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Abstract. Line-edge roughness (LER) has important impacts on the quality of semiconductor device perfor-
mance, and power spectrum estimates are useful tools in characterizing it. These estimates are often obtained
by taking measurements of many lines and averaging a classical power spectrum estimate from each one. While
this approach reduces the uncertainty of the estimates, there are disadvantages to the collection of many mea-
surements. We propose techniques with widespread application in other fields that simultaneously reduce data
requirements and the uncertainty of LER power spectrum estimates over current approaches at the price of
computational complexity. Multitaper spectral analysis uses an orthogonal collection of data windowing functions
or tapers to obtain a set of approximately statistically independent spectrum estimates. The Welch overlapped
segment averaging is an earlier approach to reduce the uncertainty of power spectrum estimates. There are
known techniques to evaluate the uncertainty of power spectrum estimates. We simulate random rough
lines using the Thorsos method. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.16.3.034001]
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1 Introduction

Line-edge roughness (LER) is known to be a crucial factor in
the yield of integrated circuit manufacturing (see, e.g.,
Ref. 1, pp. 82-92) and has been analyzed as part of the
study of emerging patterning processes and techniques.>’
For example, in extreme ultraviolet lithography, the LER
resulting from photon shot noise and resist chemistry
remains a concern for the use of this technology in high-vol-
ume manufacturing despite the ongoing development of res-
olution enhancement techniques.” The critical-dimension
scanning electron microscope (CD-SEM) is the standard
metrology tool to obtain measurements for LER analysis
(Ref. 4, pp. 109, 114), but it is also possible to use criti-
cal-dimension atomic force microscopes (CD-AFM) for
this purpose (Ref. 4, p. 130). The standard deviation of
sampled edge positions of a line does not completely
describe its LER.” The power spectrum is an important
and more detailed LER characterization metric,®” which is
related to transistor performance®® and is used in process
monitoring.” However, it can be challenging to estimate
the power spectrum of LER. First, the power spectrum esti-
mates of LER are based on a finite number of sampled edge
positions and they, therefore, suffer from a phenomenon
called leakage where the spectral component at one fre-
quency produces a spreading to other frequencies.'”
References 11-13 have discussed the need to use data win-
dowing functions or tapers' to reduce the spectral leakage of
LER spectrum estimates. Second, there is consensus in
recent papers’!>!5718 that it is necessary to reduce variance,
i.e., the uncertainty of LER power spectrum estimates; in the
newest of these papers,'®'® the authors additionally defined
and considered different scenarios in the low-, middle-, and
high-frequency regions.
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The classical approach of LER power spectrum estima-
tion is based on the periodogram,'®'* which is conceptually
and computationally simple. However, the price for this sim-
plicity is the relatively high uncertainty that can grow when
the image noise increases. It is possible to reduce image
noise by increasing the dose of CD-SEM or using CD-
AFM, and one could decrease the power spectrum estimation
uncertainty by averaging power spectrum estimates over
many lines."”>!” However, these techniques may not be effi-
cient because CD-SEM may cause sample damage as the
dose level increases (see, e.g., Ref. 19 and Ref. 4, p. 42)
and because CD-AFM is slow and has other disadvantages
that affect measurement.*'” We will consider two approaches
from the more recent literature on spectral analysis, and we
will evaluate their abilities to reduce the power spectrum esti-
mation uncertainty given less measured data.

The remainder of the paper is organized as follows: in
Sec. 2, we will discuss the Welch overlapped segment aver-
aging (WOSA) spectrum estimate.”’ In Sec. 3, we will touch
upon multitaper spectral analysis.'®?!?? In Sec. 4, we will
write about our results on simulated random rough lines,
and in the last section, we will offer concluding remarks.

2 Welch Overlapped Segment Averaging Spectrum
Estimates

The power spectrum estimate of a random rough line is a
random process, where the component at each frequency
is a random variable. The bias of a power spectrum estimate
refers to the difference between the mean values of these ran-
dom variables and the true values of the power spectrum.
Power spectrum estimates are most valuable when these ran-
dom variables have low variance and low bias. The Bartlett
method® is widely used to reduce variance in periodogram
estimation by dividing the data samples into M disjoint
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segments of equal length and choosing the spectrum estimate
to be the average of the periodograms associated with the M
segments. In the LER literature, Ref. 15 suggests using a
resampling method to reduce statistical noise, where
assembled long lines based on random subsets of the avail-
able data are generated for power spectrum estimation. The
modified periodogram'® has been recently introduced in the
LER literature''~" to reduce the bias due to leakage. The
WOSA spectrum estimate”” is based on the modified perio-
dogram and extends the Bartlett method to reduce both the
bias and the variance in power spectrum estimation.
Suppose we sample a rough edge at N points with dis-
tance A between successive points. Let wy, k € {0,1,...,
N — 1} denote the values of the sampled edge positions
and let w be the mean of the edge positions. The sequence
of real constants i, k € {0,1,...,N — 1}, is called a data
taper or window. The modified periodogram is defined as

