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Abstract

Purpose: Data-intensive modeling could provide insight on the broad variability in outcomes in
spine surgery. Previous studies were limited to analysis of demographic and clinical character-
istics. We report an analytic framework called “SpineCloud” that incorporates quantitative fea-
tures extracted from perioperative images to predict spine surgery outcome.

Approach: A retrospective study was conducted in which patient demographics, imaging,
and outcome data were collected. Image features were automatically computed from perio-
perative CT. Postoperative 3- and 12-month functional and pain outcomes were analyzed
in terms of improvement relative to the preoperative state. A boosted decision tree classifier
was trained to predict outcome using demographic and image features as predictor variables.
Predictions were computed based on SpineCloud and conventional demographic models, and
features associated with poor outcome were identified from weighting terms evident in the
boosted tree.

Results: Neither approach was predictive of 3- or 12-month outcomes based on preoperative
data alone in the current, preliminary study. However, SpineCloud predictions incorporating
image features obtained during and immediately following surgery (i.e., intraoperative and
immediate postoperative images) exhibited significant improvement in area under the receiver
operating characteristic (AUC): AUC ¼ 0.72 (CI95 ¼ 0.59 to 0.83) at 3 months and
AUC ¼ 0.69 (CI95 ¼ 0.55 to 0.82) at 12 months.

Conclusions: Predictive modeling of lumbar spine surgery outcomes was improved by incor-
poration of image-based features compared to analysis based on conventional demographic data.
The SpineCloud framework could improve understanding of factors underlying outcome vari-
ability and warrants further investigation and validation in a larger patient cohort.
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1 Introduction

Lumbar spine surgery suffers from high variability in patient outcomes,1–9 heterogeneous treat-
ment patterns, and a high frequency of undesirable outcomes, such as revision surgery,8 failed
back surgery,7 and recurrent lumbar disk herniations.10 This heterogeneity could be attributed to
variable patient characteristics, surgeon preferences, hospital and surgeon volume, and complex-
ity of the intervention.11–13 However, current understanding of the contributing factors that
determine the outcome variability remains ambiguous and underexplored.14–16 In this context,
models to predict patient outcomes provide a valuable resource for patient selection, treatment
optimization, and rehabilitative pathway design.11,17–19

Previous studies that investigated variability in pain and functional outcomes were limited
to analyzing patient demographic and preoperative clinical characteristics as the underlying
factors.11,12,19 While such factors [e.g., age, body mass index (BMI), and smoking status] par-
tially contribute to the outcome variability, additional surgery-specific features could further
illuminate and improve the utility of prediction models. Some studies have tended toward devel-
opment of increasingly complex modeling techniques (e.g., deep neural networks14,20) to
improve accuracy, particularly for scenarios in which the predictor variables arise from a limited
number of available preoperative characteristics (i.e., demographic data). In spite of devising
complex machine learning algorithms, model generalizability is challenging to achieve with
a limited set of predictor variables that may not fully explain the variability in clinical outcomes.
Even though advanced learning methods perform better under conditions of sparse data and/or
limited input variables, increasingly complex models also introduce challenges to explainability
in the predictions and the ability to identify actionable features.

A large number of images are routinely acquired for perioperative diagnostic and therapeutic
evaluation purposes before, during, and after spine surgery. These images play a vital role in
diagnosing spinal pathology, determining surgery indications, ensuring safe intervention via
intraoperative guidance, and assessing the surgical product in postoperative and follow-up visits.
Such images capture distinctive features related to anatomy, pathology, and the changes effected
during surgery. In fact, qualitative radiological assessment has been an important basis for
outcome measurement prior to (or complementary to) patient-reported outcomes (PROs). Thus,
incorporating automatically derived image features in addition to previously investigated patient
characteristics could improve the accuracy and utility of prediction models.

Consequently, several studies have evaluated the relationship between individual measures
manually obtained from images and patient outcomes in lumbar, thoracic, and cervical spine
surgery. Example measures include Modic changes,21,22 signal intensity-based metrics,23–25 and
the lowest instrumented vertebra take-off angle.26,27 In contrast to manually obtained features,
recent advances facilitate the automatic extraction of several anatomical features from spine
imaging.28–31 Example image-based features include automatic labeling of vertebral levels,
global spinal alignment, endplate angles, intervertebral space, number of levels treated, and
measurements of surgical instrumentation. To our knowledge, there are no previous studies
evaluating statistical models to predict patient outcomes in lumbar spine surgery that use auto-
matically derived quantitative measurements from radiological images.

