a 250-m spatial resolution and phasing of
both terra and aqua generates a combined 8-day time series of vegetation indices. The highest
spatial resolution (250 m) based on MOD13Q1 and MYD13Q1 is used for the final spatial res-
olution of the proposed MOD-ET product. MODIS products with coarser resolution (1 to 5 km)
are resampled to a 250-m resolution.

Table 1 Location, elevation, number of days, n, with available ET, slope, and aspect for sites 1, 3,
8, and 11.

Site number Latitude (deg) Longitude (deg) Elevation (m)
Available ET (n)
(8-day period) Slope (deg) Aspect (deg)

Site 1 39.431 −120.240 1940 86 4.29 163.83

Site 3 39.427 −120.283 2130 48 4.29 62.58

Site 8 38.418 −120.239 2080 47 2.49 331.50

Site 11 39.435 −120.288 2110 17 5.38 143.97
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4 Methodology

The modified 8-day, 250 m MOD-ET product is evaluated for sites 1, 3, 8, and 11 between June
and October from 2010 to 2014. First, we compare Rn estimates derived from an MODIS-based
algorithm against ground-based Rn estimates. Second, we evaluate Rn bias-corrected MOD-ET
to ground-based ET to estimate potential error in our interpretation of the Ts − EVI domain.
Following the Rn bias-corrected MOD-ET analysis, we compare MOD-ET estimates with those
derived without topographic correction. Finally, we compare MOD-ET values to MOD16 and
SSEBop between June and October from 2010 to 2013.

4.1 Moderate Resolution Imaging Spectroradiometer-Based Triangle
Evapotranspiration Algorithm

4.1.1 Estimation of available radiant energy (Rn − G)

A satellite-based (MODIS) stand-alone methodology, initially developed by Kim and Hogue,44

is utilized for the estimation of Rn. The methodology builds upon previous algorithms and
equations to equate upward and downward short- and long-wave radiation under both clear
and cloudy sky conditions. The Rn model developed in Kim and Hogue44 incorporates the
Paulescu and Schlett model45 to determine instantaneous downward shortwave radiation under
clear-sky conditions. However, the current study implements Eq. (5) as suggested by Bisht and
Bras,46 along with a regional parameterization scheme from the Kim and Hogue44 methodology
that requires no regional calibration. We also substitute the cloud product from MYD08 with
the cloud product from MYD06.44

Table 2 Summary of MODIS products used in this study with relevant spatial and temporal
information.

Product name Layer Grid resolution (km) Temporal resolution

MYD03a Solar zenith angle 1 × 1 Daily (daytime)

Geolocation 1 × 1 Daily (daytime)

MYD05_L2a Water vapor 1 × 1 Daily (daytime)

MYD06_L2a Cloud fraction 5 × 5 Daily (daytime)

Cloud optical thickness 1 × 1 Daily (daytime)

Surface temperature 5 × 5 Daily (daytime)

MYD07_L2a Total ozone 5 × 5 Daily (daytime)

Air temperature 5 × 5 Daily (daytime)

Dew-point temperature 5 × 5 Daily (daytime)

MYD11_L2a Emissivity 1 × 1 Daily (daytime)

LST 1 × 1 Daily (daytime)

MOD13Q1b EVI 250 × 250 16 days

MYD13Q1a EVI 250 × 250 16 days

MCD43B3a,b Albedo 1 × 1 8 days

MYD11A1a LST 1 × 1 Daily (daytime)

MYD11A2a LST 1 × 1 8 days (daytime/nighttime)

aMODIS aqua satellite.
bMODIS terra satellite.
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The upward longwave radiation for clear sky is expressed using the Stefan–Boltzmann
equation

EQ-TARGET;temp:intralink-;e001;116;711Rl ↑clear¼ εsσT4
s ; (1)

where εs is the surface emissivity, σ is the Stephan–Boltzmann constant (5.67 ×
10−8 Wm−2 K−4), and Ts is the surface temperature (K) (MYD11).

Downward longwave radiation for a clear sky is based on a parameterization scheme by
Brutsaert47 and is estimated as

EQ-TARGET;temp:intralink-;e002;116;634Rl ↓clear¼ εaσT4
a ; (2)

where εa is the air emissivity [determined by water vapor pressure (MYD05) and air temperature]
and Ta is the interpolated air temperature (K) (MYD07).

Downward longwave radiation for cloudy pixels is estimated through a proposed method-
ology by Bisht and Bras46 and can be expressed as

EQ-TARGET;temp:intralink-;e003;116;556Rl ↓cloudy¼ εaσT4
a þ ð1 − εaÞεcσT4

c ; (3)

where Ta is interpolated air temperature, εc is cloud emissivity (MYD11), and Tc is the cloud
temperature (MYD06).