2

N-1
Smodifiea (f) = A th(wk — ) 2af Ak n
k=0

We require {/;} be a normalized taper with

=
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for asymptotically unbiased power spectrum estimation.
When A, = ﬁ for all k, the window is called “rectangular”

and Eq. (1) describes the periodogram. Let S(f),
|f] <1/(2A), denote the true power spectrum of interest,
and let H(f) = A|Y Y-} hye /2%, The mean of the
modified periodogram estimator is'”

n /(24)
ElSpoariea(f)] = / LZZ H(f - F)S(F)df. 3)

The convolution in Eq. (3) shows a potential bias called
leakage, where the power at one frequency can spread to the
others. This bias appears when a finite-sized sampling win-
dow is used for estimating the power spectrum of a process
with a relatively high dynamic range and is reduced by a
modified periodogram using a nonrectangular taper with a
large central lobe, such as the Welch window.!"3 The
k’th element in the (unnormalized) Welch taper with size
N is defined by

2
y(k,N)zl—(%—l), ke{ol,.. N—1}. @&

We normalize tapers when use them in power spectrum
estimates.

The WOSA method divides the data samples into over-
lapping segments and uses the average of the modified perio-
dograms associated with these segments. The nonrectangular
windows reduce the bias due to spectrum leakage but place
less weights on the end samples in each individual segment.
The overlapping segments compensate for this effect and
preserve the autocovariance information between adjacent
segments,'® and therefore, reduce the variance in power spec-
trum estimation. The WOSA spectrum estimation has a
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hardware implementation’* and is thus potentially useful
for in-line metrology.

To describe the WOSA spectrum estimate, we introduce
some additional notation in Fig. 1. The T segments each have
Neg points and share a fraction r of their data points with
the next segment, which leads to an “offset” of D = N, X
(1 = r) points between neighboring segments. The number
of overlapping segments 7 used in WOSA is

T—=— % (5)

It is desirable to have more segments to reduce the
variance in power spectrum estimation for a fixed N.
Thus, Ny, should be chosen according to the lowest fre-
quency resolution that can be tolerated. The parameter r
is generally set to 50% to achieve nearly maximum variance
reduction. There is a more recent variation of WOSA that
permits the circular overlap of segments.”> Using the circu-
larly overlapped segments can increases T to 77, where T” is
defined as

;L N
d _Nsegx(l—r)' ©

For WOSA, the elements of the #’th segment are
Wk+D><(r—l) and k € {0,1, . ’Nseg bl 1} Let

9 = y(k,Nyg) k€ {0,1,... Ny = 1}, 1€ {1,2,..., T},

g(t)
G S— (7)
Nog=1| (1)]2
k=0 |9x’
® ®
Segment 1
Segment 2
b *
Nseg D Segment T !
Segment 7~ (continue) Segment 7”
Nseg -D D
seg N

Fig. 1 T overlapped segments for WOSA and T’ segments for
WOSA via circular segments with offset D and segment size Ngeq.
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Then, the WOSA power spectrum estimate is

Nep—1 2
¢ P

Z hgc)[waer(t—l) _W]e i2nf Ak

k=0

A 1
Swosa (f) = ?ZA

T
1
®)

For the WOSA variant with circular overlap, the elements

of the #’th segment are Wi px(;-1)jmoa - Thus, the first 7' seg-
ments are the same as those in WOSA. For ¢ > T suppose
that the first v, points come from the end of the line and the
remaining N, — v, points come from the beginning of the
line; here v, = N — {[D X (r — 1)]Jmod N'}. The tapers used
for circular WOSA are

y(k’ 1Vseg)7
gl(cr) = q y(k,v,),
y(k — U Nseg - Ut>’

g
hy = R ©)

Z seg |2
K= k’
and the overall spectrum estimate is

S circular (f )
1

0<k<Ngp1<t<T
0<k<wv,t>T
v, Sk<Ngg,t >T

\LH 2
=\ ,—i2rfAk
Wik+Dx(1—1)Jmod N — w)e f

=1
(10)

3 Multitaper Spectrum Estimation

Multitaper methods?! are among the great advances in spec-
trum estimation. Multitaper methods have low uncertainty
and are resistant to spectral leakage since they recover the
information lost by single nonrectangular taper estimators
through the use of a group of orthogonal tapers. As discussed
in Ref. 10, multitaper methods work for various types of
power spectra. They have widespread applications including
neuroscience,”® climate studies,”’ nuclear test-ban treaty
verification,”® and cognitive radio.”” Multitaper spectral
analysis uses an orthogonal collection of tapers on a finite
sample of data to obtain a set of approximately statistically
independent spectrum estimates. The overall spectrum esti-
mate is either an average or a weighted average of the indi-
vidual estimates. To provide more details about the earliest
version of this technique, we introduce the following nota-
t10n Suppose we have the T orthogonal normalized tapers
n) ke{0.1,....N=1}.t€{12,....T}. The basic esti-
mator takes the arithmetic mean of the spectrum estimates
associated with these tapers.

2
_ W)e_i2”fAk . (1])

=

ZT:A ) (w

t=1 0

i

N multilaper

>~
Il

To complete the specification of this estimate, we need to
discuss the choice and number of orthogonal tapers.

