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Deep inner-knuckle-print recognition
using lightweight Siamese network
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ABSTRACT. Texture features and stability have attracted much attention in the field of biometric
recognition. The inner-knuckle print is unique and not easy to forge, so it is widely
used in personal identity authentication, criminal detection, and other fields. In
recent years, the rapid development of deep learning technology has brought new
opportunities for internal-knuckle recognition. We propose a deep inner-knuckle
print recognition method named LSKNet network. By establishing a lightweight
Siamese network model and combining it with a robust cost function, we can realize
efficient and accurate recognition of the inner-knuckle print. Compared to traditional
methods and other deep learning methods, the network has lower model complexity
and computational resource requirements, which enables it to run under lower hard-
ware configurations. In addition, this paper also uses all the knuckle prints of four
fingers for concatenated fusion recognition. Experimental results demonstrate that
this method has achieved satisfactory results in the task of internal-knuckle print
recognition.
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1 Introduction
In the information-based network society, we often need a reliable way to effectively identify
an individual’s true identity. Biometric recognition technology is such a solution. It utilizes the
inherent physical or behavioral characteristics of the human body to verify personal identity by
means of image processing and pattern recognition. Compared with the traditional authentication
methods based on passwords or identity cards, biometric identification technology has unique
advantages. It can be carried around without additional memory burden and is difficult to be
faked. These characteristics endow biometric identification technology with higher security, reli-
ability, and practicability. Therefore, biometric technology has been widely applied in various
fields, providing an efficient and reliable solution for identity verification.

With the rise of the “Internet of Things,” biometric identification technology is showing
broad application prospects. In the field of intelligent visual Internet of Things, biometric iden-
tification technology, as one of the core technologies, is mainly applied to the acquisition of
human identification. At present, fingerprint recognition, face recognition, and iris recognition
are the most successful three kinds of biometric recognition technology. In addition to these
technologies, academia and industry are also actively researching and promoting other biometric
identification technologies with great market potential. These constantly evolving technologies
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will bring more application opportunities and value to various industries and help build an
intelligent and efficient Things ecosystem.

In recent years, researchers have shown widespread interest in emerging biometric identi-
fication technologies based on human hand features.1–5 In addition to the traditional palmprint
recognition, palmar vein recognition, and finger vein recognition, knuckle print recognition has
also become one of the most concerned technologies. The recognition of knuckle print has
unique advantages. First, the texture and line features of knuckle print are rich, which can achieve
high recognition accuracy.6 Second, the collection of knuckle prints is convenient, which can be
obtained only by using ordinary low-resolution cameras. Nowadays, cameras are low-cost and
widely used, which provides convenience for the promotion and application of knuckle
print recognition.7,8 In addition, the knuckle print can be combined with palmprint, hand shape,
and finger vein to form a high-precision recognition system.9–11 Finally, knuckle prints exhibit
distinct features such as line distance and direction, which could potentially enhance their suit-
ability for large-scale retrieval tasks, particularly in scenarios where extensive data collection is
feasible.

Knuckle prints refer to the curved muscle lines or textured areas located on the first, second,
and third joints of a person’s fingers. It has its own unique rules and is clearly distinguished from
other biological features such as fingerprints and palmprints. These regions contain the fine
structure and texture features of the knuckles of the hand, which can be used for individual iden-
tification and recognition. Compared with fingerprints and palmprints, knuckle prints present
certain differences in morphology and features, making them an independent and valuable bio-
metric recognition technology. Compared with fingerprints, its lines are slightly thicker, and the
small furrows between the lines are slightly wider. Overall, the texture structure of the knuckle
print is not complicated, and most of it is composed of horizontal or oblique straight lines, wavy
lines, and curved lines. Compared with the palmprint, its line is generally shorter, without lines as
long as the main line of the palmprint, and the direction of the line is also relatively single.

