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ABSTRACT. Traditional facial recognition techniques often struggle to balance accuracy with
model complexity. High accuracy typically demands intricate models, slowing rec-
ognition speeds on devices such as smartphones. Conversely, faster methods often
sacrifice accuracy. We introduce a lightweight deep convolutional generative adver-
sarial network (LW-DCGAN), designed specifically to address the challenges of
occluded face recognition. By simplifying the network architecture and employing
efficient feature extraction techniques such as transpose convolution, batch normali-
zation, feature pyramid networks, and attention modules, we enhance both hierar-
chical sampling and contextual relevance. Furthermore, L1 regularization and
channel sparsity techniques compress the model for resource-constrained environ-
ments. We thoroughly evaluate LW-DCGAN’s generalization and robustness, com-
paring its performance against other generative adversarial network variants and
common face recognition models. The results demonstrate that LW-DCGAN
achieves higher accuracy while significantly reducing model size and computational
overhead, offering a promising advancement in lightweight face recognition
technology.
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1 Introduction
With the advancement of artificial intelligence and computer vision, face recognition technology
has become widely applicable across various fields. Addressing the challenge of efficiently and
accurately recognizing face occlusions—caused by factors such as masks and glasses—is crucial
due to its impact on feature extraction, data acquisition, and computational complexity. The gen-
erative adversarial network (GAN), a deep learning model featuring a generator and a discrimi-
nator, offers a solution by fostering an iterative learning process among these components. This
method aims to enhance the generator’s output to more closely resemble real data distributions.1

The deep convolutional generative adversarial network (DCGAN) advances this concept by
replacing fully connected layers with convolutional ones, thereby stabilizing and simplifying
the network architecture for quicker convergence.2 This adaptation significantly improves the
feasibility of accurately and efficiently addressing occluded face recognition challenges.

Specifically, DCGAN has played a pivotal role in enhancing generative capabilities for
occluded face recognition, allowing for the creation of high-quality images. This capability
is critical for developing more sophisticated recognition models. In addition, it effectively learns
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to capture the nuances of occlusion patterns, enhancing the realism of generated images and
refining the discriminator’s ability to detect these features.3 Moreover, DCGAN demonstrates
effectiveness in mitigating common occlusions, such as masks and glasses, thereby preserving
facial feature integrity.4

This paper introduces a lightweight DCGAN (LW-DCGAN) specifically optimized for the
challenges of occluded face recognition, with a focus on efficiency and accuracy suitable for
mobile devices. The main contributions are as follows:

(a) We provide a comprehensive survey of lightweight occluded face recognition techniques
and the latest advancements in adversarial generative networks, setting the stage for our
LW-DCGAN approach.

(b) We introduce the LW-DCGAN model, featuring innovative lightweight generators and
discriminators. This model excels in feature learning and image generation for occluded
face recognition, offering a viable solution for real-world applications.

(c) We describe the LW-DCGAN architecture, including the design principles of generators
and discriminators, model compression techniques, optimization strategies for loss func-
tions, and training approaches tailored to limited computational resources.

(d) We outline a multi-level experimental strategy that begins with an ablation study to val-
idate the components of LW-DCGAN, followed by an analysis of the training process and
testing of LW-DCGAN’s performance across multiple datasets.

(e) Finally, we conduct a comparative evaluation of LW-DCGAN against GAN variants and
several face recognition models, focusing on occluded face recognition accuracy, effi-
ciency, and aspects such as model size and inference time.5,6

The paper is outlined as follows: Section 2 reviews the related research. Section 3 presents
the LW-DCGAN architecture and algorithmic details. Section 4 explains the experimental setups
and analyses. Section 5 discusses the implications of our findings. Section 6 concludes the paper.

2 Related Work

2.1 Advances in Occluded Face Recognition Algorithms
Recent advancements in occluded face recognition have significantly improved the robustness
and accuracy of recognition algorithms under challenging conditions. The sparse representation
classification (SRC) method, introduced by Wright et al.,7 became a foundational approach for
occluded face recognition. By employing L1 norm regression, SRC derived sparse coefficients,
which proved effective in classifying occluded faces. It attained recognition rates of 98.1% on the
Extended Yale dataset and 94.1% on the augmented reality (AR) face database. In 2011, Zhang
et al.8 proposed the collaborative representation method (CRC), which utilized least squares for
coefficient estimation, thereby reducing computational complexity. CRC demonstrated recogni-
tion rates exceeding 90% on various experimental datasets. Ou et al.9 introduced a sparse rep-
resentation-based classification (SSRC) method that incorporated an occlusion dictionary. SSRC
achieved recognition rates of 97.2% on the Extended Yale B and 95.3% on the AR datasets for
non-occluded faces, whereas for occluded faces, the rates were 95.8% and 92.7%, respectively.
Zheng et al.10 devised an iterative robust coding technique using a Laplacian–Uniform hybrid
approach, which ensured high recognition accuracy even under challenging conditions such as
occlusion and pixel damage. Despite these improvements, traditional methods remained limited
to “shallow” facial features, often missing finer details.

In recent years, the rapid advancement of deep learning has ushered in significant progress in
occluded face recognition. Mundial et al.11 leveraged supervised learning techniques to identify
masked faces, achieving an accuracy rate of up to 97% through facial features extracted by deep
neural networks. Vu et al.12 combined deep learning with local binary pattern features to capture
information from the eyes, forehead, and eye sockets of masked faces. These features were then
merged with those learned from a face detector, creating a unified framework for masked face
recognition. Their system recorded an F1-score of 87% on the COMASK20 dataset and 98% on
the Essex dataset.
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Montero et al.13 engineered an end-to-end face recognition model based on the ArcFace
architecture, incorporating data enhancement and dynamic dataset mixing. This approach
resulted in an average accuracy of 98% in recognizing masked faces. Hariri14 proposed an effi-
cient method tailored for recognizing masked faces during the coronavirus disease 2019
(COVID-19) pandemic. The approach employed VGG-16, AlexNet, and ResNet-50 for feature
extraction and quantization, followed by a multi-layer perceptron (MLP) classifier. On the real-
world masked face recognition dataset (RMFRD), VGG-16 achieved a recognition rate of 91.3%,
ResNet-50 reached 89.5%, and AlexNet secured 86.6%. Golwalkar and Mehendale15 introduced
FaceMaskNet-21, a neural network optimized for masked face recognition using multiple con-
volutional and fully connected layers. Validated on various datasets, the network demonstrated
88.92% accuracy with an execution time of under 10 ms. Zhang et al.16 developed a lightweight
occluded face recognition model based on MobileNetV2. They replaced the average pooling in
the attention module with a depth-wise separable convolution and integrated an improved dual
attention module. Their model achieved accuracies of 90% and 91% on the mask-labeled faces in
the wild (LFW) and mask-AgeDB datasets, respectively. Huang et al.17 proposed a progressive
learning loss for face recognition (PLFace) method, implementing a progressive training strategy
for deep face recognition. PLFace adaptively adjusted the weights of masked and unmasked
samples at different training stages. Experiments revealed an average accuracy of 77% on the
RMFRD dataset, 99.7% on the LFW dataset, and 94% on the IJB-C 1:1 validation. Ge et al.18

introduced a convolutional visual self-attention network (CVSAN) that combined local convolu-
tional features with self-attention for long-range dependencies. On the Masked VGGFace2
dataset, CVSAN surpassed ArcFace, increasing accuracy by 0.8% on LFW and boosting
TPR@FAR = 0.1% from 89.90% to 95.16% on SM-LFW.

Cheng et al.19 implemented a face recognition system by Google (FaceNet) with transfer
learning, using InceptionResNetV2, InceptionV3, and MobileNetV2. They incorporated a cosine
annealing mechanism, which enhanced accuracy to ∼93% across all three models. In recent
studies, Zhong et al.20 introduced masked uncertainty fluctuation to measure sample identifiabil-
ity by combining feature amplitude and variance uncertainty. The approach resulted in an average
accuracy improvement ranging from 1.33% to 13.28%. Faruque et al.21 designed a lightweight
convolutional neural network model that integrated batch normalization, dropout, and depth nor-
malization to optimize overall performance. Compared with other deep learning models, this
model achieved a high recognition accuracy of 97%. Sharma et al.22 developed a novel dual
method for masked face detection using AntelopeV2, which utilized the RetinaFace detection
algorithm and the ResNet100 convolutional neural network for face detection and embedding
generation. Experimental results indicated an accuracy of ∼98.5%. The research outlined above
explored diverse approaches to occluded face recognition, addressing challenges through various
models, data augmentation techniques, and feature fusion methods. However, several limitations
and challenges persisted:

(a) Although many studies demonstrated promising results in controlled environments or
specific datasets, the generalization of occluded face recognition algorithms to diverse
real-world scenarios remained limited. Adapting models to varying lighting conditions,
facial orientations, and occlusion types posed a significant challenge.