Under cloudy conditions, upward longwave radiation6 is estimated as

EQ-TARGET;temp:intralink-;e004;116;488Rl ↑cloudy¼ εsA2σT
4
s06
; (4)

where the surface temperature (Ts06) is obtained from MYD06, and surface emissivity (εsA2 ) is
obtained from MYD11A2.

Estimation of downward shortwave radiation under clear sky conditions stems from
Zillman48 and modifications by Bisht and Bras.46 This parameterization scheme uses near-
surface vapor pressure (e0) (MYD07 and MYD05) and solar zenith angle (θ) (MYD03) to
estimate downward shortwave radiation as follows:

EQ-TARGET;temp:intralink-;e005;116;383Rs ↓clear¼
S0 cos2ðθÞ

1.085 cosðθÞ þ e0½2.7þ cosðθÞ�x10−3 þ β
; (5)

where S0 is the solar constant at the top of the atmosphere (1367 W∕m2). Niemelä et al.49 and
Bisht et al.50 have shown that a β value of 0.1 corresponds to overestimation of downward
shortwave radiation and have alternatively proposed a β value of 0.2, which is used in the
current study.

Downward shortwave radiation under cloudy conditions is estimated as a linear combination
of the fluxes from clear sky and cloudy sky46 and weighted by cloud fraction, as developed by
Slingo51

EQ-TARGET;temp:intralink-;e006;116;255Rs ↓cloudy¼ Rs ↓clear
h
ð1 − NÞ þ Ne−

τ
cos θ

i
; (6)

where N is the cloud cover fraction (MYD06), τ is the cloud optical thickness (MYD06), and
θ is the solar zenith angle (MYD03).

Using Eqs. (1)–(6), we estimate an instantaneous Rn under all sky conditions using Eq. (7) as
proposed by Kim and Hogue6

EQ-TARGET;temp:intralink-;e007;116;169Rn ¼ ð1 − A0ÞRs ↓ þRl ↓ −Rl ↑; (7)

where A0 is surface albedo. Instantaneous net radiation estimates are then converted to daily
average Rn estimates [Eq. (8)] through a sinusoidal function, which assumes Rn values become
positive at sunrise and begin to decline during sunset44,50,52

EQ-TARGET;temp:intralink-;e008;116;102Rn daily ¼ Rn i

2

π sin
h�

ti−tsunrise
tsunset−tsunrise

�
π
i ; (8)
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where Rn daily and Rn i are daily and instantaneous Rn, respectively, tsunrise, and tsunset are sunrise
and sunset times obtained from the US Naval Observatory and ti is the satellite over-pass time.

Estimation of soil heat flux (G0) is achieved through a proposed methodology by
Bastiaanssen,15 which utilizes a radiometric surface temperature product, surface albedo, and
NDVI. Bastiaanssen15 computes soil heat flux empirically, by considering the effects of surface
heating, soil moisture, and intercepted solar radiation

EQ-TARGET;temp:intralink-;e009;116;663G0 ¼ Rn

�
TTM6

A0

ð0.0038A0 þ 0.0074A2
0Þð1 − 0.98EVI4Þ

�
; (9)

where TTM6 (°C) is the radiometric surface temperature, A0 is the surface albedo, and EVI is
the enhanced vegetation index (MOD13Q1 and MYD13Q1). In the current study, TTM6 is
estimated from MYD11, and albedo is estimated through the combined MODIS terra and
aqua MCD43B3.

4.1.2 Estimation of evaporative fraction

EF is the ratio of latent heat flux (LE) to available radiant energy [Eq. (10)]. We utilize a modified
methodology proposed by Kim and Hogue6 that employs the Wang et al.22 model to derive EF
through an interpolation of the Priestley–Taylor parameter (α) from a day–night temperature
difference (ΔT)—EVI trapezoidal domain. We apply a temporal variation of Ts due to a sig-
nificant bias from an MODIS LST product found in previous studies.50,53,54 EF is evaluated as

EQ-TARGET;temp:intralink-;e010;116;474EF ¼ LE

Rn − G
¼ α

Δ
Δþ γ

; (10)

where LE is representative of ET (W∕m2), Rn is the net radiation (W∕m2), G is the soil heat
flux (W∕m2), γ is the psychrometric constant (hPa/K), α is the Priestley–Taylor parameter
accounting for aerodynamic and canopy resistances, and Δ is the slope of saturated vapor
pressure at air temperature (hPa/K), which can be calculated as

EQ-TARGET;temp:intralink-;e011;116;382Δ ¼ 26297.77

ðTa − 29.65Þ2 exp

�
17.67ðTa − 273.15Þ

Ta − 29.65

�
: (11)