All ten fingers of the human hands have knuckle prints, which can be divided into two types:
knuckle prints on the back of the hand and knuckle prints on the palm. The knuckles on the back
of the hand are also called the dorsal knuckles, whereas the knuckles on the palm are called the
inner knuckles. The two types of knuckle prints differ in position and features, providing more
sources of information for biometric identification. More accurate and comprehensive individual
recognition can be achieved by analyzing and comparing the dorsal and inner knuckles of the
hand. Finger textures are considered to be unique and do not change over time,12 even as finger-
prints in identical twins.13,14

In a finger, there are usually three distinct areas of flexor muscle lines, corresponding to three
knuckles. Among them, the knuckle prints in the middle region contain rich information and are
called the main knuckle prints. The area closest to the nail tip of the flexor muscle line is called
the first little knuckle line. The area closest to the flexor muscle line of the palm is called the
second little knuckle. These different knuckle areas differ in position and features, providing
more detailed information for individual finger recognition. By analyzing and comparing the
main knuckle print, the first little knuckle print, and the second little knuckle print, a more
accurate and comprehensive finger feature recognition can be achieved.

This paper mainly studies the recognition algorithm of inner-knuckle print. The main con-
tributions of this research are as follows:

1. the first method to utilize similarity as a deep network metric for knuckle print recognition
2. propose a fast and universal method for obtaining the region of interest (ROI) of knuckle

prints
3. provide a self-collected dataset in the absence of a public dataset on the inner-knuckle

prints
4. propose a lightweight network (LKSNet) as a branch of the Siamese network model to

extract the similarity of knuckle prints, which improves both speed and accuracy compared
to the original twin network

5. propose robust loss to improve training accuracy and eliminate the imbalance between the
categories of some knuckle databases, which solves the problem of difficult case mining to
a certain extent
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6. propose the Multi-Inner-knuckle-print Fusion Network (MIKPF) algorithm is to fuse the
ROI of four fingers to achieve the best recognition rate.

2 Related Work
In this section, we briefly review the basic models of ROI extraction, the basic models of ori-
entation feature extraction, and the orientation feature representation of palmprint images. In
general, the inner-knuckle print recognition process is illustrated in Fig. 1.

First, collect the knuckle print image. Second, preprocess the image, such as image normali-
zation processing and ROI cutting. Then extract features for matching and recognition. For the
multi-modal recognition scheme, multiple features need to be fused and output. Finally, obtain
the recognition results.

2.1 ROI Extraction Algorithm for Inner-Knuckle Print
To create a new document, do the following: The pre-processing of knuckle prints mainly
includes knuckle print ROI image cutting and image quality assessment. For the preprocessing
algorithm of the inner knuckle line, the ROI of the knuckle line is generally determined according
to the energy intensity of the inner-knuckle line. Kang et al.15 proposed a preprocessing algorithm
for cutting ROI images of inner knuckles, which is quite representative. The specific processing
flow is illustrated in Fig. 2. This paper will perform similar ROI extraction operations on the
provided palmprint original image, and finetune some of the details to achieve better extraction
effects, which will be described in detail in Sec. 4.1.

2.2 Inner-Knuckle Print Feature Extraction and Matching
The inner-knuckle print recognition algorithm is the same as the palmprint recognition algorithm,
so we classify the recognition algorithms of inner-knuckle print. One approach is structure-based

Fig. 1 Recognition process of inner-knuckle print.

Fig. 2 Inner-knuckle print ROI extraction process.
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identification. Liu et al.16 used the Gabor filter and derivative line feature extraction algorithms
to extract the line features of the knuckle prints, fused the lines extracted by the two, and used
normalized cross-correlation to carry out line feature distance matching. Xu et al.17 first used
competitive code to calculate the Gabor energy diagram and extracted line features from it.
They then constructed structure-context descriptor (SCD) feature representation for line features
and used the Earth Mover’s Distance (EMD) for matching.

In addition, the recognition method based on subspace learning has also been applied to
related research. Savic and Pavei18 proposed a knuckle-print recognition scheme based on LDA
and regularized linear discriminant analysis (RDLDA). Sanches19 proposed a recognition method
based on PCALDA, which first used principal component analysis (PCA) to reduce the dimen-
sionality of knuckle print images and then used linear discriminant analysis (LDA) to increase
discriminability. Zhang et al.20 proposed a recognition algorithm based on locality preserving
projection (LPP), which first performed wavelet transform on the knuckle-print image, and then
used LPP to reduce the dimensionality of the wavelet transform coefficients.