(b) Existing algorithms often struggled to handle complex occlusion scenarios, such as partial
occlusions, overlapping occlusions, or occlusions caused by accessories such as sun-
glasses or hats. Developing robust algorithms capable of accurately recognizing faces
under diverse occlusion conditions was essential for practical applications.

(c) Despite the progress in algorithm development, many existing methods required substan-
tial resources, limiting their practical deployment in resource-constrained environments.
Enhancing the computational efficiency of occluded face recognition algorithms while
maintaining high accuracy remained a critical research area.

2.2 Progress on GANs for Facial Recognition
The application of GANs in facial recognition tasks has gained significant attention, particularly
in addressing challenges such as occlusion and low-quality images. Li et al.23 introduced a
masked face recognition method using deocclusion distillation, which combined GAN and
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attention mechanisms to predict and reconstruct facial features. Experiments demonstrated that
this approach improved accuracy by 1.3% over VGGFace and 0.2% over VGGFace2. Fu et al.24

presented a GAN-based unsupervised low-light image enhancement network with an attention
module to improve image quality. Using an autoencoder, the method adapted enhancement
across regions, highlighting details and reducing noise. It achieved a peak signal-to-noise ratio
(PSNR) of 21.523 and a structural similarity index measure (SSIM) of 0.812 on the paired
normal/lowlight images (PNLI) and low-light (LOL) test sets.

Chen et al.25 enhanced face detection with an improved Xception model incorporating a
local GAN. By replacing standard convolutions with inception blocks using dilated convolutions,
the model effectively captured multi-scale features and achieved over 90% accuracy in detecting
small-area faces. Zhang et al.26 developed a domain embedding GAN for face repair, integrating
three types of face domain knowledge into a hierarchical variational autoencoder to guide the
repair process. Experiments showed that domain embedded generative adversarial network
(DE-GAN) surpassed leading image inpainting methods on CelebA and CelebA-HQ datasets,
achieving SSIM scores of 0.893 and 0.895 and PSNR scores of 26.132 and 26.208, respectively.
Lin et al.27 proposed a face de-identification method using GAN with a seven-layer network and
two discriminators to boost feature extraction. Their model, evaluated through pixel loss, content
loss, and adversarial loss, achieved over 90% recognition accuracy across various datasets.

Zhang et al.28 introduced a GAN-based method that utilized contextual information to detect
small-sized faces in complex environments. They generated virtual images with rich contextual
information using GAN, fused these with real images, and created a comprehensive dataset for
training deep learning models. Trigueros et al.29 devised a method for generating realistic training
data using GANs. The approach combined synthetic images with real images and employed a
multi-scale generator network architecture to capture more details and variations. Experiments on
the wider facial detection in the wild (WIDER FACE) and face detection data set and benchmark
(FDDB) datasets demonstrated the effectiveness of their method in recovering clear, high-res-
olution faces from small, blurry ones. Yang et al.30 constructed a semantic face restoration
method using a dual discriminator DCGAN. Leveraging the VGG16 network to learn deep image
features, their model achieved clearer and more realistic restoration results at the pixel level.
Experiments on the CelebA dataset reported a PSNR of over 26 on most test datasets.

Hong et al.31 proposed a two-stage face inpainting method. The first stage predicted facial
landmarks to provide geometric and symmetry information for the GAN. In the second stage, the
masked face image and corresponding facial feature points were input into a GAN to inpaint the
missing areas. In experiments, their method achieved SSIM and PSNR scores of 0.9 and above
30, respectively, outperforming the light adaptive face image normalization. Huang et al.32 intro-
duced Cycle Style GAN, which integrated the pre-trained Style-GAN 3 network into the Cycle-
GAN architecture for near-infrared to visible (NIR-VIS) cross-domain learning. This model syn-
thesized realistic visible images from near-infrared (NIR) images and achieved a rank 1 accuracy
of 99.6% on the CASIA NIR-VIS 2.0 database. The research mentioned above illustrates various
contributions of adversarial networks in the field of face recognition. However, they still face
certain limitations and challenges:

(a) Despite significant efforts to enhance performance, there remains the lack of focus on
simplifying and compressing models, which limits their practical applicability, especially
in resource-constrained environments, thereby hindering efficient deployment.

(b) Currently, the application of adversarial networks in face recognition is primarily centered
around image restoration, generation, and enhancement. However, there are relatively few
studies that directly use adversarial networks for recognition models, indicating signifi-
cant potential and ample research opportunities in this field warranting further exploration
and development.

2.3 Studies on Lightweight Network Architecture
The development of lightweight network architectures has become increasingly crucial for
deploying deep learning models in resource-constrained environments, such as mobile devices.
These architectures aim to reduce computational complexity and memory usage while maintaining
high accuracy, particularly in tasks such as facial recognition where model efficiency is critical.
Andrew and Menglong33 introduced the MobileNet model, which employed depth-wise separable
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convolution to reduce parameters and computational complexity. In face attribute classification,
MobileNet achieved 88.7% mean average precision (mAP) with just 1% of the computation. It
recorded a mAP of 19.3% in common objects in context (COCO) object detection and maintained
79.4% accuracy in face embedding tasks, all while significantly reducing model parameters.

Sandler et al.34 presented MobileNetV2, featuring an inverted residual architecture and linear
bottlenecks, which improved efficiency and representation. Compared with MobileNetV1,
MobileNetV2 achieved the same 22.1% mAP on COCO object detection while cutting param-
eters by 16%, computational load by 38%, and runtime by 26%. Howard et al.35 further advanced
this by proposing MobileNetV3, which integrated automated machine learning techniques to
optimize its lightweight design. By employing network architecture search technology, the
model automatically identified the optimal network architecture and introduced the efficient hard
Swish activation function, further reducing computational overhead. Replacing SSDLite’s
feature extractor with MobileNetV3 yielded a 27% speed improvement over MobileNetV2.
Zhang et al.36 developed ShuffleNet, which used group convolution and channel shuffle to lower
computational complexity and enhance information flow. On the ImageNet 2012 dataset, experi-
ments showed that ShuffleNet reduced classification error by 3.1% and computational complex-
ity by 45 MFLOPs compared with MobileNet.

Ma et al.37 introduced ShuffleNetV2, which enhanced group convolution and optimized
feature transfer mechanisms. By simplifying network design and improving feature transfer
efficiency, ShuffleNetV2 achieved better computational and storage efficiency on practical hard-
ware, making it well-suited for low-power environments. At 500 MFLOPs, ShuffleNetV2 was
58% faster than MobileNetV2, 63% faster than ShuffleNetV1, and 25% faster than Xception. Tan
and Le38 presented EfficientNet, which employed compound scaling to optimize network width,
depth, and resolution. This method ensured high efficiency across various resource constraints.
On the ImageNet dataset, EfficientNet achieved a top accuracy of 97.1% with 66M parameters,
surpassing MobileNetV2. Han et al.39 introduced GhostNet, a model that created additional fea-
ture maps through linear transformations of existing ones, significantly lowering computational
demands. Experiments showed that GhostNet outperformed other networks on the ImageNet
dataset with a top 1 accuracy higher than MobileNetV3 by ∼0.5% while maintaining similar
latency. Liu et al.40 developed a lightweight convolutional neural network for real-time semantic
segmentation. The network used branched skip connections to capture contextual information
and applied factorized dilated depth-wise separable convolutions to learn features from various
scales. Despite its small size of 0.8M parameters, the network processed 1024 × 512 images at 60
FPS on a single RTX 2080Ti graphics processing unit (GPU).

Chen et al.41 investigated a parallel design that combined MobileNet and Transformer, lev-
eraging the strengths of MobileNet in local feature processing and Transformer in global inter-
actions. In ImageNet classification tasks, this design outperformed MobileNetV3 within the low
FLOP range of 25M to 500M FLOPs. Lyu et al.42 proposed a GPU-free real-time object detection
method using a quantized single-shot multi-box detector (MobileNet-SSD), combining the light-
weight design of MobileNet with the real-time detection of SSD. The quantized model signifi-
cantly reduced computational and storage requirements. Experiments on a dataset of 22k
monitoring images demonstrated a compression ratio of up to 21 times and a detection speed
of nearly 25 FPS in a central processing unit (CPU)-only environment, with an mAP of 86.83%
and a model size of 600 KB. Kavyashree and El-Sharkawy43 enhanced the MobileNet baseline
architecture and reduced its size to 2.3 MB through techniques such as weight quantization,
model pruning, and channel pruning, achieving an accuracy of 89.13%.