Observe that the multitaper method is potentially useful
for LER power spectrum estimation because it has some sim-
ilarity to taking the average of modified periodogram spec-
trum estimates from a group of lines. The technique of
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applying a group of orthogonal leakage-resistant tapers to
a single line resembles the technique of applying a single-
leakage resistant taper to a group of lines. Thus, the multi-
taper method may be able to reduce the uncertainty and leak-
age in LER spectrum estimation with a smaller group
of lines.

There have been multiple classes of orthogonal tapers
considered in the llterature (see, e.g., Ref. 30). In his seminal
paper, Thomson®! chose to use discrete prolate spheroidal
sequences (DPSS), and we will begin by following his exam-
ple. These orthogonal tapers continue to be popular because
they are resistant to spectral leakage. They are also known as
Slepian sequences because Slepian®!' observed that they are
the solution to the following famous time-frequency concen-
tration problem:' given a sampling frequency 1/A and an
“effective” bandwidth W < 1/(2A), find the sequence
ho, hy, ..., hy_y with Fourier transform H(f) defined over
a continuous frequency domain |f]| < 1/(2A) that maxi-
mizes A given as

% IHPr
s lfﬁz |H(f)[2df

12)

The first Slepian sequence corresponds to the largest A.
The second Slepian sequence maximizes A among sequences
orthogonal to the first Slepian sequence, and one can
similarly construct an arbitrarily large set of Slepian
sequences.”’*! There are many existing implementations
for the construction of Slepian sequences. We use the R
package multitaper 1.0-12 for Slepian sequence calculation
that is based on a tridiagonal function method'® and
LAPACK function calls.*?

The spectral leakage associated with using {%;} as a nor-
malized taper for data sequence {w;} can be studied based
on Eq. (12). As we discussed in Sec. 2, a taper with good
leakage resistance should have a large central lobe within
|| < W.'" The first few Slepian sequences have good leak-
age resistance because they concentrate nearly all of the
energy of H(f) in the region |f| < W. How many orthogonal
tapers can we select? The first few Slepian sequences
obtained by optimizing Eq. (12) are known to have A
close to one, and they therefore offer good spectral leakage
protection. The higher-order Slepian sequences may not help
with spectral leakage. In practice, the number T of orthogo-
nal tapers satisfies 7 <2 NW.2!

Thomson®! also proposed a generalization of Eq. (11).
The wuse of frequency-dependent weights d,(f),
t=1,2,...,T can reduce the bias from spectral leakage if

the weights {d,(f)} are set to be close to 1 in the region
where the spectrum is flat and are set to reduce the contri-
bution from the higher-order tapers in the region where the
spectrum has a large slope. The multitaper spectrum estimate
with the weights {d,(f)} is given as

A

N multitaper (f )

]|d |2Z|d |2A

N-1 2
ht )izl Ak

k=0
(13)

Riedel and Sidorenko®® proposed using the sinusoidal
tapers for an alternate multitaper spectrum estimate. This
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approach is interesting because the tapers have an analytic
expression and because they approximate the solution to
an optimization problem discussed by Papoulis®® related
to the bias error of a taper estimate as N — oo;. The #'th
sinusoidal taper has the following expression:

" 2 . ﬂl(k+1)
hy, 1/N+lsm[ N+l | (14)

One can again consider spectrum estimates based on an
average or a weighted average of the individual single-
tapered estimates.

The performance of Slepian sequences for this latter opti-
mization problem on “local bias” depends on the choice of
the effective bandwidth W. Increasing W generally increases
the local bias but tends to reduce the variance from random
errors since one can use more orthogonal tapers with 4 value
close to one.

4 Simulations

For our simulations we consider the periodogram, the modi-
fied periodogram using the Welch window, the original
WOSA method with the Welch window and the variant
with circular overlap® with the Welch window, Thomson’s
multitaper method using DPSS tapers with and without
adaptive weights, and sinusoidal tapers without adaptive
weights.

To study the performance of different spectrum estima-
tors, we simulate random rough lines using the Thorsos
method.*** We consider the K-correlation model or the

Palasantzas power spectral density model*®
T 0.5 262
psp(f) — V@£ 05), o (15)
[(«) 1+ (2rf&)*]t0

where o represents LER, ¢ is the correlation length, and « is
the roughness (or Hurst) exponent. We follow Ref. 7 in
choosing ¢ = 1.5 nm, £ =25 nm, and a = 0.75, which
are typical values observed in the experimental measure-
ments. We generate 4096 or 20,480 edge positions for
each line with the sampling distance A = 1 nm and zero
mean position w. To incorporate some of the effects of leak-
age and SEM noise in our simulation, we use the middle
2048 edge positions for each line. These positions are
then corrupted by additive white Gaussian noise.'"*’=*° To
evaluate the performance of LER power spectrum estima-
tion, we consider confidence intervals, i.e., error bars, rela-
tive bias [see Eq. (18)], and spectrum concentration [see
Eq. (12)]. We consider error bars to be the most important
among these metrics for the application of LER metrology
because it is related to random error. One generally can
only analyze a relatively small number of lines where ran-
dom errors are significant. For error bars and relative bias,
we offer average results over all frequencies with
Onoise = 0 nm. For error bars, we also offer results under
four other noise levels 6,4 € {0.5,1.0,1.5,2.0} nm and
for three frequency regions specified in a recent paper by
Levi et al.,'” which defines the low-frequency region as
all frequencies below 1/200 nm~!, the middle-frequency

1/20 nm™'. For spectrum concentration, we offer results
for the rectangular, Welch, DPSS, and sinusoidal tapers.