Due to a less than 5% difference between the use of air and surface temperatures22 and an
instability of air temperature retrieval from MYD076, acquired surface temperatures from the
MYD11 product are used to estimate Δ rather than air temperature.19,22,44 Surface temperatures
are then corrected for terrain-induced angular effects through the cosine method32,33 as follows:

EQ-TARGET;temp:intralink-;e012;116;288T ¼
�

T4
s

cos γ

�
1∕4

; (12)

where T is the corrected LST, Ts is the satellite-derived LST, and γ is the angle between the
satellite-view path and the normal to the terrain element.33 For a thermal band, the angle of
emitted radiance can be geometrically determined by

EQ-TARGET;temp:intralink-;e013;116;207 cos γ ¼ cos ω cos δþ sin ω sin δ cosðϕs − ϕÞ; (13)

where ω is the local slope angle, δ is the satellite zenith angle, φs is the satellite azimuth angle,
and φ is the aspect angle of the terrain element.

Prior to estimating EF, both dry and wet edges in the ΔT − EVI trapezoidal domain must be
determined. In the current study, the wet edge is interpreted as a constant temperature line set as
the minimum temperature difference.19,22 The warm edge of the trapezoidal space is estimated by
establishing constant intervals of EVI and finding the maximum temperature difference asso-
ciated with each interval. Assuming a linear decrease in temperature with increasing EVI,4,6,18–22

we develop a linear regression model based on the acquired maximum temperature differences
and calculate the standard deviation. Maximum temperature differences exceeding one standard
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deviation from the linear regression model are considered outliers and omitted. The new set of
maximum temperatures is used to redevelop the linear regression model to obtain the final dry
edge and subsequently the associated maximum and minimum temperature difference.

The Priestley–Taylor parameter, α [Eq. (10)] for each pixel (i) is determined using a two-step
nonlinear interpolation scheme from the Ts − EVI trapezoidal domain.34 First, the value of α
corresponding to the driest bare soil pixel (no vegetation and temperature is at a maximum)
is set to 0 (αmin ¼ 0). Next, the value of α corresponding to maximum vegetation on the
wet edge (maximum amount of vegetation and temperature is at a minimum) is set to
(Δþ γ∕Δ) ½αmax ¼ ðΔþ γ∕ΔÞ�.34 The value of α for pixel (i) is estimated by determining
αmin;i by assuming that αmin;i varies nonlinearly with EVI between αmin and αmax

34

EQ-TARGET;temp:intralink-;e014;116;616αmin;i ¼ αmax;i

�
EVIi − EVImin

EVImax − EVImin

�
2

: (14)

Having established the upper and lower bounds of α, the αi for any pixel with an EVI and ΔT is
determined by

EQ-TARGET;temp:intralink-;e015;116;547αi ¼
ΔTmax − ΔTi

ΔTmax − ΔTmin

ðαmax − αminÞ þ αmin: (15)

Finally, substituting αi from Eq. (15) into Eq. (10), we estimate EF for any pixel within
the boundary of the triangular domain as

EQ-TARGET;temp:intralink-;e016;116;478EF ¼ Δ
Δþ γ

�
ΔTmax − ΔTi

ΔTmax − ΔTmin

ðαmax − αminÞ þ αmin

�
; (16)

where ΔTmax and ΔTmin are the corresponding maximum and minimum surface temperature
differences (8-day composite) at the dry and wet edges, respectively, for a given EVI (8-day
composite). Lastly, an 8-day ET product is derived using Eq. (17), estimated Rn [Eq. (8)],
estimated soil heat flux (G0) [Eq. (9)], and EF [Eq. (16)] assuming a constant EF throughout
a day55

EQ-TARGET;temp:intralink-;e017;116;374ET ¼ EFðRn − GÞ: (17)

4.2 Operational Evapotranspiration Products

Modeled ET estimates are compared against ground-based ET to evaluate the performance of
the global MODIS ET datasets (MOD16A2 monthly)56 and SSEBop.17

4.2.1 MODIS MOD16 ET (MOD16)

Global MODIS ET datasets (MOD16A2) are obtained from the University of Montana’s
Numerical Terradynamic Simulation Group57 and are available at spatial resolution of 1 km
for the entire global vegetated land surface for 8-day, monthly, and annual time intervals.
The original MOD16 algorithm,58 based on the Penman–Monteith equation,59 has been modified
to consider both the surface energy portioning process and atmospheric drivers on ET.58,60

The algorithm uses a range of MODIS products, including land cover, albedo, leaf area index,
and EVI. Additionally, the algorithm requires daily meteorological data inputs for regional and
global ET mapping and monitoring, which are obtained from NASA’s Global Modeling and
Assimilation Office.58,60 In the current study, we use 1 km, monthly MODIS MOD16 ET data-
sets between June and October from 2010 to 2013.