The objective of this study was to develop and validate a data-analytic framework referred to as
“SpineCloud,” which includes quantitative features automatically derived from spine imaging in
addition to patient demographic and clinical characteristics to predict function and pain improve-
ment after lumbar spine surgery. A learning algorithm was trained and validated to make predic-
tions by combining disparate features based on demographics and image analytics. In this work,
we used a boosted decision tree algorithm that inherently handles ordinal and continuous variables
in a common predictor variable space. The prediction task was modeled as a binary classification to
estimate functional improvement or nonimprovement at 3- and 12-month intervals after surgery.

2 Materials and Methods

2.1 Image and Data Analytics

SpineCloud incorporates a variety of patient-specific variables, including automatically
extracted image features detailed below in combination with conventional demographic, clinical,
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and functional/pain outcomes. Automated analytics from radiological imaging is a core, novel
constituent of SpineCloud. Image-derived analytics, illustrated in Fig. 1, were initiated with a
machine-learning based vertebra annotation algorithm that automatically identified the centroid
of each vertebra in computed tomography(CT) images.32,33 Several features related to spine mor-
phology were computed using the vertebral centroid as the input to algorithms. These included
automatic quantification of the local and global curvature of the spine by extracting the vertebra
endplate surfaces.34 Spinal curvature measurements were extracted from digitally reconstructed
radiographs after forward-projecting the vertebral endplate surfaces. Using these algorithms,
vertebral endplate angle (EP), local curvature (LC, defined as the difference between two adja-
cent endplate angles), intervertebral distance (IVD), and lumbar lordosis (LL) were quantified
for each CT image. The measurements were calculated using eight vertebra levels ranging from
T11 to S1 for 23 measurements (i.e., 8 EP + 7 LC + 7 IVD + 1 LL) per image. In addition,
an automatic segmentation algorithm based on continuous max-flow optimization35 extracted
vertebral bodies and any instrumentation present in the images. The number of levels treated
and the length of the surgical construct were calculated from the segmentations for two features
per surgery.

The quantitative features were calculated using images acquired at three time points before
and after surgery [i.e., preoperative, 0-month (within 10 days) postsurgery, and 3-month post-
surgery for a total of 23 × 3 ¼ 69 features]. The changes in measurements were also calculated at
0- and 3-month time points relative to the preoperative state for a total of 23 × 2 ¼ 46 features.
Measurements were derived at each time point if the images were available within the relevant
time period. If multiple images were available, the average of the (continuously quantitative)
measurements computed from individual images was taken for that time point. A total of
117 (i.e., 69þ 46þ 2) image analytic features were computed per surgical procedure for each
patient.

In addition to image analytics, SpineCloud incorporated patient-specific demographic data
extracted at baseline from medical charts. Such demographic/clinical features included age, sex,
BMI, history of hypertension, diabetes, bone pathology (osteoporosis, osteopenia, or both), any
prior spine surgery, and current or past exposure to smoking. Other relevant variables such as
indication for surgery, procedure performed, and the vertebral levels targeted during surgery
were extracted from the operative note. A physician and epidemiologist reviewed the medical
charts to abstract functional outcomes at 3 and 12 months postsurgery using the modified

Fig. 1 Calculation of automatic image analytics from spine CT at preoperative (PreOp), post-
operative (PostOp) 0-month, and 3-month time points. Image analytic features included endplate
angles (EP), LC, LL, IVD, number of levels, and the length of the construct.
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Japanese Orthopedic Association (mJOA) and Nurick functional grading scales36 and Likert
pain scale.

2.2 Prediction Modeling

Prediction models in SpineCloud were developed using learning algorithms to predict improve-
ments in the outcome using demographic and image-analytic predictor variables. Outcome
improvement was a binary prediction on whether the patient improved at a given postoperative
time point compared to the preoperative assessment.

A boosted decision tree ensemble classification method as shown in Fig. 2 was used to
recursively partition the predictor variable space using a hierarchy of binary decision trees to
best represent the variability in outcome improvement. A decision tree (ht) combines multiple
predictor variables (xn) to classify the predicted binary output on whether the patient improved
(P) or not-improved (N) an outcome after surgery. The boosting algorithm integrates multiple
such decision trees [htðxÞ] with different weights (αt) to construct the final classifier [fðxÞ].
Classification error ∈t is minimized during training to align the predicted output htðxnÞ from
input predictor variables (xn) and the corresponding ground-truth outcome (yn). Training was
performed with a learning rate of 0.1 and a maximum of 30 partitions in a single decision tree.
The models were trained and evaluated via leave-one-out cross validation. After the training was
completed, the resulting decision trees were analyzed to understand which features contributed
strongly to the outcome predictions. Feature importance was quantified within the classifier
based on how frequently it was used to split the data and the contribution of the split in reducing
the prediction error during training.37