Shi et al.44 introduced DPNet, a dual-path network for efficient object detection with light-
weight self-attention. It used a self-attention module in the backbone to encode global inter-
actions and a multi-input version in the feature pyramid network (FPN) for cross-resolution
interactions. On the COCO dataset, DPNet achieved 29.0% AP on the test-dev set with only
1.14 GFLOPs and a model size of 2.27M for 320 × 320 images. Jia et al.45 designed a recognition
model based on an improved YOLOv7 combined with the lightweight MobileNetV3.
MobileNetV3 was used for feature extraction, reducing the number of parameters while inte-
grating the coordinate attention (CA) mechanism and the SIoU loss function to enhance accu-
racy. The model was tested on image datasets, achieving an accuracy of 92.3%. The research into
lightweight network architectures is extensive but several challenges remain:
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(a) Despite the significant attention given to MobileNet and other established lightweight
architectures, there has been a notable lack of research focused on developing specialized
architectures for occluded face recognition.

(b) Currently, there exists no research that explores the integration of lightweight frameworks
with GANs specifically for occluded face recognition.

To address this issue, studying the integration of lightweight network architectures with
DCGANs could enhance the stability of network training. This combination would improve the
model’s ability to learn and interpret the complex features of occluded areas, thereby enhancing
the accuracy of face recognition.

3 Methods
LW-DCGAN is a generative adversarial network specifically designed for addressing the chal-
lenge of occluded face recognition. It utilizes a streamlined convolutional network structure,
enhanced with FPNs and attentional residual context modules (ARCM), to balance high-quality
image generation with reduced model complexity. LW-DCGAN aims to improve the accuracy of
recognizing occluded faces while maintaining a lightweight and efficient design, making it suit-
able for deployment in resource-constrained environments, such as on mobile devices for real-
time applications.

3.1 Architecture of LW-DCGAN
The core architecture of LW-DCGAN features a generator and a discriminator. The generator
utilizes a lightweight convolutional network architecture, integrating an FPN and an ARCM
to progressively generate high-resolution images of occluded faces. Through the use of trans-
posed convolution layers and Tanh activation, the generator upscales features to produce the final
image output. The discriminator, on the other hand, extracts facial features through convolutional
layers and incorporates a CA module to enhance feature representation. Furthermore, an aux-
iliary face recognition module is cascaded within the discriminator to support face recognition
tasks. This design is intended to enhance feature extraction efficiency and image quality, thereby
ensuring high-accuracy face recognition even in the presence of occlusion. The network archi-
tecture of LW-DCGAN is illustrated in Fig. 1.

3.2 Generator Network

3.2.1 Lightweight convolutional module

In the generator, the lightweight core component is the bottleneck block, which consists of a
series of convolutional layers and activation functions. The first layer of the bottleneck block
utilizes point-wise convolution to expand the number of channels, allowing for the extraction
of more detailed feature information. The second layer employs depth-wise convolution to fuse

Conv 1*1 1 BN 2 ReLU Conv 3*3 1 BN 2 ReLU SE Conv 3*3
Bneck1 ...Bneck11

Conv 2D 
Layer

1 BN 2 ReLU

FPN ARCM Convolution
Transpose BN Convolution

Transpose

BNConvolution
TransposeBNConv 1*1Transpose

Convolution
Tanh

Activation

Generator

Conv2D LeakyReLU Channel
Attention

Feature 
Extraction Flatten GAP Sofimax Cmp

Labels
cross-entropy 

loss
Output

Face Recognition ModuleDiscriminator

Input
3*244*244

Bottleneck

Fig. 1 Architecture of LW-DCGAN.
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features, integrating information from different levels. The final layer again uses point-wise con-
volution, this time for dimensionality reduction, which decreases the computational load and the
number of parameters. In addition, squeeze-and-excitation modules are incorporated into the
network. These modules dynamically adjust the importance of channels by learning the relation-
ship between effective and ineffective weights, thereby enhancing the network’s expressive
power and accuracy. Batch normalization (BN) is applied to stabilize and accelerate the training
process, whereas rectified linear units (ReLU) are used as activation functions to introduce non-
linearity. The detailed architecture of the bottleneck block is illustrated in Fig. 2.

3.2.2 FPN module

The core of the FPN architecture is the establishment of top-down and bottom-up feature path-
ways. The top-down path is responsible for up-sampling high-level feature maps to match the
size of the feature maps in the bottom-up path. Conversely, the bottom-up path connects low-
resolution, high-level semantic features with high-resolution, low-level semantic features
through feature fusion. This architecture enables shallow features to receive guidance from
deeper features, thereby enhancing the detection capabilities of the shallow features. The entire
process constructs a comprehensive feature pyramid, allowing features of different scales and
semantic levels to be effectively utilized. In our model, we select layers 2, 3, 5, 9, and 12 from
the feature extraction architecture to extract image features and merge them as multi-scale feature
information within the FPN. The process of building the FPN network is illustrated in Fig. 3.

The input image undergoes a series of operations, including convolution and pooling, to
form different scale feature layers C1, C2, C3, C4, and C5. These layers have an increasing
down-sampling rate and decreasing resolution. The Input ∈ R3 � 224 � 224 with three channels
and a size of 224 × 224 undergoes down-sampling, resulting in feature maps C1 to C5 with sizes
C1 ∈ R16 � 112 � 112, C2 ∈ R16 � 56 � 56, C3 ∈ R24 � 28 � 28, C4 ∈ R48 � 14 � 14, and
C5 ∈ R96 � 7 � 7. The convolution with a 1 � 1 kernel to change the feature channel number
to 64 and the subsequent 2× up-sampling are applied, resulting in different-sized feature maps
P5 ∼ P2. P5 is calculated from C5, and P4 is derived by combining P5 and C4, and so forth. The
size is P5 ∈ R64 � 7 � 7, P4 ∈ R64 � 14 � 14, P3 ∈ R64 � 28 � 28, and P2 ∈ R64 � 56 � 56.
The final output feature map set is P ¼ ½P2; P3; P4; andP5�.

Fig. 2 Architecture of the bottleneck.

Fig. 3 FPN network architecture.
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3.2.3 ARCM module

To enhance feature extraction in the unobscured regions, LW-DCGAN incorporates ARCM into
the generator’s design. This module boosts feature extraction capabilities, mitigates gradient van-
ishing issues, and addresses generator instability. The ARCM consists of three key components:
a context enhancement (CE) module, a CA module, and a spatial attention (SA) module. The CE
module employs four parallel branches, each utilizing 3 × 3 convolutional kernels, aimed at
maintaining the same receptive field size while minimizing the overall number of parameters.
In this context, the receptive field refers to the perceptual range of each neuron within the net-
work in relation to the input data. Each branch generates a feature map, which are then concat-
enated to form an enriched context feature map. The concatenation operation is crucial in
integrating diverse feature information from different branches, thereby enhancing the model’s
expressive capabilities. Following the cascading of the CE with the CA and SA modules, a skip
connection is introduced to further stabilize the network. The structural framework of ARCM is
depicted in Fig. 4.

The input to the ARCM is the output feature map collection from the FPN. Through decon-
volution, the input feature maps are up-sampled by applying convolution, thereby unifying the
size of all feature maps to a common resolution. These processed feature maps are then con-
catenated channel-wise, merging them into a single tensor. As the channel dimensions of P2,
P3, P4, and P5 are already aligned, it is only necessary to concatenate them along the channel
axis to form the tensor. This concatenation results in a context-enhanced feature map. The CA
module then applies global average pooling (GAP) and global maximum pooling to the concat-
enated feature map, after which the results are passed through an MLP, which consists of a three-
layer fully connected network. The final output is obtained through a normalized sigmoid func-
tion. The GAP operation is performed on the context-enhanced feature map to generate the chan-
nel attention feature map CAavg, as illustrated in Eq. (1)

EQ-TARGET;temp:intralink-;e001;114;314CAavgðc; hÞ ¼
�
1

W

�XW−1

i¼0

CEðc; h; iÞ; (1)

where CEðc; h; iÞ denotes the value of the feature map at channel c, height h, and width i. The
symbolW stands for the width of the feature map. Applying fully connected layers and a sigmoid
activation function to CAavg results in the channel attention weight feature map CAweight, as
shown in Eq. (2)

EQ-TARGET;temp:intralink-;e002;114;222CAweight ¼ σðWca × CAavg þ bcaÞ; (2)

where Wca means the weight of the fully connected layer, and bca is the bias of the fully con-
nected layer. σ represents the sigmoid function. The fully connected layer receives CAavg as input
and performs a linear transformation of weights and biases. The channel attention weight feature
map CAweight and CE are multiplied element by element to obtain the channel attention enhance-
ment feature map CAenhanced. The workflow of the CA module is shown in Fig. 5.

The SA module first performs channel-wise average pooling and channel-wise max pooling,
followed by a two-dimensional convolution. The resulting feature maps are then passed through a
sigmoid function. Afterward, the feature maps are concatenated along the channel dimension.
Finally, a skip connection is introduced to prevent information loss and mitigate gradient vanish-
ing. The architecture of the spatial attention module is illustrated in Fig. 6.