The spectrum estimate of a random rough line can be
treated as a random process. For example, the periodogram
or modified periodogram at each frequency f follows a y?
distribution for rough lines that follow a normal distribution,
and this is a common approximation for the other spectrum
estimates that we consider. We choose error bars based on an
estimate of the 95% confidence interval at each frequency
point."”* The lower bound Cli.(f) and upper bound
Clypper(f) of the 95% confidence interval can be estimated
by

_uS(f)
CIlower (f) - )(%_0,()25 (I/) ’ (16)
S(f
Clypper () = X—g 02(5 (i) : (17)

where v denotes the appropriate degrees of freedom (d.o.f.)
for the y? distribution. For power spectrum estimates
obtained by averaging the periodograms or modified perio-
dograms corresponding to M rough lines it is known that

Table 1 Power spectrum estimates when op4se = 0.5 nm. The
parameters of the Palasantzas model are LER =1.5nm,
correlation length = 25 nm, and roughness exponent = 0.75.” Each
confidence interval is computed in terms of a »? distribution as dis-
cussed in Ref. 13. The d.o.f. are reported within the table.

Average width Average width

No. of of confidence of confidence
lines per  Coverage interval Coverage interval
estimate rate /d.o.f.  (nm®)/d.of. rate /d.of. (nm3)/d.o.f.

Periodogram (left) and modified periodogram with single Welch
taper (right)

26 0.9489/52 2.12/52 0.9499/52 2.12/52

Multisegment: classical WOSA with three segments per line

14 0.9320/84 1.66/84 0.9743/56 2.09/56

Multisegment: circular WOSA with four segments per line

14 0.9142/112 1.43/112 0.9697/70 1.84/70

Multisegment: classical WOSA with three segments per line

26 0.9315/156 1.20/156 0.9742/104 1.49/104

Multisegment: circular WOSA with four segments per line

26 0.9126/208 1.03/208 0.9693/130 1.32/130

Multitaper: six DPSS tapers per line and adaptive weights
14 0.9493/168 1.12/168

0.9689/138 1.24/138

Multitaper: six sinusoidal tapers per line and nonadaptive weights

region as all frequencies between 1/200 and 1/20 nm™! 14 0.9490/168 1.12/168 0.9687/138 1.24/138
and the high-frequency region as all frequencies above
J. Micro/Nanolith. MEMS MOEMS 034001-4 Jul-Sep 2017 « Vol. 16(3)
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v~ 2M. For power spectrum estimates determined by aver-
aging M classical WOSA method estimates or M circular
WOSA method estimates with 7' segments per line or by
averaging M multitaper estimates with T tapers per line, it
is known that v <2MT. It is of interest to determine the
empirical fraction of instances where a true power spectrum
value S(f) falls into the estimated confidence interval
[Cligwer (), Clypper (f)]: we call this fraction the coverage
rate, and in theory, it should be 0.95. For the periodogram
and modified periodogram, we choose v = 2M. For classical
WOSA, circular WOSA, and the multitaper methods, we ini-
tially set v = 2MT and subsequently lower this to match or
surpass the average coverage rate of the periodogram or
modified periodogram in the three different frequency
regions specified earlier. By adjusting v, we simultaneously
change the widths of the estimated confidence intervals and
the coverage rates.

In Table 1, we compile the average coverage rate and con-
fidence interval width over all frequency points for eight

Power (nm3)
10°10°%0%10%%10"10"%102

1(')0 10‘0.5 2.5

10" 10" 10° 10
Frequency (1 um)

(a)

Power (nm3)
1040%10%0%%10"0"%10?

10° 105 10" 10" 10° 10%°
Frequency (1 um)
(c)

Power (nm3)

10°10°%0%0%%10"10"*10?

10° 10°° 10" 10 10?2 10%°
Frequency (1 um)

(e)

power spectrum estimation methods when o,,,;. = 0.5 nm.
Each simulated rough line consists of 2048 points and
comes from a longer line with 4096 points with sampling
distance A = 1 nm. Each power spectrum estimate is calcu-
lated from the average of the individual spectrum estimates
from 26 or 14 lines. We do 1000 simulations per technique.
The appendix provides analogous results for the low-,
middle-, and high-frequency regions specified earlier. The
multitaper methods consistently offer the best error bar per-
formance among the eight methods. The WOSA variant
with circular overlap and the classical WOSA methods
are the next most effective techniques. Finally, the periodo-
gram and modified periodogram using a single taper pro-
vided the worst error bar performances among the eight
techniques.