Table 1 illustrates the prediction models developed and tested in this study with multiple
variations on the features used as input to the model and the specific time points for which the
outcome was predicted. Models for preoperative predictions were trained using demographics
and patient characteristics (denoted as D) and with the addition of image analytic features
(denoted as SpineCloud, SC). SpineCloud predictions using features derived from preopera-
tive image data are denoted as SCpre, and with features derived from images acquired intra-
operatively or immediately postoperative (within 10 days) are denoted as SC0m. Predictions
made at 3 months after surgery used either a combination of demographics and outcomes at
3 months (denoted as DþO3m) or a combination of demographics, image features, and out-
comes at 3 months (denoted as SC3m þO3m). The 3-month outcomes were predicted using
data at the preoperative and immediate postoperative (0 month) time points, and 12-month
outcomes were predicted using data at the preoperative and postoperative 0- and 3-month
time points.

Fig. 2 A boosted decision tree learning algorithm was used as the predictive model. Multiple
binary decision trees were combined using the boosting algorithm to construct the classifier.
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2.3 Materials

The study involved a retrospective cohort with approval from the Institutional Review Board at
Johns Hopkins Medical Institutions. Patient imaging data were retrieved from the hospital pic-
ture archiving and communication system. A total of 64 patients who underwent 84 lumbar spine
surgeries with preoperative and postoperative CT imaging available were included in the cohort.
Table 2 shows a descriptive summary of patients used in this analysis. The patient cohort had
mean (±standard deviation) age of 59.9 years (�11.8 years) and BMI of 28.8 (�6.7) with slight

Table 1 Summary of the predictive models developed and investigated in this study.

Model Notation

Features included in a particular model

Demographic/
clinical

Image analytics Outcomes

PreOp
Immediate PostOp
(up to 10 days)

PostOp
(up to 3 months) 3 months

Demographic D ✓ — — — —

DþO3m ✓ — — — ✓

SpineCloud SCpre ✓ ✓ — — —

SC0m ✓ ✓ ✓ — —

SC3m þO3m ✓ ✓ ✓ ✓ ✓

Note: D, demographics; SC, SpineCloud; pre, preoperative; ✓ = feature was used in the analysis;— = feature
was not used in the analysis; m, months.

Table 2 Summary of clinical data set.

Variable Summary

Number of patients 64

Underwent one procedure 46

Underwent two procedures 16

Underwent three procedures 2

Sex; N (%)a

Male 28 (44%)

Female 36 (56%)

Number of procedures 84

Age; mean (SD)b 59.94 (11.80)

BMI; mean (SD)b 28.83 (6.75)

Prior history; N (%)b

Hypertension 38 (45.24%)

Diabetes 24 (28.57%)

Bone pathology 9 (10.71%)

Smoking 45 (53.57%)

Prior lumbar spine surgery 64 (76.19%)

Note: SD, standard deviation; BMI, body mass index.
aDenominator denotes number of patients.
bDenominator denotes number of procedures.
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preponderance of women (56%). Approximately 28.1% (18/64) of the patients underwent more
than one surgery during the study time period (March 2004 to July 2017), and 76.2% (64/84)
of the surgeries had a record of a prior lumbar spine surgery. Improvement in physical function
was observed at 3 months in 40.8% and 28.6% of the patients in terms of mJOA and Nurick
scales, respectively, and at 12 months in 46.7% and 43.1% of the patients, respectively.
Improvement in pain intensity was observed in 72.9% of the patients at 3 months and 77.6%
of the patients at 12 months.

Prediction models were evaluated using estimates of accuracy, sensitivity, specificity,
positive predictive value (PPV) and negative predictive value (NPV), and receiver operating
characteristic (ROC) area under the curve (AUC), along with corresponding 95% confidence
intervals (CI95). In computing these estimates, a positive sample constituted a surgery with
an improved outcome relative to baseline, and a true positive was identified when the model
correctly predicted the outcome improvement for a positive sample. Confidence intervals were
computed using the Wilson method for accuracy, sensitivity, specificity, PPV, and NPV,38 and
using bootstrap (5000 iterations) for AUC. Prediction models using different feature subsets in
SpineCloud were compared using bootstrap. Statistical significance was evaluated with respect
to a p-value of 0.05 with no adjustment for multiple testing. MATLAB 2018b (The MathWorks,
Inc., Natick, Massachusetts) was used to develop the prediction models, and R (Version 3.5.2;
R Core Team, Vienna, Austria, 2018) was used for analysis and statistical testing.