Conv 3*3

Conv 3*3

Conv 3*3

Conv 3*3

module module module

Fig. 4 ARCM module.
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By applying both an average pooling kernel and a max pooling kernel to the channel
attention-enhanced feature map CAenhanced, we perform pooling operations in both horizontal
and vertical directions. The feature map Hpool in the horizontal direction is obtained, as shown
in Eq. (3)

EQ-TARGET;temp:intralink-;e003;117;376Hpoolðc; hÞ ¼
�
1

W

�XW−1

i¼0

CAenhancedðc; h; iÞþmaxW−1
i¼0 CAenhancedðc; h; iÞ; (3)

where CAenhancedðc; h; iÞ symbolizes the value of the i’th element in channel c and feature map h.
Simultaneously, in the vertical direction, we obtain the feature map Wpool by applying

average pooling and max pooling as shown in Eq. (4)

EQ-TARGET;temp:intralink-;e004;117;297Wpoolðc; wÞ ¼
�
1

H

�
×
XH−1

j¼0

CAenhancedðc; j; wÞþmaxH−1
j¼0 CAenhancedðc; j; wÞ; (4)

whereH stands for the number of elements considered along the height direction during pooling.
CAenhancedðc; j; wÞ denotes the value of the element in channel c and feature map at the w’th
column and j’th row.

The width of the feature map Wpool is transposed to W, resulting in the transposed feature
map Wpool_transpose. Concatenated with the feature map Wpool_transpose, the feature layer M is
obtained. It is subject to a 1 × 1 convolution operation, resulting in the feature layer M1.
Then, batch normalization and ReLU activation function are applied to M1, resulting in the fea-
ture layer M2. M2 is segmented, and the segmented parts are transposed and subject to a 1 × 1

convolution operation. The resulting feature maps are then passed through the sigmoid function
to generate the final spatial weights. The spatial weights in the height direction are represented by
H 0ði; kÞ as shown in Eq. (5), and the spatial weights in the width direction are represented by
W 0ðj; kÞ as shown in Eq. (6)

EQ-TARGET;temp:intralink-;e005;117;107H 0ði; kÞ ¼ σðHpoolði; kÞÞ; (5)

EQ-TARGET;temp:intralink-;e006;117;71W 0ðj; kÞ ¼ σðWpoolðj; kÞÞ; (6)
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Fig. 6 SA module.
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Fig. 5 CA module.
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where i symbolizes the position coordinate along the height direction of the feature map, j rep-
resents the position coordinate along the width direction to the feature map, and k stands for the
pixel value of a channel in the feature map.

Ultimately, the output of the ARCM module is SAenhanced, as shown in Eq. (7)

EQ-TARGET;temp:intralink-;e007;114;688SAenhanced ¼
XC
k¼1

XH
i¼1

XW
j¼1

Gði; j; kÞ ×H 0ði; kÞ ×W 0ðj; kÞ; (7)

where Gði; j; kÞ denotes the value at position i in the original feature map.

3.2.4 Network slimming

To compress the generator network model into a more compact size for efficient deployment in
resource-limited environments, such as mobile devices, our goal is to reduce model parameters,
simplify architectures, and accelerate the inference process. We employed network slimming, a
technique that enables us to achieve a streamlined network without introducing excessive com-
plexity. Following this, fine-tuning is performed to restore the original performance, ensuring
that the generator’s feature extraction and image generation capabilities are preserved. In this
context, the original generator model in LW-DCGAN is referred to as the teacher generator,
whereas the slimmed-down version is known as the student generator.

In addition, we compute the scaling factor γi for the BN layer. This factor directly influences
the output of the convolutional layer, and if its value is too small, the overall output of that
channel will be biased toward lower values. This implies that, during the forward propagation
process, the channel carries less information. The scaling factor γi can thus serve as a basis for
determining the importance of convolutional channels, as shown in Eq. (8)

EQ-TARGET;temp:intralink-;e008;114;440γi ¼ s ×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σi
2 þ ϵ

p ; (8)

where s is a constant scaling parameter applied during normalization, which directly affects the
output of the convolution layer. σ2 is the variance of the i’th channel. ϵ is a very small positive
number. Use 10−5 as the value of ϵ. γi is initialized to 1 and then gradually adjusted through the
training process.

In the optimization objective of the generator, the L1 regularization term is introduced as a
penalty to limit the numerical size of γi. An L1 regularization term is added to the original loss
function to penalize the sum of the absolute values of the scaling factors. The optimization goal is
given by the following expression, as shown in Eq. (9)

EQ-TARGET;temp:intralink-;e009;114;304Lnew ¼ LG þ α
X
i

jγij; (9)

where LG represents the original generator loss function, Lnew stands for the total loss after intro-
ducing the L1 regularization term, and α is the coefficient of the L1 regularization term, con-
trolling the impact of the regularization term on the total loss. i denotes different channel layers.

Correction of the scaling factor γi is given by the following, as shown in Eq. (10)

EQ-TARGET;temp:intralink-;e010;114;222γi ¼ signðγiÞ ×maxðjγij − λ × lr; 0Þ; (10)

where the sign function converts elements greater than 0 to 1 and those less than 0 to −1, and lr
stands for the learning rate. λ is the L1 regularization strength that controls the intensity of scaling
factor decay during the correction process.

Subsequently, all γi are sorted, and the clipping threshold is selected according to the clip-
ping ratio. Fifty percent of the channels are clipped, and the threshold reflects the middle γi value.
Then, the scaling factor on the convolution channel of each layer is compared with the threshold.
If it is greater than the threshold, the weight parameters of the layer are retained; otherwise, the
parameters are set to zero. This step allows many convolution channels with weights of 0 to exist
in the model, achieving the sparseness of the model. Record the number of channels and channel
numbers that retain weights in each convolutional layer, and redesign the depth of each layer of
the network based on the number of channels to obtain a new, more streamlined student generator
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model. The remaining weights in the old model are put into the new model to realize the
construction of the student generator.

In the streamlined network, the number of channels in the fully connected layers is reduced
from 256 to 128. Consequently, the channel count in the transposed convolution layers is also
decreased, leading to a reduction in the number of parameters in each layer and a decrease in the
overall network complexity. Figure 7 illustrates the process of network slimming. In Fig. 7, R
represents the scaling factor greater than the threshold, whereas r denotes the scaling factor
smaller than the threshold.

Although the algorithm has streamlined the number of channels and network layers, it
retains the core functionality necessary to ensure that the network continues to effectively gen-
erate high-quality images. The structural details of the slimmed-down LW-DCGAN generator
network are outlined in Table 1, which presents the output shapes, operations, convolution kernel
sizes, strides, and activation functions utilized at each level.

Fig. 7 Slimming process of the generator.

Table 1 The slimmed-down generator network architecture.

Layer Output shape Conv kernel/stride

Input z_dim, label_dim —

LabelEncoding (7, 7, 128)

Dense (7, 7, 128)

Reshape (7, 7, 128) —

Conv2DTranspose (14, 14, 64) 3 × 3/2

BatchNormalization (14, 14, 64) —

FPN (14, 14, 64) —

ARCM (14, 14, 64) —

Conv2DTranspose (28, 28, 32) 3 × 3/2

BatchNormalization (28, 28, 32) —

Conv2DTranspose (56, 56, 16) 3 × 3/2

BatchNormalization (56, 56, 16) —

Conv2DTranspose (112, 112, 8) 3 × 3/2

BatchNormalization (112, 112, 8) —

Segmentation head (224, 224, 3) —

Conv2DTranspose (224, 224, 3) 3 × 3/2

Tanh activation (224, 224, 3) —
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3.3 Discriminator Network
The discriminator plays a crucial role in LW-DCGAN by distinguishing and categorizing images
generated by the generator from real images, prompting continuous optimization by the gener-
ator. To ensure accurate feature capture from the input data, an attention mechanism is introduced
into the discriminator, enhancing the original DCGAN design rather than employing lightweight
processing. This attention mechanism improves the accuracy and effectiveness of the discrimi-
nator by enabling it to focus on important image regions. The network architecture of the LW-
DCGAN discriminator is outlined in Table 2.