As we mentioned earlier, the bias and leakage of spectrum
estimates are also of interest, and different techniques offer
different trade-offs among performance metrics. Therefore,
we will also mention the relative bias and the spectrum

Power (nm3)
10%0%%10%0%%10"0"%102

10° 10°% 10" 10" 102 10%°
Frequency (1 um)

(b)

1 1

Power (nm3)
1040%10%0%%10"0"%10?
1

10° 105 10"  10"° 107 10%°
Frequency (1 um)
(d)

Power (nm3)
10%0%%10%0%%10"10" %10

10° 10°% 10" 10'° 102 10°°
Frequency (1 um)

(f)

Fig. 2 Spectrum estimates: (a) periodogram and (b) modified periodogram with the Welch taper over 26
lines; (c, d) WOSA with three overlapped segments and with four circularly overlapped segments over 26
lines; (e) multitaper with DPSS tapers and adaptive weights, and (f) sinusoidal tapers without adaptive
weights over 14 lines. Here o,,isc = 0.5 nm. The dashed and curved lines are the K-correlation model
used in the Thorsos method to generate random roughness. The solid and curved lines are the power

spectrum estimates.
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Table 2 Overall results from 1000 simulations with one spectrum
estimate coming from 26 lines for the periodogram and the modified
periodogram with a Welch window. The parameters of the
Palasantzas model are LER = 1.5 nm, correlation length = 25 nm,
and roughness exponent = 0.75.” Each 95% confidence interval is
computed in terms of a »? distribution with 52 d.o.f. as discussed
in Ref. 13.

Coverage
Coverage Average width rate of Average width

SNR rate of  of confidence Welch  of confidence
6noise (0B) periodogram interval (nm®) window interval (nm?3)
0 0.9156 1.92 0.9498 1.91
0.5 9.542 0.9489 2.12 0.9499 212
1.0 3.522 0.9489 2.74 0.9496 2.74
1.5 0 0.9496 3.78 0.9499 3.78
2.0 -2.499 0.9496 5.22 0.9495 5.22

Table 3 Overall results from 1000 simulations with one spectrum
estimate coming from 14 lines. The results for the classical WOSA
method assume Welch windows, r =50%, and three segments
per line. For the variant with circular overlap, assume Welch windows,
r=50% and four segments per line. The parameters of the
Palasantzas model are LER = 1.5 nm, correlation length = 25 nm,
and roughness exponent = 0.75.7 Each confidence interval is com-
puted in terms of a 42 distribution as discussed in Ref. 13. The d.
o.f. are reported within the table.

concentration associated with spectrum estimation. We
define ey, (f) as follows:

S(f) = S(f)
S(f)

This expression is related to the €yjjps and €j¢axage param-
eters defined in Ref. 11. The spectrum concentration is evalu-
ated using Eq. (12) in terms of for a given bandwidth W. To
evaluate ey,;,,, we obtain each spectrum estimate from the
average of 10,000 individual spectrum estimates with
2048 points per line and sampling distance A = 1 nm.
The 2048 points of each line are taken from a longer line
with 4096 points generated using the Thorsos method
applied to the Palasantzas model. We obtain A for each taper
using simulated sequences of 20,480 points with the middle
N = 2048 points assigned with taper values and the remain-
ing points assigned a value of zero.

In Fig. 2, we illustrate six power spectrum estimates
assuming o, = 0.5 nm. We will next offer more details
about the simulations for the various power spectrum
estimates.

For the simulations using the periodogram and the modi-
fied periodogram with a Welch window every spectrum

€bias (f) = (18)

Table 4 Overall results from 1000 simulations with one spectrum
estimate coming from 26 lines. The results for the classical WOSA
method assume Welch windows, r =50%, and three segments
per line. For the variant with circular overlap, assume Welch windows,
r =50%, and four segments per line. The parameters of the
Palasantzas model are LER = 1.5 nm, correlation length = 25 nm,
and roughness exponent = 0.75.” Each confidence interval is com-
puted in terms of a 42 distribution as discussed in Ref. 13. The d.
o.f. are reported within the table.

Average Average Average Average
width of width of width of width of
confidence confidence confidence confidence
onoise SONR  Coverage interval Coverage interval onoise SNR  Coverage interval Coverage interval
(nm)  (dB) rate d.of. (nmé)/d.of. rate d.of. (nmd)/d.o.f. (nm)  (dB) rate d.o.f. (nmé)/d.o.f. rate d.of. (nm3)/d.o.f.
Classical WOSA Classical WOSA
0 0.9739/56  1.89/56 0.9310/84 1.51/84 0 0.9742/104  1.35/104 0.9310/156  1.09/156
0.5 9.542 0.9743/56  2.09/56 0.9320/84 1.66/84 0.5 9.542 0.9742/104 1.49/104 0.9315/156 1.20/156
1 3.522 0.9739/56  2.68/56 0.9313/84 2.14/84 1 3.522 0.9737/104 1.90/104 0.9305/156  1.54/156
1.5 0 0.9743/56  3.67/56 0.9315/84 2.93/84 1.5 0 0.9739/104 2.62/104 0.9311/156 2.11/156
2 —2.499 0.9744/56  5.06/56 0.9317/84 4.04/84 2 —2.499 0.9744/104 3.60/104 0.9317/156  2.90/156
Circular WOSA Circular WOSA
0 0.9692/70  1.67/70 0.9133/112  1.29/112 0 0.9690/130 1.19/130 0.9135/208  0.93/208
0.5 9.542 0.9697/70  1.84/70 0.9142/112  1.43/112 0.5 9.542 0.9693/130 1.32/130 0.9126/208  1.03/208
1 3.522 0.9694/70 2.37/70 0.9135/112  1.84/112 1 3.522 0.9693/130 1.69/130 0.9123/208  1.32/208
1.5 0 0.9697/70  3.24/70 0.9126/112  2.51/112 1.5 0 0.9694/130 2.32/130 0.9131/208 1.82/208
2 —-2.499 0.9698/70  4.46/70 0.9132/112  3.46/112 2 —2.499 0.9696/130 3.20/130 0.9128/208 2.50/208
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Table 5 Average simulation values of epas from 10,000 randomly
generated lines for the periodogram, the modified periodogram with
the Welch taper, the classical WOSA method with three segments
per line, and the variant with circular overlap and four segments
per line when o,4se =0 Nm. The parameters of the Palasantzas