3 Results

3.1 Prediction Model Performance at Baseline and Immediately Following
Surgery

Figure 3 (Table 3 in Sec. 6) shows ROC curves comparing the different prediction models for
mJOA functional outcome improvement at 3 and 12 months postsurgery. Conventional modeling
based on patient demographic and clinical characteristics (D) without any image analytic fea-
tures demonstrated an AUC of 0.49 (CI95 ¼ 0.36 to 0.63) for outcome prediction at 3 months
and an AUC of 0.32 (CI95 ¼ 0.19 to 0.46) at 12 months. Thus, conventionally derived features
(D) were not predictive of mJOA functional outcome improvement. The SpineCloud model with
image analytics derived from preoperative imaging (SCpre) demonstrated a slight improvement
in prediction performance with an AUC of 0.54 (CI95 ¼ 0.40 to 0.69) at 3 months and an AUC of
0.47 (CI95 ¼ 0.30 to 0.62) at 12 months. Outcomes prediction incorporating intraoperative and
immediate postop imaging data (SC0m) exhibited markedly improved performance with an AUC
of 0.71 (CI95 ¼ 0.59 to 0.82) for 3-month outcomes and AUC of 0.69 (CI95 ¼ 0.54 to 0.82) for
12-month outcomes. The improvements in AUC for SC0m were statistically significant com-
pared to both D and SCpre for both 3- and 12-month analyses.

DSCpreSC0m

(a) 3-month mJOA (b) 12-month mJOA

Fig. 3 ROC curve for SpineCloud prediction of physical function (mJOA) at (a) 3 months and
(b) 12 months after surgery.
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As shown in Fig. 4 (Table 3 in Sec. 6), prediction model performance assessed in terms of
precision, specificity, accuracy, PPV, and NPV showed similar patterns, with SC0m exhibiting
higher performance compared to D and SCpre. In addition, SCpre moderately improved the
performance compared to D. The SCpre and SC0m models both exhibited higher specificity
in prediction (0.81 and 0.90, respectively) than the D model (0.62) at 3 months. However, all
three models exhibited relatively low sensitivity to predict outcomes at both 3 and 12 months
(0.21 for D, 0.34 for SCpre, and 0.34 for SC0m).

3.2 Prediction Model Performance at 3 Months Postsurgery

As shown in Fig. 5 (Table 4 in Sec. 6), incorporating information available at 3 months after
surgery significantly improved the performance of predicting the 12-month outcome, compared
to D, SCpre, and SC0m. These models included 3-month outcomes in addition to patient dem-
ographic data and image analytics available at 3 months. Predicting 12-month outcome using the
DþO3m model yielded an AUC of 0.79 (CI95 ¼ 0.65 to 0.91), and the SC3m þO3m model
yielded an AUC of 0.82 (CI95 ¼ 0.70 to 0.93). Thus, image analytics improved the prediction
performance beyond that obtained from 3-month outcome data alone. Establishing the statistical
significance of the improvement requires further investigation with a larger data set for 12-month
outcomes. Models incorporating postoperative image analytics and outcomes available at 3
months after surgery also demonstrated improved performance, including accuracy, sensitivity,
specificity, PPV, and NPV (Fig. 6).

Figure 7 illustrates the importance of various features for predictions in the D and SC0m

models for 12-month mJOA outcome. In SC0m, features derived from images had a strong
influence in the decision trees, compared to traditionally used demographic features. While

Accuracy Sensitivity Specificity PPV NPV Accuracy Sensitivity Specificity PPV NPV

(b) 12-month mJOA(a) 3-month mJOA
(o) D (×) SCpre (+) SC0m

E
st

im
at

eeta
mi ts

E

(o) D (×) SCpre (+) SC0m

× + × + × + × + × + × + × + × + × + × + 

Fig. 4 Performance measures for SpineCloud prediction of physical function (mJOA) at (a) 3
months and (b) 12 months after lumbar spine surgery.

12-month mJOA

Fig. 5 ROC curve for SpineCloud including 3-month outcomes to predict physical function (mJOA)
at 12 months after lumbar spine surgery.
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specific features selected from the learning algorithms could be spurious due to the limited
number of training examples in this study, the availability of relevant features correlating with
outcome variability facilitates the construction of more accurate and generalized models. The
propensity of image-based features (viz., 9 out of the top 10 features) indicates that quantitative
image analytics has strong influence on the prediction.