3.3.1 CA module

For each position xi, we calculate the attention weights between it and all positions. This atten-
tion weight is obtained through linear transformation and dot product operation of input features,
as shown in Eq. (11)

EQ-TARGET;temp:intralink-;e011;114;250AttentionðxiÞ ¼
1

C1

Xc
j¼1

ðWqueryðxiÞ · WkeyðxjÞÞ · WvalueðxjÞ; (11)

where C1 is the normalization factor, and c represents the number of channels in the feature map.
Wquery, Wkey, and Wvalue are weights learned through convolutional operations, used to map the
input elements xi and xj. Once the attention weights are obtained, we add them to the original
features xi to obtain the weighted feature as shown in Eq. (12)

EQ-TARGET;temp:intralink-;e012;114;158OutputðxiÞ ¼ AttentionðxiÞþ xi: (12)

The features obtained in the discriminator are connected to a face recognition module. As the
preceding convolutional layers have already extracted deep features of facial images, we added a
GAP layer. This step performs dimensionality reduction on the feature map, reducing its spatial
dimensions to 1 while preserving feature information for each channel. Subsequently, a global
average pooling is applied to the weighted features, reducing the spatial dimensions to 1. The
result of this global average pooling is given by the following, as shown in Eq. (13)

Table 2 Discriminator network architecture.

Layer Output shape Conv kernel/stride

Input (112, 112, 16) —

Conv2D (112, 112, 16) 3 × 3/2

LeakyReLU (112, 112, 16) —

Channel attention (112, 112, 16) —

Multiply (112, 112, 16) —

Conv2D (56, 56, 32) 3 × 3/2

BatchNormalization (56, 56, 32) —

LeakyReLU (56, 56, 32) —

Conv2D (28, 28, 64) 3 × 3/2

BatchNormalization (28, 28, 64) —

LeakyReLU (28, 28, 64) —

Conv2D (14, 14, 128) 3 × 3/2

BatchNormalization (14, 14, 128) —

LeakyReLU (14, 14, 128) —

Flatten (14, 14, 128) —
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EQ-TARGET;temp:intralink-;e013;117;630Pooled FeatureðcÞ ¼ 1

H ×W

XH
i¼1

XW
j¼1

Weighted Featureði; j; cÞ; (13)

where Weighted Featureði; j; cÞ denotes the value of the weighted feature map at position ði; jÞ
and channel c, H and W are the height and width of the weighted feature, respectively.
Pooled FeatureðcÞ illustrates the value of the c channel in the resulting feature map after global
average pooling, i.e., the weighted average across all positions for that channel.

3.3.2 Face recognition module

To simplify the network architecture of the face recognition module and reduce the number of
parameters, we utilize pooled features as the input for the face recognition module, directing
them to the softmax layer without incorporating an additional fully connected layer. This stream-
lined design leverages deep features extracted before the discriminator, enabling the face detec-
tion module to perform its tasks without unnecessary complexity.

The softmax layer, a standard output layer in deep learning neural networks for multi-class
classification problems, transforms the network output into a probability distribution. Predicted
probabilities for each category range between 0 and 1, with the sum across all categories equaling
1. During training, the output of the neural network passes through the softmax layer, yielding a
predicted probability distribution, which is then compared with the true labels’ one-hot encoding.
The cross-entropy loss function quantifies the dissimilarity between these two distributions, con-
verting the difference between the network’s predictions and the actual labels into a scalar value.
This scalar value serves as a metric for evaluating the accuracy of the model’s predictions.

Through optimization algorithms such as gradient descent, the optimizer seeks to minimize
the cross-entropy loss function, aligning the predictions more closely with the actual labels. This
design not only preserves the integrity of feature extraction prior to the discriminator but also
makes the entire network architecture more lightweight, making it suitable for deployment in
resource-constrained environments. The architecture of the face recognition module is illustrated
in Fig. 8.

3.4 Related Loss Functions

3.4.1 Generator loss function

LW-DCGAN is designed for the effective generation and recognition of occluded faces.
To achieve this, we employ multiple loss functions to guide the training of the generator.
Initially, the mean squared error (MSE) loss is used to measure the pixel-level difference between
the generated and target images, as shown in Eq. (14)

EQ-TARGET;temp:intralink-;e014;117;183LMSE ¼ 1

N

XN
i¼1

ðjGðxiÞ − yijÞ2; (14)

where GðxiÞ signifies the image generated by the generator from input noise vector xi, yi rep-
resents the corresponding target image for xi, and N is the number of training samples.

Second, we employ feature matching loss to assess the quality of generated images. Feature
matching loss is achieved by comparing the feature representations of generated and real images
at the intermediate layer of the discriminator. Feature matching loss is shown in Eq. (15)

GAP

Input

Softmax Labels Cross-Entropy Loss 

Output
Pooled Features 

Fig. 8 Architecture of the face recognition module.
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EQ-TARGET;temp:intralink-;e015;114;736LFM ¼ 1

N

XN
i¼1

kDmðxiÞ −DmðGðziÞÞk2; (15)

where zi illustrates the input noise vector,DmðxiÞ denotes the output features of discriminatorDm

given input xi, and GðziÞ stands for the generated output by generator G given noise zi.
Simultaneously, we introduce adversarial loss and use generative adversarial networks to

improve the performance of the generator. The adversarial loss drives the generator to learn
to generate more realistic images by comparing the output of the generator with the assessments
made by the discriminator. The adversarial loss is shown in Eq. (16)

EQ-TARGET;temp:intralink-;e016;114;628LAD ¼ −
1

N

XN
i¼1

logðDðGðziÞÞÞ: (16)

To leverage segmentation label information, we incorporate a cross-entropy loss function
into the generator’s loss for the segmentation task. Minimizing this loss effectively optimizes the
generator’s ability to extract segmentation features and predict accurate segmentation results,
thereby enhancing image generation using segmentation label information. The cross-entropy
loss is presented in Eq. (17)

EQ-TARGET;temp:intralink-;e017;114;525LCE ¼ −
XK
K¼1

YK logðPKÞ; (17)

where YK represents the true distribution of segmentation labels, indicating the actual segmen-
tation results, whereas PK is the predicted distribution of the generator, representing the predicted
probabilities for each category. K denotes the number of classes.

When the four loss functions are combined, the comprehensive loss function of the
LW-DCGAN generator can be obtained. The comprehensive loss is shown in Eq. (18):

EQ-TARGET;temp:intralink-;e018;114;423LGenerator ¼ λ1 × LMSE þ λ2 × LFM þ λ3 × LAD þ λ4 × LCE; (18)

where λ1, λ2, λ3, and λ4 are weight parameters used to balance the contributions of various
loss terms.

3.4.2 Discriminator loss function

The discriminator in LW-DCGAN employs both binary cross-entropy loss and gradient penalty
loss. Binary cross-entropy loss serves to quantify the distinction between generated and real
images. The objective of the discriminator is to accurately classify a generated image as false
(0) or a real image as true (1). The binary cross-entropy loss LBCE is denoted as in Eq. (19)

EQ-TARGET;temp:intralink-;e019;114;291LBCE ¼ −
1

N

XN
i¼1

½yi × logðDðxiÞÞþ ð1 − yiÞ × logð1 −DðxiÞÞ�: (19)

The gradient penalty loss is applied to enforce the constraint that the gradient norm of the
discriminator approaches 1, thereby improving the training stability of the discriminator and the
quality of the generated images. The gradient penalty loss is illustrated in Eq. (20)

EQ-TARGET;temp:intralink-;e020;114;211LGP ¼ λ × ½ðk∇xDðxÞk2 − 1Þ2�; (20)

where ∇xDðxÞ stands for the gradient of the discriminator D concerning the input x. The overall
loss function is a weighted sum of the LBCE and the LGP.

This combination is critical for ensuring that the discriminator network effectively distin-
guishes between real and fake images while maintaining stable gradients. The comprehensive
loss function LDiscriminator is expressed in Eq. (21)

EQ-TARGET;temp:intralink-;e021;114;128LDiscriminator ¼ LBCE þ α × LGP; (21)

where α is a hyperparameter that balances the contribution of the gradient penalty relative to the
LBCE. By minimizing LDiscriminator, the discriminator is trained to develop robust recognition
capabilities for occluded faces.
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3.4.3 Recognition module loss function

In the recognition module, we employ cross-entropy loss as the primary loss function to evaluate
the classification performance of the model. This widely used loss function effectively gauges the
disparity between the probability distribution generated by the model’s output and the actual
labels. Our goal in this context is for the model to accurately categorize input face images into
distinct classes, and cross-entropy loss plays a crucial role in assessing the classification accuracy
of the model. At the output layer of the model, we utilize the softmax activation function to
transform the initial model output into a class probability distribution.

This activation function ensures that the sum of probabilities for all categories equals 1.
Cross-entropy loss then computes the loss between this probability distribution and the distri-
bution of the true labels. Specifically, for a given sample, assuming the raw output of the model is
represented as z ¼ ðz1; z2; : : : ; zCÞ, where zi denotes the score for the i’th category, and the actual
labels are indicated as y ¼ ðy1; y2; : : : ; yCÞ, where yi conveys the true label for the i’th category,
the cross-entropy loss is shown in Eq. (22)

EQ-TARGET;temp:intralink-;e022;117;561LCE ¼ −
XC
i¼1

yi · logðsoftmaxðziÞÞ; (22)

where c signifies the number of categories. yi is the actual label of the category. softmaxðziÞ
expresses the predicted probability for the i’th category after passing through the softmax
function.