4.2.2 Operational simplified surface energy balance

SSEBop is an MODIS-based ET dataset based on SSEB16 that uses model assimilated weather
datasets and MODIS thermal images to produce values for the contiguous United States at 8-day,
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monthly, and seasonal timescales.17 SSEBop introduces a new simplified parameterization to
estimate an actual ET value using predefined boundary conditions that are unique to each
pixel for the “hot” and “cold” reference conditions. ET is then estimated as a function of
LST obtained from remotely sensed data and reference ET from global weather datasets
using the SSEB approach.16,17 The original SSEB formulation is enhanced with a lapse rate
correction factor, significantly improving the influence of topography on surface temperature.17

Furthermore, Senay et al.17 address both elevation and latitude effects on surface temperature
using an LST/air temperature difference rather than exclusively surface temperature. Because the
boundary for hot and cold reference conditions are predefined for each location and period using
a simplified climatological energy balance calculation procedure,17 remotely sensed LST is the
only specification required by the user to estimate ET fractions, simplifying SSEBop simulation.
In the current study, we utilize the 1 km, monthly SSEBop ET generated between June and
October of 2010 to 2013. SSEBop ET data are acquired through the US geological survey
geo data portal.61

5 Results and Discussion

5.1 Validation of Net Radiation

We first evaluate the MOD-ET algorithm Rn values with ground-based Rn. The comparison
between daily ground-based Rn and daily MOD-ET Rn has root mean square error (RMSE)
ranging from 106 to 132 W∕m2 and correlation coefficients between 0.67 and 0.80 for all
sites (Fig. 3). There is also consistent model underestimation at each site, with bias values rang-
ing from −83 to −110 W∕m2 (Fig. 3). The observed negative biases trends are consistent with
Kim and Hogue,6 who report bias from −102 to −46 W∕m2. Kim and Hogue6 also report RMSE
between 69 and 122 W∕m2, with correlation coefficients ranging from 0.65 to 0.69. Bisht and
Bras46 report RMSE values and correlations of 41 W∕m2 and 0.88, respectively; while Tang
et al.31 report RMSE values and correlations of 57 to 84 W∕m2 and 0.34 to 0.50, respectively.

Fig. 3 Observed Rn and MODIS-derived Rn at each site (labeled in the bottom right) with corre-
lation coefficient (R), RMSE, percent bias, and bias. The dashed line represents a one-to-one
correlation, while the solid line is the linear regression of the data.
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Our results show a negative bias of ∼25% on average between the sites. Correlations are
similar or slightly better than recent studies6,31,46 and are attributed to the longer time period
in the current study. Systematic underestimation of surface Rn may stem from unsatisfactory
performance of the shortwave radiation scheme used in the study.6 Kim and Hogue6 report
between −17% and −22% bias in instantaneous shortwave radiation, with RMSE errors as
high as 226 W∕m2 when incorporating the shortwave radiation scheme. The current study
finds similar trends (not shown) when comparing daily average observed shortwave radiation
and modeled shortwave radiation, with bias values between −33 and −36 W∕m2 and RMSE
errors of 192 W∕m2 on average between the sites. Furthermore, it is important to note the sig-
nificant uncertainty that may arise from the scale differences present when comparing an MODIS
pixel to the in situ data. Several inputs, such as MYD06 and MYD07, are coarse (1 to 5 km) and
may not capture subtle terrain or canopy differences present at the tower sites, adding uncertainty
and reducing accuracy. Although there is a slight increase in RMSE at all sites, the daily Rn

estimates presented in this section are fairly similar to those reported in the literature,6,31,46

while having the added advantage of being available under all sky conditions and requiring
no ground-based observations.

5.2 Evaluation of Derived Evapotranspiration

5.2.1 MOD-ET versus ground-based observations

Evaluation of MOD-ET against ground-based estimated ET is undertaken for all four study sites
between the months of June and October for years 2010 to 2014. We derive new ET values based
on bias-corrected Rn estimates. Bias-corrected ET estimates provide a thorough analysis of the
derivation of EF from the ΔTs − EVI domain as we are unable to directly compare observed EF
to modeled EF. Lastly, we derive ET values without topographic correction (cosine method) to
determine the sensitivity of the triangle method to variations in slope, aspect, and elevation.