Finally, Tables 5–8 summarize estimates of model performance measures to predict the
improvement in function on the Nurick scale and the improvement in pain intensity.

4 Discussion

A clinical outcomes prediction framework referred to as SpineCloud was shown to incorporate
analytical features derived automatically from patient images and thereby improve prediction
performance, compared to conventional analysis based on demographic and clinical character-
istics alone. The results demonstrated that information extracted from perioperative images of
patients undergoing surgery can provide additional relevant, quantitative, and potentially action-
able predictive variables to improve performance in modeling postsurgery outcomes. The overall
performance of the prediction models is similar to previous studies that developed models
predominantly using patient preoperative characteristics. Khor et al.11 presented the closest rel-
evant study in which models are developed for prediction of pain and function improvement in
lumbar spine surgery, reporting performance in terms of a concordance statistic (=0.66 to 0.79).
Other studies have demonstrated superior performance in more targeted procedures and patient

Accuracy Sensitivity Specificity PPV NPV

12-month mJOA

E
st

im
at

e

(o) D+O3m (+) SC3m+O3m

+ + + + + 

Fig. 6 Performance measures for SpineCloud including 3-month outcomes to predict physical
function (mJOA scale) at 12 months after lumbar spine surgery.

0 1 2 3 4 5
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EP preop S1

IVD 0m L2

EP 0m S1

EP 0m T11

IVD 0m L3

IVD 0m L4

LC preop T12

mJOA 12months using SC0m
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bone path.

prior surgery

diabetes
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smoking

albumin
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height

age

BMI

mJOA 12months using D

Feature importance Feature importance

(a) (b)

Fig. 7 Comparison of importance metrics for the 10 most frequently used features in 12-month
mJOA outcome prediction using (a) D and (b) SC0m. Image-analytic-based features are shown in
blue, and patient demographic based features are shown in orange. The strong majority of
important features in SC0m are seen to be image-analytic-based features.
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cohorts undergoing lumbar discectomy14 and decompression surgery for lumbar spinal
stenosis.20 While it is challenging to make reliable direct comparison of absolute performance
metrics among models involving a limited number of subjects, the improvements gained by
image analytics as reported in this study could translate to other works by further improving
those models as well—that is, incorporating image analytics in previously reported models based
on clinical/demographic data.

The image analytics automatically computed in this study included measurements related to
spine curvature, morphology, and surgical construct. The prediction models could benefit further
from other analytical measures stemming from previously developed or existing algorithms for
surgical planning, spine image registration, and segmentation. For example, automatic planning
of pedicle screw trajectories39,40 and algorithms for detecting the delivered screw trajectory30

permit the computation of geometric deviation between the delivered screw and the optimal
plan. Image registration algorithms that solve for the geometric relationship between preopera-
tive and intraoperative imaging41 allow computation of relevant morphological metrics from
intraoperative imaging. Automatic vertebra and surrounding structure segmentation35 allows the
computation of metrics related to bone density, intervertebral disk space, and texture-based,
radiomic-type measurements from spine images. Moreover, while the primary imaging modality
in this study was CT, automatic computation of image analytics can be extended to other com-
monly acquired modalities such as magnetic resonance imaging and radiographs as well as
other anatomical sites, such as the cervical and thoracic spine.

Prediction models can be helpful in estimating the likely outcome of the patient both prior to
surgery for patient selection and after surgery for guiding postoperative rehabilitative care.
Intraoperative and immediate postoperative image analytics, in addition to guiding the rehabili-
tative pathway, could identify distinct measurements as an immediate quality check during sur-
gery and inform the need to revise the surgical construct based on outcome prediction. Such
models could also inform the development of patient-specific intraoperative image guidance and
verification solutions driven by predicted outcomes for a given patient. The SpineCloud models
presented in this work were constructed using image analytics derived from preoperative diag-
nostic images as well as immediate-postoperative and postoperative images in addition to patient
demographic features. Our experiments demonstrated larger improvements in prediction perfor-
mance when immediate-postoperative image analytics (SC0m) were included in the model.
These analytics captured quantitative measurements of the surgical product (e.g., orientation
of instrumentation) and the change effected during surgery (e.g., change in spinal curvature).
It is intuitive that the quantitation of the change effected by surgery could have a large impact on
patient outcome. Moreover, when predicting 12-month outcomes, incorporation of 3-month out-
comes as predictors in the model substantially improved the performance, and these findings are
consistent with previous studies investigating the incorporation of early PROs when predicting
12-month outcomes.42 Thus, the prediction accuracy of the models improved when incorporating
more information along the time course after surgery. However, making accurate predictions at
earlier stages (i.e., preoperative and intraoperative) will certainly improve the utility of such
predictions by informing actionable surgical decisions prior to or during surgery. Therefore,
improving the performance of the preoperative models (specifically, by increasing the amount
of data used to build the models and/or by implementing effective learning methods) will
advance the clinical utility to stages of patient selection and surgical planning.