3.5 Training Algorithm of LW-DCGAN
During the training process of LW-DCGAN, the generator G is used to convert the real data
images into the generated image G_images. The task of the discriminator D is to distinguish
images and G_images. z is a random variable, and pzðzÞ specifies the probability distribution
of this random variable z. Dr expresses the prediction result of the discriminator on the real
image, and Df is the prediction result of discriminator for the fake image. m represents the num-
ber of samples in a mini-batch during each training iteration. θg represents the parameter set of
the generator G, whereas θd refers to the parameters in the discriminatorD. ∇θg is the gradient of
the loss function with respect to θg, whereas∇θd represents the gradient of the discriminator with
respect to θd. Wg is the current values of the weights in generator G, whereas Wd expresses the
current weight parameters of the discriminator D. ηg defines the learning rate of the generator G,
whereas ηd is the learning rate for the discriminator D. Using

P
m
i¼1 ∇θgLGeneratorðxiÞ, we com-

pute the gradient of the generator loss function for each example xi, and then sum these gradients
to get the total gradient of the generator loss function over the mini-batch. Similarly,P

m
i¼1 ∇θdLDiscriminatorðxiÞ calculates the gradient of the discriminator loss function for each sam-

ple xi and then sums these gradients to obtain the total gradient of the discriminator loss function
on the mini-batch. This total gradient is used to update the weights of the discriminator to min-
imize the discriminator loss function. The training algorithm is shown in Table 3.

4 Experimental Analysis
The assessment of LW-DCGAN involved a multi-faceted approach. First, we conducted an abla-
tion experiment on LW-DCGAN to systematically investigate the impact of each algorithmic
component on the model’s overall performance. Next, we designed generalization experiments
to evaluate the model across both training and test datasets. These experiments aimed to assess
the model’s ability to generalize to new, unseen data, ensuring robust performance in diverse
scenarios beyond the training data. Finally, we replaced the generative adversarial network
modules in LW-DCGAN with those of GAN, DCGAN, Wasserstein GAN (WGAN-GP), and
image-to-image translation with a conditional adversarial network (Pix2Pix). Comparative
experiments were then conducted to evaluate the performance of these models against
LW-DCGAN.
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4.1 Preprocessing of Dataset
The experimental dataset, CelebA-Mask, comprises over 24,000 face images from more than
4000 individuals, each meticulously annotated with detailed facial features such as hair, eyes,
mouth, nose, and facial contours. CelebA-Mask, chosen for its multi-label segmentation proper-
ties, serves as an ideal foundation for this study.46

Table 3 Pseudo-code of LW-DCGAN training algorithm.

1: Initialize G with random weights

2: Initialize D with random weights

3: Input images from dataset FD

4: Noise distribution pzðzÞ
5: While not converged do // Sample mini-batch

6: z ∼ pzðzÞ // Forward propagation

7: G_images ¼ Gðz;wgÞ
8: Dr ¼ Dðimages;wd Þ
9: Df ¼ DðG_images;wd Þ
10: // Calculate losses

11: LMSE ¼ 1
N

PN
i¼1ðjGðx i Þ − y i jÞ2

12: LFM ¼ 1
N

PN
i¼1 kDmðx i Þ − DmðGðzi ÞÞk2

13: LAD ¼ − 1
N

PN
i¼1 logðDðGðzi ÞÞÞ

14: LCE ¼ −
PK

K¼1 YK logðPK Þ
15: LGenerator ¼ λ1 × LMSE þ λ2 × LFM þ λ3 × LAD þ λ4 × LCE

16: LBCE ¼ − 1
N

PN
i¼1½y i × logðDðxi ÞÞþ ð1 − yi Þ × logð1 − Dðxi ÞÞ�

17: LGP ¼ λ × ½ðk∇xDðxÞk2 − 1Þ2�
18: LDiscriminator ¼ LBCE þ α × LGP

19: // Update the generator’s weights using the average gradient of the generator’s loss

20: Wg ¼ Wg − ηg

�
1
m

Pm
i¼1 ∇θgLGeneratorðxi Þ

�

21: // Update the discriminator’s weights using the average gradient of the discriminator’s loss

22: Wd ¼ Wd − ηd
�

1
m

Pm
i¼1 ∇θdLDiscriminatorðx i Þ

�

23: End while

24: Return G, D, Df

25: // Algorithm: Face recognition module with feature extraction

26: Gf ¼ GlobalAveragePoolingðDf Þ// Global average pooling

27: Soutput ¼ SoftmaxðGf Þ // Softmax layer for classification

28: LCE ¼ −
PC

i¼1 yi · logðsoftmaxðzi ÞÞ // Cross-entropy loss calculation

29: // Optimization using backpropagation

30: BackpropagateðLCEÞ
31: // Update parameters through backpropagation

32: Return Trained face recognition module

33: Output: Recognized identity
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For training set A, 4000 original face images were selected from this dataset. To address the
diverse types of occlusions found in real-world scenarios, 4000 unoccluded images were also
included for training set B. During data preparation, variability was introduced by applying
element-wise multiplication, adding randomly positioned and sized black occlusions to the origi-
nal images in training set B. Throughout the training process, batches of data from both datasets
A and B were randomly selected. Segmentation labels from dataset Awere fed into the generator
to enrich facial structural information, whereas pixel-level details from dataset B were directly
used as input for the generator. A fivefold cross-validation approach was employed, dividing the
entire dataset into five subsets. Four subsets were used for training, whereas the remaining subset
served as the test set. This process was repeated five times, with each subset serving as the test set
once, ensuring a comprehensive evaluation. The test set involved in each training iteration is
referred to as testing set 1. Figure 9 displays samples from the dataset.

To comprehensively evaluate the performance of LW-DCGAN in the occluded face recog-
nition tasks, we additionally selected three widely used datasets as test sets. These three datasets
are no longer involved in the training process and are only used as result tests. The Caltech
occluded faces in the wild (COFW) dataset is specifically designed to study occluded faces,
featuring numerous images with various occlusions such as hats, glasses, and hands, which facil-
itates testing the performance of the model under complex occlusion conditions.47 The LFW
dataset includes images with occlusions such as glasses and hats and is primarily used to assess
the model’s performance under natural occlusion conditions.48 The masked face recognition v2
(MFR2) dataset, introduced during the COVID-19 pandemic, addresses face recognition chal-
lenges with masks. It includes images with various mask types, such as medical masks, N95
masks, and cloth masks, as well as other occluders such as sunglasses and hats, simulating par-
tially occluded facial scenes in real-world scenarios.49 Table 4 displays the varying occlusion
ratios across the datasets.

(b)(a)

Fig. 9 Partial display of the dataset. (a) Set A. (b) Set B.

Table 4 Data set distribution.

Occlusion rate 0% 10% to 15% 15% to 30% 30% to 50% 50% to 80%

Training set 1000 1800 1200 1400 1000

Testing set 1 300 300 400 350 250

COFW 50 120 200 100 30

LFW 280 100 70 50 0

MFR2 160 80 100 100 60
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4.2 Experimental Setup and Parameters
The LW-DCGAN algorithm model developed in this study was trained using the TensorFlow
2.5.0 framework, with acceleration provided by an NVIDIA GeForce RTX 2080 Ti GPU. The
training was conducted on a computer system equipped with an Intel(R) Core(TM) i5-11320H@
3.20 GHz processor, Intel(R) UHD Graphics 630 adapter, 16 GB of memory, and a 64-bit oper-
ating system. The model was programmed in Python 3.8.3 using the PyCharm 2021 integrated
development environment.

The experimental environment offered ample computing resources and stable software sup-
port, ensuring the efficient training of the LW-DCGAN model and the achievement of accurate
results. The parameter settings used in the experiment are detailed in Table 5.

To better utilize the face segmentation label information during the training process of train-
ing set A, an additional channel is added at the input layer to incorporate the segmentation labels
corresponding to the facial images. A branch is then introduced to handle this segmentation label
input, which includes a 1 × 1 convolution layer for mapping label features that are subsequently
fused with the main network.

Considering the added task of predicting segmentation, a 1 × 1 convolution prediction
branch is inserted just before the output of the final transposed convolution layer. This branch
has the same number of output channels as the segmentation label channel and is designed to
extract segmentation feature maps. During the initialization phase, the additional channel param-
eters of the generator are set to a non-trainable state, effectively freezing these parameters.
Throughout the training loop, by selectively enabling or restoring the training status of these
additional channel parameters, we can flexibly control the extent to which the generator utilizes
multi-label information when processing different dataset groups. For datasets that do not use
multi-label segmentation, the focus remains on mean squared error loss, feature matching loss,
and adversarial loss.