model are LER=1.5nm, correlation length=25nm, and
roughness exponent = 0.75.”
Single Welch Classical Circular
Periodogram taper WOSA WOSA
€bias 0.0836716 —0.0000699 0.0000342  0.0001851

estimate comes from the average of 26 lines; we consider the
95% confidence intervals based on a chi-squared distribution
with 52 d.o.f. We do 1000 simulations per technique.
We report the average widths of confidence intervals and
coverage rates over all frequency points in Table 2. The esti-
mated confidence intervals based on the modified periodo-
gram with the Welch window are, on average, nearly equal in
width as those based on the periodogram, but the periodo-
gram tends to have worse coverage rates because of its higher
potential of spectral leakage.

The simulation values of ¢;,, for the periodogram
and the modified periodogram with the Welch taper are
€pias = 0.0836716 and ¢, = —0.0000699, respectively.
The simulation values of A for the rectangular taper in a
periodogram and the Welch single taper in a modified perio-
dogram assuming N = 2048 and W = 4/2048 nm™" are 1 =
0.974749 and A = 0.999627, respectively.

We next report results on the WOSA method and the vari-
ant with circular overlap. We choose the Welch taper and
r = 50%. Every segment has Ny, = 1024 points. We aver-
age over 14 lines (see Table 3) or 26 lines (see Table 4) to
obtain one spectrum estimate. As discussed in Egs. (5) and

(6), for a line of N = 2048 points, we use three segments per
line for the classical WOSA method and four segments per
line for the variant with circular overlap. The simulations
with the WOSA methods consistently attain better perfor-
mance than those for the single-taper spectrum estimates.
As expected, we attain better performance by averaging
over 26 lines than by averaging over 14 lines. The
WOSA method with circular overlap is better than the
classical WOSA method in terms of confidence interval
widths and coverage rates. However, we will see that the
classical WOSA method has a smaller bias than the circular
variation for the simulated data we consider.

We report the simulation values of €;,, for the classical
WOSA methods and the variant with circular overlap in
Table 5. The results for the periodogram and the single
Welch taper are also listed here for comparison. While the
WOSA methods have better variance than the periodogram
and the modified periodogram with a single Welch taper for a
line with the same number of samples and distance between
samples, the frequency resolution of WOSA methods is worse
because of the decreased length of individual segments.

‘We conclude this section with some remarks on the multi-
taper methods. The choices of NW and the number of tapers
used are not unique. In examining error bar performance, we
use six NW = 4 DPSS tapers and six sinusoidal tapers (see
Fig. 3). We produce one spectrum estimate by averaging
individual estimates from 14 lines; we initially consider
168 d.o.f and subsequently lower this by 20 or 30 to
match or surpass the coverage rates of the first two tech-
niques. The results are summarized in Table 6 and demon-
strate the superiority of the multitaper method over the
periodogram, the modified periodogram with a Welch win-
dow, and the WOSA methods.

The effective bandwidth and the number of tapers can be
adjusted to obtain different trade-offs between bias and

1 1

0.00 0.02 0.04
0.00 0.02 0.04

1000 1500

(@)

500

1000 1500 2000

(b)

500

500

1600
©

1000 1500

(d)

Fig. 3 (a) The first to third and (b) the fourth to sixth lowest order Slepian sequences of length 2048 with
NW = 4. (c) The first to third and (d) the fourth to sixth lowest order sinusoidal tapers of length 2048.
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Table 6 Overall results from 1000 simulations with one spectrum
estimate coming from 14 lines for the multitaper method with
Slepian tapers and sinusoidal tapers. The parameters of the
Palasantzas model are LER = 1.5 nm, correlation length = 25 nm,
and roughness exponent = 0.75.7 Each confidence interval is com-
puted in terms of a y? distribution as discussed in Ref. 13. The d.
o.f. are reported within the table.