Bias-corrected MOD-ET estimates at sites 1, 3, and 11 show positive bias (67.0, 88.7, and
84.9 W∕m2, respectively), while site 8 reports a moderately positive bias at 15.3 W∕m2. RMSE
errors and correlations range between 73.3 and 126.0 W∕m2 and 0.15 and 0.45 between all sites,
respectively. Results from site 11 have relatively poor results that are attributed to the minimal,
17, 8-day periods of available data (84.9, 126, and 0.15 for bias, RMSE, and correlation, respec-
tively). Sites 1, 3, and 8 record 86, 48, and 47 8-day periods of available data, respectively
(Table 1). RMSE errors reported here (Fig. 4 and Table 3) are larger than those reported by
Kim and Hogue,6 with lower correlations at all sites except site 1 (Fig. 4 and Table 3).

Similar overestimation of modeled ET is reported by Kim and Hogue6 at two sites charac-
terized as having minimal soil moisture availability. However, the implementation of their
triangle method under riparian or sufficient soil water content conditions shows improved per-
formance.6 Prior to ET comparison, Kim and Hogue6 evaluated EF derived from the triangle
method against observed EF, which demonstrate that the performance of the triangle method
suffered under water-stressed conditions, leading to overestimations of EF and subsequently
ET. Tang et al.31 also note significant overestimations of EF when applying an MODIS
triangle-based ET method over two flux tower sites in southern Arizona. Additionally, Wang
et al.22 report that EF values remain nonuniform under low soil moisture content, regardless
of the vegetation uniformity.

Kim and Hogue6 report systematically underestimated Rn values and overestimated ET from
soil moisture limited sites. When comparing our originally derived MOD-ET product, which
also utilizes slightly underestimated Rn values, we find much improved bias values (27.1,
41.8, 25.2, and 31.4 W∕m2 for sites 1, 3, 8, and 11, respectively). This is likely due to the non-
linear formulation of the ΔTs − EVI space used in the current study, which has been shown to
produce lower EF estimates when compared to the linear formulation by improving moisture
availability interpretation within the ΔTs − EVI domain.34 Because estimates of EF and Rn are
independent from one another, we are able to bias correct Rn and relate errors in ET to the EF. As
previously mentioned, Rn bias-corrected MOD-ET shows moderate overestimations of ET (EF)
when applied over water-stressed regions (Fig. 4), which is similar to observations by Kim and
Hogue6 and Tang et al.31 Despite improved bias when comparing originally derived MOD-ET
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estimates to values reported in Kim and Hogue,6 Rn bias-corrected MOD-ET estimates suggest
that calculated EF from theΔTs − EVI domain under water-stressed conditions remains an issue.

MOD-ET calculated without topographic correction show minimal variation compared to
those reported using the topographic correction. All sites have a percent difference in correlation
between 1.4% and 3.7%, with correlations decreasing for all sites. Sites 1, 3, 8, and 11 report a
percent difference in RMSE of 7.2, 8.2, −4.5, and 4.8 W∕m2, respectively. Changes in bias are
also relatively small when omitting topographic correction, with sites 1, 3, and 11 reporting
an increase of 8.7 W∕m2 on average, where site 8 reports a decrease of 8.3 W∕m2. Given that
slope has a stronger influence on ET than elevation,63 minute changes in MOD-ET estimates

Fig. 4 Rn bias-corrected MOD-ET versus ground-based ET at each site. Correlation coefficient
(R), RMSE, percent bias, and bias are also presented.

Table 3 RMSE and R values for triangle-based ET from recent relevant studies.

Study Site R (unit less) RMSE (W∕m2)

Tang et al.31 Audubon Ranch 0.47 45.4

Kendall Grassland 0.68 36.8

Wang and Jia62 Average between all 14 sites 0.57 22.0

Kim and Hogue6 Kendall 0.43 33.0

Charleston 0.85 48.0

Lewis Spring 0.86 32.0

Santa Rita 0.69 45.0

MOD-ET (bias corrected) 1 0.43 88.1

3 0.22 111.0

8 0.45 73.3

11 0.15 126.0
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from topographic correction are likely associated with the relatively flat surface of the watershed.
Despite an elevation range between 1900 and 2600 m, 93% of the watershed has a slope less
than 15 deg, with sites located on and immediately surrounded by flat terrain (slope < 6 deg)
[Fig. 2(a)].