4.3 Ablation Experiment
Ablation experiments help determine the relative importance of various components within the
model. By comparing performance differences after removing specific components, we can iden-
tify which factors contribute the most to overall model performance. The evaluation metrics used
in this experiment include accuracy, recall, SSIM, and PSNR. Accuracy, a commonly used metric
in classification models, represents the proportion of correctly classified samples to the total
number of samples. It is calculated as shown in Eq. (23)

EQ-TARGET;temp:intralink-;e023;114;126Accuracy ¼ TPþTN

TPþ FPþTNþ FN
; (23)

where TP denotes the number of samples correctly classified as positive, indicating the true pos-
itive count. FP represents the count of samples incorrectly classified as positive, despite being

Table 5 Experimental parameters.

Parameter Value Parameter Value

Weight_decay 0.0001 Gradient penalty parameter 10

Batch size 64 Mask pool size 5

Epoch 200 Generator learning rate 0.001

Height_stride 16 Discriminator learning rate 0.0005

Width_stride 16 Momentum 0.9

Noise vector dimension 100 Detection_max_instances 1024

Discriminator optimizer Adam(lr=0.0002, beta_1=0.5) Detection_min_confidence 0.128

Generator optimizer Adam(lr=0.0002, beta_1=0.5) Detection_NMS_Threshold 0.3

Image size 64 × 64 Number of feature channels 64
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negatives in reality. TN refers to the number of samples correctly classified as negatives, i.e., true
negatives. FN signifies the count of samples incorrectly classified as negatives, despite being
positives in reality.

Recall rate refers to the proportion of samples that the model correctly predicts as positive
samples among all the samples that are positive. It is as shown in Eq. (24)

EQ-TARGET;temp:intralink-;e024;117;676Recall ¼ TP

TPþ FN
: (24)

The SSIM is employed to gauge the similarity between two images, with a value closer to 1
indicating higher similarity. It is represented by Eq. (25)

EQ-TARGET;temp:intralink-;e025;117;617SSIMðI1; I2Þ ¼
ð2μ1μ2 þC1Þ × ð2σ12 þC2Þ

ðμ12 þ μ2
2 þC1Þ × ðσ12 þ σ2

2 þC2Þ
; (25)

where I1 and I2 represent two images, respectively. μ1 and μ2 illustrate the respective mean of the
two images. σ1 and σ2 express the standard deviation of the two images. σ12 symbolizes the
covariance of the two images. C1 and C2 are constants introduced for stability. PSNR is a metric
used to measure image quality, and a higher value indicates better image quality. It is given by the
following, as shown in Eq. (26)

EQ-TARGET;temp:intralink-;e026;117;520PSNRðI1; I2Þ ¼ 10 log10

�
2552

MSEðI1; I2Þ
�
; (26)

where MSEðI1; I2Þ depicts the mean square error, that is, the degree of difference between the
two images. SSIM and PSNR measure the image generation capabilities of the generative adver-
sarial network module in LW-DCGAN.

The experiment is divided into three groups. In experiment group A, the full architecture of
LW-DCGAN is maintained, including both the FPN and ARCM components. In experiment
group B, the FPN is removed from LW-DCGAN while retaining ARCM, resulting in a network
denoted as LW-DCGAN (ARCM). In experiment group C, ARCM is excluded whereas FPN is
retained, creating the network referred to as LW-DCGAN (FPN). All three groups utilize the
same training dataset and apply a cosine annealing learning rate decay strategy. Figure 10 illus-
trates the changes in each metric from 0 to 200 epochs across these ablation experiments.

By comparing the performance indicators of LW-DCGAN, LW-DCGAN (ARCM), and LW-
DCGAN (FPN), several valuable conclusions can be drawn regarding the roles of FPN and
ARCM in LW-DCGAN. First, LW-DCGAN demonstrated the highest performance, with an
accuracy rate of 88%, a recall rate of 90%, an SSIM index of 0.877, and a PSNR of 28.3 after
200 epochs. The metrics for LW-DCGAN (ARCM) declined compared with LW-DCGAN,
showing a 6% decrease in accuracy, a 4% decrease in recall, a drop of 0.035 in SSIM, and
a reduction of 0.6 in PSNR. This suggests that FPN has a significantly positive impact on the
performance of image generation and classification tasks. In contrast, when ARCMwas removed
while retaining FPN in LW-DCGAN (FPN), accuracy decreased by 13%, recall by 10%, SSIM
by 0.082, and PSNR by 0.95. These significant declines in metrics indicate that the attention
mechanism plays a crucial role in the model’s performance. Overall, LW-DCGAN, incorporating
both FPN and ARCM, achieved superior performance.

4.4 Generalization Experiment
In the generalization experiment, we meticulously recorded the accuracy, recall, generator loss,
discriminator loss, and changes in PSNR and SSIM for both the training set and testing set 1
throughout the iteration process. In addition, the final performance metrics of the model, includ-
ing accuracy, recall, SSIM, and PSNR, were evaluated on widely used datasets such as COFW,
LFW, and MFR2. This analysis primarily serves to assess how well the model generalizes to
unseen data. Figure 11 illustrates the accuracy and recall of the model on the training set and
testing set 1 during the iterative training process.

As the number of epochs increased, both the training set accuracy and testing set 1 accuracy
showed gradual improvement. Initially, at epoch 0, the accuracy was relatively low, but as train-
ing progressed, it steadily increased until reaching a saturation point. The accuracy on the train-
ing set rose from 0.20 to 0.88, whereas the accuracy on testing set 1, after some initial
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fluctuations, showed a significant upward trend, increasing from 0.15 to 0.85. Similarly, recall
also improved for both datasets, with the training set stabilizing at 0.9 and testing set 1 at 0.87.
This suggests that the LW-DCGAN model demonstrates a strong generalization ability in rec-
ognizing occluded faces, achieving high accuracy and recall on testing set 1. In addition, a com-
parison of accuracy and recall between the training set and testing set 1 indicates that the model
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Fig. 11 Accuracy and recall in generalization experiment. (a) Accuracy. (b) Recall.
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did not exhibit significant signs of overfitting. The experiment further evaluates the LW-DCGAN
model using both generator loss and discriminator loss. Figure 12 illustrates the generator loss.

The data show a gradual decrease in both mean square error loss and feature matching loss as
training progresses. On the training set, the generator’s loss decreases from an initial value of
1.47 to 0.93. This trend aligns with the characteristics of LW-DCGAN, indicating that the model
gradually learns more effective generation and discrimination strategies during training.
Meanwhile, adversarial loss fluctuates throughout the entire training process, reflecting the oscil-
lations caused by the ongoing competition between the generator and discriminator. However, as
shown in Fig. 12, adversarial loss exhibits an overall downward trend.

To form the comprehensive loss function for the discriminator, we combine binary cross-
entropy loss with gradient penalty loss. The resulting discriminator loss rates are recorded in
Fig. 13, which illustrates an overall fluctuating downward trend in the loss rates for both the
training set and testing set 1.

The variation curves of PSNR and SSIM on the training set and testing set 1 are illustrated in
Fig. 14. From the graph, it is evident that although PSNR experiences significant fluctuations, it
shows an overall upward trend. Meanwhile, SSIM gradually increases in both the training set and
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Fig. 12 Generator loss. (a) MSE loss and feature matching loss. (b) Adversarial loss.
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testing set 1, indicating the progressive enhancement of image quality throughout the training
process.

To further verify the generalization ability of LW-DCGAN, we evaluated the performance of
the model on COFW, LFW, and MFR2. Table 6 shows the comparison results of LW-DCGAN on
the training set, testing set 1, COFW, LFW, and MFR2 in terms of accuracy, recall, SSIM,
and PSNR.

On the COFW dataset, which includes complex occlusions, the model achieves an accuracy
of 82% and a recall of 87%, with a PSNR of 27.6 and an SSIM of 0.867, demonstrating robust-
ness in challenging conditions. On the LFW dataset, featuring natural occlusions, the model
records a high accuracy of 94% and a recall of 91%, with a PSNR of 28.5 and an SSIM of
0.874. Finally, on the MFR2 dataset, which focuses on occlusions from masks, the model per-
forms with an accuracy of 86%, a recall of 88%, a PSNR of 27.9, and an SSIM of 0.877. Overall,
these results validate LW-DCGAN’s strong performance and adaptability across diverse
occluded facial recognition tasks.

4.5 Comparative Experiment
The performance of the LW-DCGAN algorithm was further evaluated through comparison
experiments with other GAN variants, including GAN, DCGAN, WGAN-GP, and the
Pix2Pix network. Comparing LW-DCGAN with GAN serves as a benchmark to assess its light-
weight face recognition capabilities, given GAN’s foundational role in generative models. The
comparison with DCGAN allows for an analysis of whether LW-DCGAN outperforms more
complex deep convolutional architectures. WGAN-GP, which addresses issues such as training
instability and mode collapse through improved loss functions, is compared with LW-DCGAN to
evaluate the impact of a lightweight design on training stability. Finally, Pix2Pix, a conditional
generative adversarial network for image translation, is compared with LW-DCGAN to
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Table 6 Performance of LW-DCGAN on different datasets.