SpineCloud uses more predictor variables than conventional demographics-based methods in
model generation, providing an inherent advantage to search for models that align well with train-
ing data. However, having more predictor variables would not necessarily improve model per-
formance and could lead to overfitting due to the lack of generalizability. In addition, a boosted
decision tree algorithm builds a parsimonious model and eliminates redundant features that are
extraneous to explain variability in training data. Thus, the improvements in SpineCloud com-
pared to demographic-based models with different number of predictor variables as input to the
models show the utility of including additional relevant variables to explain outcome variability.

The machine learning algorithm used in this study was a boosted decision tree classifier, and
the prediction task was modeled as a binary classification to differentiate patients with improved
or nonimproved outcomes. While the binarization simplified the analysis to be feasible with a
limited number of patients, the models can in theory be constructed to directly predict numerical
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outcome scales such as pain Likert scale (e.g., range: 0 to 10), mJOA scale (e.g., range: 0 to 18),
or more comprehensive scales such as Patient-Reported Outcomes Measurement Information
System (PROMIS). In the current study, prediction of multiclass outcomes (cf., binary improve-
ment or nonimprovement) is challenged by the limited number of data points (∼60 to 71) and
high-dimensional feature space (∼127 features). Recognizing the importance of a more continu-
ous outcome prediction, future work aims to increase the amount of data incorporated in the
learning model to directly predict the relevant outcome variables. Moreover, limited data in the
current study precluded model evaluation using more rigorous validation methods in lieu of
leave-one-out cross validation. Possible overfitting resulting from such limitations may be evi-
dent in some of the low AUC findings (some <0.5). The limitations of the current validation
approach would induce similar bias across all the tested models, and in this setting, we observed
improvement in prediction performance when image analytic features were included in some of
the models. More rigorous validation in a larger patient cohort is required to provide confirma-
tory evidence of the statistical and clinical significance of such improvements. Furthermore,
extending the SpineCloud framework to a larger number of patients would improve the model
generalizability to derive important predictor variables and provide recommendations to help
shape the process of shared decision-making in clinical practice.

While more data, in principle, could alleviate these problems in any learning algorithm, the
decision trees resulting from the boosted decision tree classifier helped qualitative interpretation
of the importance of predictors (which can be hidden in other predictive models). For example,
Fig. 7 illustrates the relative importance of predictor variables used in decision trees for predict-
ing mJOA at 12 months using D and SC0m. Clearly, multiple image analytic measures align well
with the patterns in outcome variability in SC0m and contribute to more accurate predictions
relative to the predictors in D. Such explainability may not be necessary to achieve high levels
of prediction/classification performance, but it carries enormous clinical value in guiding the
shared decision-making process between surgeons and patients. Model explainability is impor-
tant for extending the utility of the learning method beyond predictions per se to improve the
understanding of simple associations among variables and, more importantly, the causal relation-
ships underlying variations in surgical outcomes.

This study involved a retrospective cohort, and its findings are susceptible to potential biases
induced in such design. While all the patient demographic and outcome data were derived from
retrospective analysis of patient charts and surgeon notes, outcome measurements were limited
to scales such as mJOA and Nurick that were attainable via retrospective review. A prospective
study design, on the other hand, could benefit from more reliable PRO scales, such as
PROMIS,43 Oswestry Disability Index, or short form 36.44 Moreover, the clinical findings of
this study could be limited by using data arising from a single surgeon at one institution and
selecting patients based on the availability of preoperative and postoperative imaging. Limited
and missing data presented another drawback in the retrospective study. In the current analysis,
mJOA functional outcome was accessible in 71/84 of the procedures at 3 months and 60/84 of
the procedures at 12 months. Similarly, image analytics were computed only if an image was
available within the relevant time period. Model training was performed excluding procedures
without outcome data and any predictors without a valid measurement. A prospective study that
records patient outcome at controlled time points and protocols for consistent image acquisition
would further strengthen the findings in this paper.