The average annual ET response to elevation and slope for different aspect angles over the
Sagehen basin is also highlighted (Fig. 5). Years 2010 to 2012 show an expected increase in
ETwith elevation, with peak values occurring between roughly 2050 and 2200 m, before steadily
decreasing at elevations greater than 2300 m [Figs. 5(a), 5(c), 5(e), and 5(g)]. Marginal vari-
ability between aspect angles is attributed to the frequency of smaller slopes [Fig. 2(a)], damp-
ening the effects aspect may have on ET estimation. However, we note ET values for the
south-facing slopes are lower than those for the north-, east-, and west-facing slopes. This trend
is most prominent between 2100 and 2300 m for years 2011 and 2013 [Figs. 5(c) and 5(g)].
South-facing slopes receive more direct sunlight, heating the surface, and possibly enhancing the
turbulent mixing of the near surface air mass. Consequently, the increase in Rn is repartitioned
into sensible heat, causing a decrease in the latent heat flux and available moisture for ET, which
is similar to Zhao and Liu63 and Gao et al.64 Specifically, Zhao and Liu63 reported ET values for
south-facing slopes are lower than north-facing slopes, while Gao et al.64 indicated that ET for
south-facing woodland and grassland sites tended to decrease with increasing elevation.

In addition to slope and slope aspect, trends in ETwith elevation may also be attributed to the
soil moisture and vegetation properties at specific elevations.6,8,19–21,26,65,66 Mean summer season
EVI with elevation trends closely follow those of ET, with lower EVI values (0.47 to 0.50) at the
lowest elevations in the basin (1880 to 2000 m) (Fig. 6). Peak EVI values (0.52 to 0.53) occur
around 2100 m (Fig. 6), coinciding with peak ET values (Fig. 5). EVI values then decrease from
∼0.50 to 0.40 from 2100 m in elevation to 2600 m (Fig. 6), similar to overall trends in
ET (Fig. 5).

Similar to our modeled Rn underestimation, bias between MOD-ET and ground-based ET
may be attributed to the discrepancy between spatial scales of the satellite imagery and surface
stations. Ground-based measurements are influenced by observation height,8 canopy structure,

Fig. 5 The ET as a function of elevation (a, c, e, and g) and slope (b, d, f, and h) for the cardinal
aspect within the Sagehen basin.
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and other local environmental factors.66,67 Therefore, it is a changing variable on both space and
time scales, while a satellite measurement with fixed pixel size is characterized as a static con-
stant (incapable of deciphering small-scale heterogeneity).62 Additional factors contributing to
observed biases include uncertainties from instrumental measurements and remote-sensing
retrievals.31

5.2.2 Distributed evapotranspiration comparison

ET estimates derived during this study are further evaluated through a comparison to global
MODIS ET datasets (MOD16A2)56 and SSEBop.17 Results show considerable underestimation
of MOD16 monthly ET across all sites, with bias values between −14.0 and −84.4 mm∕month

(Table 4 and Fig. 7) when compared to ground-based estimates. SSEBop shows slightly
improved bias, with a large range between −3.8 and −113.0 mm∕month (Table 4). Focusing
on site 1, which has the largest available ground-based ET dataset, we find that MOD-ET
overestimates monthly totals during all months (June, July, August, September, and October).
SSEBop andMOD16 produce a systematic underestimation of monthly total ET, while matching
the overall pattern of observed data (correlations of 0.39 and 0.36, respectively) (Fig. 7).
However, MOD16 monthly total estimates are considerably lower than those reported by
SSEBop and MOD-ET, with slightly improved bias at site 8 when compared to SSEBop.
Due to the unavailability of ground-based ET datasets at the subsequent sites, we cannot further
assess the degree of success of MOD-ET as compared to MOD16 and SSEBop. Despite the lack
of available ground-based ET estimates, a clear pattern in the magnitude of estimated monthly

Fig. 6 Summer season mean EVI response to elevation for years 2010 to 2013 over the Sagehen
basin.

Table 4 RMSE, correlation (R), and bias values of MOD-ET, MOD16, and SSEBop monthly total
ET products compared against observed.

Site

RMSE (mm/month) R (unit less) Bias (mm/month)

MOD-ET MOD16 SSEBop MOD-ET MOD16 SSEBop MOD-ET MOD16 SSEBop

1 87.5 93.0 51.6 0.58 0.36 0.39 73.1 −84.4 −27.6

3 158.0 81.2 64.9 0.22 0.45 0.25 136.0 −55.8 −3.8

8 42.8 152.0 127.0 0.75 0.79 0.43 2.7 −144.0 −113.0

11 199 60.6 69.8 −0.12 −0.50 −0.29 175.0 −13.9 −21.4
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total ET is presented, with MOD-ET producing the largest monthly total ET estimates, followed
in magnitude by SSEBop and MOD16.