Data set Accuracy (%) Recall (%) PSNR SSIM

Training set 88 90 28.3 0.881

Testing set 1 85 87 27.8 0.863

COFW 82 87 27.6 0.867

LFW 94 91 28.5 0.874

MFR2 86 88 27.9 0.877
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determine whether the latter excels in occluded face recognition tasks. The parameter settings for
each model are provided in Table 7.

To better compare the performance of LW-DCGAN in face recognition, we selected
FaceNet, ArcFace, VGGFace, and SphereFace (based on ResNet-64) as benchmarks.
FaceNet is recognized for its robustness in embedding space optimization using triplet loss,
ArcFace for its superior inter-class separability through angular margins, VGGFace as a
well-established benchmark for evaluating general recognition performance, and SphereFace for
its enhanced angle-based inter-class separation. This evaluation helps position LW-DCGAN rel-
ative to these established models. The experimental parameters of the four models are shown in
Table 8.

To intuitively evaluate the performance of various networks in occluded face recognition, we
primarily compare the models based on accuracy and recall. To assess the convergence and sta-
bility of different models and observe the variation of these metrics during the training process,
the same training dataset and learning rate cosine annealing strategy are employed for each
model. Figure 15 illustrates the variations in accuracy and recall for different models from epoch
0 to 200.

In comparative experiments, LW-DCGAN demonstrates significant superiority in training
accuracy, achieving a final accuracy of 88% and a recall rate of 90%. Among the GAN-related
models, DCGAN and WGAN-GP perform relatively well, with accuracies of 85% and recall
rates of 87% and 88%, respectively. However, GAN and Pix2Pix show poor performance.
Among the face recognition models—FaceNet, ArcFace, VGGFace, and SphereFace (based
on ResNet-64)—SphereFace outperforms the others, achieving an accuracy of 80% and a
recall rate of 83%. In contrast, VGGFace performs the worst on datasets with severe occlu-
sion. To further illustrate the advantage of LW-DCGAN in a network scale, we compare these

Table 7 Comparison of adversarial network parameter designs.

Parameter/model GAN DCGAN LW-DCGAN WGAN-GP Pix2Pix

Noise distribution Uniform
distribution
[−1, 1]

Uniform
distribution
[−1, 1]

Uniform
distribution
[−1, 1]

Gaussian
distribution

[0, 1]

Uniform
distribution
[−1, 1]

Activation function ReLU LeakyReLU ReLU Leaky ReLU ReLU
Leaky ReLU

Batch normalization No Yes Yes Yes Yes

Generator loss
function

Cross-
entropy
loss

Cross-
entropy
loss

Composite
loss

Wasserstein
loss

L1 loss

Discriminator loss
function

Cross-
entropy
loss

Cross-
entropy
loss

Composite
loss

Wasserstein
loss

Cross-
entropy
loss

Gradient clipping
parameter

N/A N/A N/A 0.01 N/A

L2 regularization
parameter

0.0001 0.0001 0.0001 0.0001 0.0001

Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001

Momentum 0.9 0.9 0.9 0.9 0.9

Batch size 64 64 64 64 64

Convolutional layers Yes Yes Yes Yes Yes

Max pooling layers N/A Yes Yes N/A Yes

Convolutional kernels (3 × 3) (3 × 3) (3 × 3) (4 × 4) (3 × 3)
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models in terms of model memory, parameters, and inference time. All values are shown in
Table 9.

From the performance metrics listed in the table, it is evident that after the optimization, the
memory usage of the LW-DCGAN generator model is reduced by 4.6 MB compared with the
DCGAN, with a decrease of 1M in the number of parameters and a reduction of 0.07 s in infer-
ence time.

5 Discussion
In this study, we introduced the lightweight deep convolutional generative adversarial network
(LW-DCGAN), specifically designed to address the challenge of recognizing occluded faces.
Our research included an extensive evaluation of LW-DCGAN’s capabilities through various
experimental analyses, underscoring its potential for practical deployment.

LW-DCGAN represents a significant advancement in occluded face recognition technology.
It overcomes the limitations of earlier methods by employing a unique network architecture and
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Fig. 15 Comparison of network models. (a) Accuracy. (b) Recall.

Table 8 Comparison of face recognition model parameter designs.

Parameter/model FaceNet ArcFace VGGFace
SphereFace

(based on ResNet-64)

Loss function Triplet loss Additive angular
margin loss

Softmax loss Angular
softmax loss

Embedding size 128 512 4096 512

Activation function ReLU ReLU ReLU ReLU

Batch normalization Yes Yes Yes Yes

Optimizer Adam SGD SGD SGD

Learning rate 0.001 0.01 0.01 0.01

Weight decay 1 × 10−4 5 × 10−4 5 × 10−4 5 × 10−4

Momentum 0.9 0.9 0.9 0.9

Batch size 64 64 64 64

Data augmentation Yes Yes Yes Yes

Dropout rate 0.5 0.4 0.5 0.4
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Table 9 Comparison of model size and inference time.

Model Metric Value

LW-DCGAN Generator model memory 7.3 MB

Discriminator model memory 26.3 MB

Generator model parameters 1.9M

Discriminator model parameters 7.15M

Inference time 0.18S

DCGAN Generator model memory 11.9 MB

Discriminator model memory 26.3 MB

Generator model parameters 2.9M

Discriminator model parameters 7.16M

Inference time 0.25S

GAN Generator model memory 7.9 MB

Discriminator model memory 13.1 MB

Generator model parameters 1.8M

Discriminator model parameters 3.1M

Inference time 0.22S

Pix2Pix Generator model memory 23.5 MB

Discriminator model memory 30.1 MB

Generator model parameters 6.3M

Discriminator model parameters 7.2M

Inference time 0.42S

WGAN-GP Generator model memory 16.1 MB

Discriminator model memory 25.3 MB

Generator model parameters 3.4M

Discriminator model parameters 5.9M

Inference time 0.35S

FaceNet Model memory 88.2 MB

Model parameters 22.8M

Inference time 0.15S

ArcFace Model memory 271 MB

Model parameters 68.1M

Inference time 0.09S

VGGFace Model memory 552 MB

Model parameters 138.3 M

Inference time 0.2S

SphereFace (based on ResNet-64) Model memory 96.2 MB

Model parameters 24.1M

Inference time 0.08S
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innovative algorithms. The multi-layer architecture excels at extracting detailed features
across different scales, improving the model’s ability to handle diverse and complex datasets.
Importantly, the lightweight framework enhances efficiency compared with conventional
deep learning models, reducing the dependency on high-end computational resources and ena-
bling deployment on devices with limited processing power, which is crucial for real-time
applications.

However, deploying LW-DCGAN also presents challenges that need to be addressed to
maximize its utility. The model’s performance is closely tied to the dataset used for training
and testing. Although the CelebA-Mask dataset includes a wide range of occluded facial images,
it does not cover all possible occlusion scenarios encountered in real-world settings. Although
LW-DCGAN performs well with common occlusions, its effectiveness diminishes with rarer or
more complex types. This limitation suggests the need for further robustness testing and the use
of advanced data augmentation techniques to improve the model’s applicability across various
occlusion conditions and severity levels. In addition, whereas LW-DCGAN is designed to be
more efficient than traditional models, the computational resources required during training are
still considerable, which could hinder its widespread adoption, particularly in resource-limited
environments.

6 Conclusion
This paper presents LW-DCGAN, a specialized generative adversarial network developed for
occluded face recognition. LW-DCGAN utilizes a streamlined convolutional network, enhanced
with feature pyramids and attention mechanisms, to generate high-quality images while main-
taining reduced model complexity. Our ablation studies confirmed that the FPN and ARCM
components significantly enhance LW-DCGAN’s performance in recognizing occluded faces.
Generalization tests further validated its effectiveness across multiple datasets, including
COFW, LFW, and MFR2. Comparative experiments against GAN, DCGAN, WGAN-GP,
Pix2Pix, and popular face recognition models such as FaceNet, ArcFace, VGGFace, and
SphereFace highlighted LW-DCGAN’s superior accuracy, recall rates, and smaller model size.
In summary, LW-DCGAN offers a robust and scalable solution for occluded face recognition,
with potential applications in broader image generation contexts. Future work will focus on opti-
mizing LW-DCGAN for the rapid and precise classification of various occluded or blurred
dynamic visual data streams.

Code and Data Availability
Some or all data, models, or codes generated or used during the study are available from the
corresponding author upon request.
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