While statistically significant improvements in predicting outcomes were observed for
mJOA, predicting the outcome improvements in Nurick scale and pain intensity is not conclusive
and requires further investigation with a larger patient cohort. However, possible improvements
were observed in predicting Nurick at 3 months using SC0m compared to SCpre and D. A sum-
mary of Nurick predictions can be found in Sec. 6 (Tables 5 and 6). On the other hand, when
predicting pain intensity at 3 months, there was no evidence of difference in AUC for algorithms
using D, SCpre, or SC0m. The summary of findings is detailed in Sec. 6 (Tables 7 and 8).

This study provides preliminary evidence supporting the hypothesis that SpineCloud image
analytics are predictive of outcomes in lumbar spine surgery. Overall, image analytic features
helped in boosting the prediction performance compared to conventional modeling using patient
demographic data alone. When predicting outcomes prior to or immediately after surgery,
SpineCloud reached performance up to AUC ¼ 0.71. Such performance is consistent with
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similar studies that assessed lumbar spine surgery outcomes in population-based studies.11

Although the predictive power of such models is far from perfect, it is helpful to understand
the extent and relevant importance of these variables in explaining outcomes. In fact, the limited
performance of such models using relevant predictor variables is a reflection of the uncertainty
associated with clinical decision-making. Thus, incorporating additional features derived from
images (or other means) to further improve predictive performance will contribute to explaining
outcome variability and mitigating the uncertainty associated with surgical decision-making.
Since the pilot study included a fairly limited number of patients, these findings warrant further
investigation in larger cohort studies to better understand the extent and clinical significance of
the improvements. A larger dataset could also open the model construction to more advanced,
robust learning algorithms, including deep learning methods.

5 Conclusion

SpineCloud analytics uses high-level image features combined with patient demographics as a
foundation for machine learning-based predictive models. Initial studies demonstrated improved
prediction of surgical outcome compared to analysis based on demographics alone, providing a
framework within which features automatically derived from image data could guide patient
selection, surgical planning, and rehabilitative care.

6 Appendix

Tables 3 to 6 show estimates and 95% confidence intervals of model performance in predicting
physical function in mJOA and Nurick scales and pain outcomes in Likert scale.

Table 3 Estimates of performance for SpineCloud predicting physical function at 3 and 12months
after lumbar spine surgery—mJOA scale.

Model
Prediction
time point Accuracy Sensitivity Specificity PPV NPV AUC

D 3 months 0.49 (0.38
to 0.61)

0.31 (0.17
to 0.49)

0.62 (0.47
to 0.75)

0.36 (0.20
to 0.55)

0.57 (0.42
to 0.70)

0.49 (0.36
to 0.63)

SCpre 3 months 0.63 (0.52
to 0.74)

0.38 (0.23
to 0.56)

0.81 (0.67
to 0.90)

0.58 (0.36
to 0.77)

0.65 (0.52
to 0.77)

0.54 (0.40
to 0.69)

SC0m 3 months 0.66 (0.55
to 0.76)

0.31 (0.17
to 0.49)

0.90 (0.78
to 0.96)

0.69 (0.42
to 0.87)

0.66 (0.53
to 0.76)

0.71 (0.59
to 0.82)

D 12 months 0.37 (0.26
to 0.49)

0.21 (0.10
to 0.40)

0.50 (0.34
to 0.66)

0.27 (0.13
to 0.48)

0.42 (0.28
to 0.58)

0.32 (0.19
to 0.46)

SCpre 12 months 0.60 (0.47
to 0.71)

0.32 (0.18
to 0.51)

0.84 (0.68
to 0.93)

0.64 (0.39
to 0.84)

0.59 (0.44
to 0.72)

0.47 (0.30
to 0.62)

SC0m 12 months 0.65 (0.52
to 0.76)

0.50 (0.33
to 0.67)

0.78 (0.61
to 0.89)

0.67 (0.45
to 0.83)

0.64 (0.48
to 0.77)

0.69 (0.54
to 0.82)

Table 4 Estimates of performance for SpineCloud with 3-month outcomes predicting physical
function at 12 months after lumbar spine surgery—mJOA scale.

Model
Prediction
time point Accuracy Sensitivity Specificity PPV NPV AUC

DþO3m 12 months 0.78 (0.66
to 0.87)

0.71 (0.53
to 0.85)

0.84 (0.68
to 0.93)

0.80 (0.61
to 0.91)

0.77 (0.61
to 0.88)

0.79 (0.65
to 0.91)

SC3m þO3m 12 months 0.78 (0.66
to 0.87)

0.75 (0.57
to 0.87)

0.81 (0.65
to 0.91)

0.78 (0.59
to 0.89)

0.79 (0.62
to 0.89)

0.82 (0.70
to 0.93)
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Table 5 Estimates of performance for SpineCloud with 3-month outcomes predicting physical
function at 12 months after lumbar spine surgery—Nurick scale.