Focusing on site 1 (as done previously), we find SSEBop and MOD-ET estimates display a
substantial improvement in overall performance compared to MOD16 estimates. The poor per-
formance of MOD16 can be attributed to both elevation and climate.60 Velpuri et al.60 report a
decrease in MOD16 ET accuracy with increasing elevation, as well as a negative bias in more
arid, steppe, and cold region climates. Velpuri et al.60 also demonstrate that SSEBop does not
decrease in accuracy with increasing elevation, which is attributed to the enhanced algorithm by
Senay et al.17 Velpuri et al.60 also note better agreement in SSEBop over climate zones covering
most of the western United States. Trends seen in Velpuri et al.60 are similar to those observed in
our MOD-ET, with similar topography, vegetation, and relative climate at the high elevation sites
making for a reasonable comparison.

6 Summary and Conclusions

The current work investigates the robustness of a stand-alone MODIS-based ET product for all
sky conditions, with a focus on a subalpine basin. The evaluated method provides a simple and
direct estimate of ET, without the need for ground-based meteorological data and shows the
potential for monitoring ET in regions where little to no gauged data exists. The approach
is tested at four sites (sites 1, 3, 8, and 11) within the Sagehen Creek watershed in the northern
Sierra Nevada.

The Rn model used in this study systematically underestimates net radiation at all sites, with
bias values ranging from −83 to −110 W∕m2. Similar trends are reported by Kim and Hogue6

and may be the result of a shortwave radiation scheme used in the current algorithm.
Originally derived MOD-ET 8-day estimates show relatively strong correlation and minimal

bias at all sites when compared to ground-based measurements. Improved bias under increased
water stress is likely attributed to a nonlinear decomposition,56 allowing for a better represen-
tation of available soil moisture. Net radiation bias-corrected 8-day ET estimates are slightly
overestimated at all sites with bias values between 15 and 89 W∕m2. Despite improved bias

Fig. 7 Monthly total ET estimate comparisons between SSEBop, MOD16, and the developed
MOD-ET against ground-based ET.
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when comparing originally derived MOD-ET estimates, the Rn bias-corrected MOD-ET esti-
mates suggest that estimating EF from the ΔTs − EVI domain under water-stressed conditions
remains an unresolved issue. This is attributed to the influence of the deeper root zone soil
moisture on total ET in regions experiencing increased water stress. Although improved through
a nonlinear decomposition, including a certain degree of water stress, the triangular relationship
between LST and EVI still may not be able to correctly represent this deeper soil moisture
available to plants.

Comparisons between topographically corrected MOD-ETand nontopographically corrected
MOD-ET led to small variations in ET estimates. Reported changes in RMSE and bias from
topographically corrected to nontopographically corrected ET estimates are 2.5 and 4.5 W∕m2,
respectively, on average between the sites. Minor differences are associated with the relatively
flat surface of the area directly surrounding all four sites (slope < 6 deg).

Additional uncertainty may result from the obvious scale differences between the MODIS-
based value and the ground-based station. Heterogeneity within the MODIS pixel contributes to
the error in ET due to the scale differences between the satellite and surface point measurement.

MOD16 ET significantly underestimates monthly totals, with bias values ranging from −13.9
to −144.0 W∕m2. Underestimation by MOD16 is likely attributed to the models decreasing
accuracy in ET approximation with increasing elevation and reported negative bias in arid,
steppe, and cold arid regions.53 However, comparisons made between the MOD-ET product
and the SSEBop ET product with observed monthly total ET estimates show slightly improved
results, with correlations between 0.58 and 0.39 for site 1, respectively.

Overall, the proposed MOD-ET model performs relatively well and results correspond with
past studies and the current SSEBop model. Independence from ancillary data and near real-time
applicability makes the MOD-ET suitable for monitoring ET in regions where little or no gauged
data exists. We note that there are still significant challenges present in the estimation of actual
ET in water-stressed type environments with complex topography and vegetative/soil moisture
heterogeneity. However, the products utilized in the MOD-ET algorithm have the ability to
reflect spatial and temporal dynamics from climate and land surface alteration. For example,
the Sagehen Creek Experimental Forest is currently undergoing extensive forest thinning activ-
ities to reduce natural vegetation build-up and restore a healthy wildfire regime. Such activities
will alter the land cover and ET dynamics. The ability to incorporate this MOD-ET product may
enhance future hydrologic studies in this and other forested regions undergoing acute land use
change.