Average
width of Average
confidence width of
Coverage interval confidence
onose  SNR rate (nm3)/d.of.  Coverage interval
(hm)y (dB) d.of.=168 =168 rate/d.o.f.  (nmé)/d.o.f.
Slepian (DPSS) tapers
0 0.9359 1.01 0.9516/148  1.08/148
0.5 9.542  0.9493 1.12 0.9689/138  1.24/138
1.0 3.522  0.9486 1.45 0.9684/138  1.61/138
1.5 0 0.9492 2.00 0.9687/138  2.22/138
20 —2.499 0.9487 2.77 0.9686/138  3.07/138
Sinusoidal tapers
0 0.9490 1.01 0.9625/148  1.08/148
0.5 9.542  0.9490 1.12 0.9687/138  1.24/138
1 3.522  0.9497 1.45 0.9691/138  1.61/138
1.5 0 0.9495 2.00 0.9689/138  2.21/138
2 —2.499 0.9488 2.76 0.9683/138  3.06/138

spectrum concentration. Table 7 lists the average simulation
value of ey;,, over all frequencies for the sinusoidal tapers
and the DPSS tapers. There is a tendency for €, to increase
with the number of tapers, but we have seen that the multi-
taper methods reduce the variance of the estimates when one
has access to relatively few lines. The sinusoidal tapers have

smaller ey, than the DPSS tapers since the sinusoidal tapers
approximate the minimum bias tapers.

Table 8 lists the spectrum concentration results in terms of
A for the first seven NW = 4 DPSS tapers and the first seven
sinusoidal tapers with N = 2048, W = 4/2048 nm~!, and
sampling distance A = 1 nm. As expected, the DPSS tapers
offer better results because they are obtained from the origi-
nal spectrum concentration problem.

5 Conclusions

Most of the metrology literature that mentions power spec-
trum estimation refers only to the periodogram, which is over
a century old. We propose using the more modern multitaper
and multisegment spectral estimation techniques. For LER
metrology over a relatively small group of lines, we assess
the effectiveness of a spectrum estimate by the widths of con-
fidence intervals and by the experimental coverage rates. For
a broader discussion of the trade-offs among different tech-
niques, we also considered the relative bias and spectrum
concentration of the various estimates. We investigated the
performance of the periodogram, the modified periodogram
with the Welch taper, the Welch’s overlapped segment aver-
aging method and the variant with circular overlap with the
Welch taper, and the multitaper methods using DPSS tapers
with adaptive weights and sinusoidal tapers without adaptive
weights for the spectrum estimation of random rough lines at
five different noise levels. The multitaper methods offer the
smallest average error bars among these techniques at a given
coverage rate while the Welch’s overlapped segment averag-
ing method is not quite as effective but may be a better can-
didate for in-line metrology because of an existing hardware
implementation. These results applied not only when we
consider an average performance over all frequencies but
also in the low-, the middle-, and the high-frequency ranges.
The average widths of confidence intervals invariably
increased with increasing noise, so improvements in power
spectrum estimation may be even more important at high
noise levels. In recent work, we used the multitaper method
in an attempt to reduce metrology errors in LER estimation
from simulated low-dose SEM images.*’ For a future direc-
tion of research, we observe that the WOSA variant with
circular overlap is potentially interesting for estimating the

Table 7 Average simulation values of ey, from 10,000 randomly generated lines for the DPSS tapers and the sinusoidal tapers when
6noise = 0 NM. The parameters of the Palasantzas model are LER = 1.5 nm, correlation length = 25 nm, and roughness exponent = 0.75.”
The corresponding results for the periodogram and the modified periodogram with a single Welch taper are ¢, = 0.0836716 and

€pias = —0.0000699, respectively.

T Sinusoidal DPSS (NW = 2) DPSS (NW = 4) DPSS (NW = 4, adaptive) DPSS (NW = 8)
1 —0.0000686 0.0000004 ~0.0000724 ~0.0000724 -0.0001705
2 ~0.0000087 0.0011432 0.0002295 0.0002295 0.0004815
3 0.0000186 0.0111442 0.0002141 0.0002140 0.0006259
4 0.0002364 0.0535332 0.0003480 0.0003240 0.0008320
5 0.0003881 0.1404533 0.0006003 ~0.0011971 0.0010770
6 0.0006640 0.2512091 0.0026047 —0.0035863 0.0013110
7 0.0008845 0.3641771 0.0142636 ~0.0038643 0.0014573
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Table 8 The simulation values of 1 for the first seven NW =4 DPSS tapers and the first seven sinusoidal tapers with N = 2048,
W = 4/2048 nm~', and sampling distance A =1 nm. The corresponding values of 4 for the rectangular window in a periodogram and the

Welch single taper in a modified periodogram under same setting are 1 = 0.974749 and 1 = 0.999627, respectively.

t 1 2 3 4 5 6 7
DPSS 1.000000 1.000000 0.999999 0.999973 0.999520 0.993893 0.947127
Sinusoidal 0.999747 0.998883 0.997332 0.994229 0.989002 0.976673 0.937289

power spectrum of contact edge roughness since the edge
points of a contact hole have approximately a circular shape,
i.e, the first and last sampled edge positions are close in

space.*!