Model
Prediction
time point Accuracy Sensitivity Specificity PPV NPV AUC

D 3 months 0.64 (0.53
to 0.74)

0.20 (0.08
to 0.42)

0.82 (0.69
to 0.90)

0.31 (0.13
to 0.58)

0.72 (0.59
to 0.82)

0.54 (0.38
to 0.69)

SCpre 3 months 0.66 (0.54
to 0.76)

0.15 (0.05
to 0.36)

0.86 (0.74
to 0.93)

0.30 (0.11
to 0.60)

0.72 (0.59
to 0.81)

0.47 (0.32
to 0.63)

SC0m 3 months 0.69 (0.57
to 0.78)

0.15 (0.05
to 0.36)

0.90 (0.79
to 0.96)

0.38 (0.14
to 0.69)

0.73 (0.60
to 0.82)

0.63 (0.47
to 0.78)

D 12 months 0.57 (0.44
to 0.69)

0.36 (0.20
to 0.55)

0.73 (0.56
to 0.85)

0.50 (0.29
to 0.71)

0.60 (0.45
to 0.74)

0.67 (0.52
to 0.80)

SCpre 12 months 0.62 (0.49
to 0.73)

0.24 (0.11
to 0.43)

0.91 (0.76
to 0.97)

0.67 (0.35
to 0.88)

0.61 (0.47
to 0.74)

0.59 (0.44
to 0.73)

SC0m 12 months 0.55 (0.42
to 0.67)

0.24 (0.11
to 0.43)

0.79 (0.62
to 0.89)

0.46 (0.23
to 0.71)

0.58 (0.43
to 0.71)

0.63 (0.48
to 0.77)

Table 6 Estimates of performance for SpineCloud with 3-month outcomes predicting physical
function at 12 months after lumbar spine surgery—Nurick scale.

Model
Prediction
time point Accuracy Sensitivity Specificity PPV NPV AUC

DþO3m 12 months 0.84 (0.73
to 0.92)

0.72 (0.52
to 0.86)

0.94 (0.80
to 0.98)

0.90 (0.70
to 0.97)

0.82 (0.67
to 0.91)

0.92 (0.83
to 0.98)

SC3m þO3m 12 months 0.88 (0.77
to 0.94)

0.76 (0.57
to 0.89)

0.97 (0.85
to 1.00)

0.95 (0.76
to 1.00)

0.84 (0.70
to 0.93)

0.94 (0.87
to 0.99)

Table 7 Estimates of performance for SpineCloud predicting pain intensity at 3 and 12 months
after lumbar spine surgery.

Model
Prediction
time point Accuracy Sensitivity Specificity PPV NPV AUC

D 3 months 0.68 (0.55
to 0.78)

0.79 (0.65
to 0.89)

0.38 (0.18
to 0.61)

0.77 (0.63
to 0.87)

0.40 (0.20
to 0.64)

0.66 (0.51
to 0.81)

SCpre 3 months 0.73 (0.60
to 0.83)

0.95 (0.85
to 0.99)

0.12 (0.03
to 0.36)

0.75 (0.62
to 0.84)

0.50 (0.15
to 0.85)

0.62 (0.46
to 0.76)

SC0m 3 months 0.75 (0.62
to 0.84)

0.95 (0.85
to 0.99)

0.19 (0.07
to 0.43)

0.76 (0.63
to 0.85)

0.60 (0.23
to 0.88)

0.68 (0.53
to 0.82)

D 12 months 0.72 (0.60
to 0.82)

0.89 (0.77
to 0.95)

0.15 (0.04
to 0.42)

0.78 (0.65
to 0.88)

0.29 (0.08
to 0.64)

0.55 (0.40
to 0.70)

SCpre 12 months 0.71 (0.58
to 0.81)

0.89 (0.77
to 0.95)

0.08 (0.00
to 0.33)

0.77 (0.64
to 0.86)

0.17 (0.01
to 0.56)

0.33 (0.18
to 0.50)

SC0m 12 months 0.69 (0.56
to 0.79)

0.89 (0.77
to 0.95)

0.00 (0.00
to 0.23)

0.75 (0.62
to 0.85)

0.00 (0.00
to 0.43)

0.25 (0.10
to 0.41)
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