Appendix: Derivation of Ground-Based Net Radiation and ET
Ground-based net radiation is estimated according to

EQ-TARGET;temp:intralink-;e018;116;289Rn ¼ Rsð1 − A0Þ þ εsRl ↓ −Rl ↑; (18)

where Rs is the shortwave radiation (provided at the site) (W∕m2), A0 is the albedo of the surface
(unitless), εs is the surface emissivity (unitless), and Rl ↓ and Rl ↑ are downward and upward
longwave radiation (W∕m2), respectively. A0 and εs are approximated as 0.25 and 0.97, respec-
tively, after considering the vegetative properties at each site and comparing to corresponding
natural surfaces as reported by Brutsaert.37 Rl ↑ is estimated according to the Stefan–Boltzmann
equation as

EQ-TARGET;temp:intralink-;e019;116;186Rl ↑clear¼ εsσT4
s ; (19)

where σ is the Stephan–Boltzmann constant (5.67 × 10−8 Wm−2 K−4), and Ts is the LST (K).
Rl ↓ for all sky conditions is approximated by first calculating Rl ↓ under clear sky conditions
[Eq. (20)]

EQ-TARGET;temp:intralink-;e020;116;118Rl ↓clear¼ εacσT4
a ; (20)

where εac is defined as the atmospheric emissivity under clear skies and can be written as
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EQ-TARGET;temp:intralink-;e021;116;735εac ¼ a

�
ea
Ta

�
b

; (21)

where ea is the vapor pressure of air (hPa), and a and b are constants derived to be 1.24 and 1∕7
under average conditions that represent a standard atmosphere.68–70 Rl ↓ for all sky conditions is
then estimated by

EQ-TARGET;temp:intralink-;e022;116;664Rl ↓ ¼ Rl ↓clear ð1þ a1fb1c Þ; (22)

where fc is the fractional cloudiness and a1 and b1 are 0.0496 and 2.45, respectively, derived
from Sugita and Brutsaert.71

The standardized FAO Penman–Monteith ET equation is intended to simplify and clarify
the presentation and application of the method and is expressed as

EQ-TARGET;temp:intralink-;e023;116;584ET0 ¼
0.408ΔðRn − GÞ þ γ Cn

Tþ273
u2ðes − eaÞ

Δþ γð1þ Cdu2Þ
; (23)

where ET0 is the reference ET (mmd−1), Rn is the calculated net radiation at the crop surface
(MJm−2 d−1), G is the soil heat flux density at the soil surface (MJm−2 d−1), T is the mean daily
or hourly air temperature (°C), u2 is the mean daily wind speed at 2 m height (ms−1), es is the
saturation vapor pressure (kPa), ea is the mean actual vapor pressure (kPa), Δ is the slope of
the saturation vapor pressure–temperature curve (kPa°C−1), γ is the psychrometric constant
(kPa°C−1), Cn is the numerator constant that changes with reference type and calculation
time step (Kmms3 Mg−1 d−1), and Cd is the denominator constant that changes with reference
type and calculation time step (sm−1). The 0.408 coefficient has units of m2 mmMJ−1. The
reference surface used in the estimation of ET is expressed as a short crop (similar to clipped
grass).

Actual ET, denoted by ETact, is calculated as

EQ-TARGET;temp:intralink-;e024;116;405ETact ¼ KsKcET0; (24)

where Ks is the soil stress coefficient (0 to 1.0), Kc is the crop coefficient (determined to be
1.0),38 and ET0 is the reference ET reported at each site. Ks is given by

EQ-TARGET;temp:intralink-;e025;116;350Ks ¼
TAW −Dr

TAW − RAW
; (25)

where TAW is the total available soil water in the root zone (mm), RAW is the readily available
soil water in the root zone (mm), and Dr is root zone depletion (mm). The total available
water is estimated as the difference between water content at field capacity and wilting point,38

and is expressed as

EQ-TARGET;temp:intralink-;e026;116;260TAW ¼ 1000ðθfc − θwpÞzr; (26)

where zr is the maximum rooting depth (m). Readily available water of the root zone is estimated
as

EQ-TARGET;temp:intralink-;e027;116;204RAW ¼ pðTAWÞ; (27)

where p is the fraction of TAW that a crop can extract from the root zone without experiencing
stress.38 Following FAO-56 procedures, p is estimated as 0.49, while zr, θfc, and θwp are deter-
mined to be 2.0 m,72–74 0.33,75 and 0.13,75 respectively. Following the calculations of TAW and
RAW, root zone depletion is estimated as

EQ-TARGET;temp:intralink-;e028;116;125Dr ¼ 1000ðθfc − θiÞzr; (28)

where θi is the average soil water content in the active rooting depth for a given day. Daily
average soil water content estimates at each site (depth of 40 to 100 cm) are acquired through
the national land data assimilation model (NOAH) output. If the root zone depletion for a given
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day is less than or equal to RAW, Ks is equal to 1.0 and no stress is induced on the plant. When
root zone depletion is greater than RAW, Ks varies from 0 to 1 and is used to scale reported
reference ET to actual ET under water-stressed conditions. Additional information pertaining to
the FAO-56 procedure can be found in Allen et al.38
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