Appendix A: Simulations for the
Low-Frequency Region

In Table 9, we compile the average coverage rate and con-
fidence interval width over points in the low-frequency
region for eight power spectrum estimation methods when
Onoise = 0.5 nm. The multitaper methods offer the best error

Table 9 Power spectrum estimates when o5 = 0.5 nm. The low-
frequency region is defined as all frequencies below 1/200 nm~'.
The parameters of the Palasantzas model are LER =1.5nm,
correlation length = 25 nm, and roughness exponent = 0.75.” Each
confidence interval is computed in terms of a y? distribution as dis-
cussed in Ref. 13. The d.o.f. are reported within the table.

bar performance among the eight methods in the low-fre-
quency region.

Appendix B: Simulations for the
Middle-Frequency Region

In Table 10, we compile the average coverage rate and con-
fidence interval width over points in the middle-frequency
region for eight power spectrum estimation methods when
Onoise = 0.5 nm. The multitaper methods offer the best error
bar performance among the eight methods in the middle-
frequency region.

Table 10 Power spectrum estimates when o4 = 0.5 Nm.
The middle-frequency region is defined as all frequencies between
1/200 and 1/20 nm~'. The parameters of the Palasantzas model are
LER=1.5nm, correlation length =25 nm, and roughness exponent =
0.75.” Each confidence interval is computed in terms of a 42 distri-
bution as discussed in Ref. 13. The d.o.f. are reported within the
table.

Average Average

width of width of
No. of confidence confidence
lines per Coverage interval Coverage interval
estimate  rate/d.o.f. (nm3)/d.o.f. rate/d.o.f. (nmd)/d.o.f.

Average Average

width of width of
No. of confidence confidence
lines per Coverage interval Coverage interval
estimate  rate/d.o.f. (nmd)/d.o.f. rate/d.o.f. (nmé)/d.o.f.

Periodogram (left) and modified periodogram with single Welch
taper (right)

26 0.9370/52 102.06/52 0.9361/52 102.97/52

Multisegment: classical WOSA with three segments per line

14 0.9070/84 80.39/84 0.9550/56 100.69/56

Multisegment: circular WOSA with four segments per line

14 0.8888/112  68.65/112 0.9534/70 88.51/70

Multisegment: classical WOSA with three segments per line

26 0.9066/156  57.77/156 0.9580/104 71.61/104

Multisegment: circular WOSA with four segments per line

26 0.8840/208  49.72/208 0.9474/130 63.42/130

Multitaper: six DPSS tapers per line and adaptive weights

14 0.9158/168  53.68/168 0.9434/138 59.52/138

Multitaper: six sinusoidal tapers per line and nonadaptive weights

14 0.9187/168  53.57/168 0.9444/138 59.40/138

Periodogram (left) and modified periodogram with single Welch
taper (right)

26 0.9471/52 9.96/52 0.9496/52 9.89/52

Multisegment: classical WOSA with three segments per line

14 0.9320/84 7.85/84 0.9737/56 9.83/56

Multisegment: circular WOSA with four segments per line

14 0.9139/112 6.75/112 0.9699/70 8.70/70

Multisegment: classical WOSA with three segments per line

26 0.9323/156 5.67/156 0.9743/104 7.03/104

Multisegment: circular WOSA with four segments per line

26 0.9133/208 4.88/208 0.9695/130 6.25/130

Multitaper: six DPSS tapers per line and adaptive weights

14 0.9459/168 5.30/168 0.9666/138 5.87/138

Multitaper: six sinusoidal tapers per line and nonadaptive weights

14 0.9463/168 5.28/168 0.9665/138 5.86/138
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Table 11 Power spectrum estimates when o,4se = 0.5 nm. The
high-frequency region is defined as all frequencies above 1/20 nm~".
The parameters of the Palasantzas model are LER = 1.5 nm,
correlation length = 25 nm, and roughness exponent = 0.75.” Each
confidence interval is computed in terms of a y° distribution as
discussed in Ref. 13. The d.o.f. are reported within the table.

Average Average

width of width of
No. of confidence confidence
Lines per Coverage interval Coverage interval
estimate  rate /d.o.f.  (nm3)/d.of. rate /d.of.  (nmé)/d.o.f.

Periodogram (left) and modified periodogram with single Welch
taper (right)

26 0.9492/52 0.26/52 0.9501/52 0.26/52 10
Multisegment: classical WOSA with three segments per line 1
12
14 0.9323/84 0.20/84 0.9746/56 0.25/56
13
Multisegment: circular WOSA with four segments per line
14 0.9145/112 0477112 0.9699/70  0.22/70 14.
15.
Multisegment: classical WOSA with three segments per line
26 0.9317/156  0.14/156  0.9743/104  0.18/104 16
Multisegment: circular WOSA with four segments per line 17
26 0.9129/208 0.12/208 0.9695/130 0.16/130 18
Multitaper: six DPSS tapers per line and adaptive weights 19
14 0.9501/168 0.14/168 0.9694/138 0.15/138
Multitaper: six sinusoidal tapers per line and nonadaptive weights 20.
14 0.9496/168 0.14/168 0.9692/138 0.15/138 21.
22.
23.
Appendix C: Simulations for the 24.
High-Frequency Region
In Table 11, we compile the average coverage rate and con- 2.
fidence interval width over points in the high-frequency
region for eight power spectrum estimation methods when 26.
Onoise = 0.5 nm. The multitaper methods offer the best error 27
bar performance among the eight methods in the high-
frequency region. 2
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