The recognition method based on direction coding has always been an important scheme in
the field of biometric recognition, which has high robustness and stability. Meraoumi et al.21

proposed a knuckle-print recognition algorithm based on competitive code to extract directional
coding features from the main knuckle-print and the first little knuckle-print of the inner-knuckl-
print for matching. Michael et al.22 proposed the directional coding recognition method of
knuckle prints and performed wavelet transform on knuckle prints to obtain low-resolution rep-
resentation. They then used the Sobel gradient operator for edge detection in horizontal, vertical,
and 45-deg and negative 45-deg directions and compared the energy levels in the four directions
at the same location. The directional index value is used as the directional feature of the position,
and the Hamming distance is used for feature matching. In the first little knuckle region, Kumar
and Zhou23 proposed a knuckle-print recognition method based on competitive code and local
Radon transform and designed a matching scheme based on the fusion of global and local match-
ing values to obtain robust recognition results.

Local features have the advantages of extracting the local structure of the image, being
robust, unaffected by scale and rotation, and compact feature representation, which makes them
an important tool and technology in image processing and computer vision tasks. The recog-
nition method based on the image local descriptor is also one of the common methods in the field
of inner-knuckle print recognition. Liu et al.24 proposed that enhanced LBP for knuckle-print
recognition does not encode from 3 × 3 neighborhoods but encodes in the four neighborhoods on
the left and right sides of a horizontal line. After obtaining the coding image, the real-valued
coding image is decomposed into multilayer binary images, and cross-correlation is used for
feature matching. Nanni et al.25 proposed an inner-knuckle print recognition algorithm based
on a multi-resolution local ternary pattern (LTP) and compared the recognition performance with
LBP. Bahmed and Mammar26 proposed an improved feature extraction method average line local
binary pattern (ALLBP), which improved the feature extraction of the finger inner-knuckle print
region.

The inner-knuckle prints have clear texture features, unlike palmprints and fingerprints,
which have some fine lines to do interference, so the recognition methods based on texture fea-
tures can often extract important image information. Goh et al.13 proposed a texture feature
extraction method based on Ridgelet, which firstly divided the knuckle print image into blocks,
and then carried out Ridgelet transform on the image blocks, taking the normalized Ridgelet
coefficients of each image block as texture features. Nezhadian and Rashidi27 adopted two fea-
ture extraction methods, Gabor wavelet filtering and wavelet energy, and among all features, the
forward feature selection algorithm selected 50 better features for recognition.

Due to the fact that the inner knuckle print is located in the inner palm, some researchers
carry out multi-modal recognition by simultaneously extracting other features of the hand.
Kanhangad et al.28 proposed a unified recognition framework that fuses the 2D palmprint,
2D knuckle print, 3D handshape, and 3D palmprint, in which the 2D knuckle print uses the
competitive code algorithm for feature extraction and matching. Zhu and Zhang29 proposed
a hierarchical multi-modal recognition scheme, in which the first layer uses the geometric fea-
tures of fingers for matching, the second layer extracts the features of inner knuckle print for
matching, and the third layer extracts the palmprint features for matching. Guan et al.30 proposed
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a multi-modal recognition algorithm that fused internal knuckle print and finger veins, where line
features are extracted for both the inner knuckle prints and the finger veins, and feature layer
fusion is performed on the line features. Arulalan et al.31 proposed a multi-modal biometric rec-
ognition system based on iris and inner knuckle prints. Bahmed et al.32 proposed a multi-modal
biometrics system that utilizes fingerprints and geometric features within finger joints. In addi-
tion, both primary and secondary knuckle marks are used.

In recent years, deep learning has flourished in the field of computer vision, and there are
many new researches in the field of biometric recognition, which have achieved good success.
Xue et al.33 input the inner knuckle print image into the convolutional neural network for feature
extraction and studied the learning rate, the number of convolutional kernels, the number of
neurons in the fully connected layer, the number of convolutional layers in the network, and
the influence of different optimization algorithms on the recognition results and obtained the
best network parameters. Prasanna and Deepika34 trained the same convolutional neural network
topology on palmprint and inner knuckle print respectively to adapt the neural model to different
biological features and then carried out feature-level fusion. Most studies are not focused on the
recognition of inner-knuckle print recognition, and they often use the knuckle prints on the back
of the hand to individually recognize or cascade other features such as cascade palm prints.6,35–38

Using the knuckle prints on the back of the hand requires collecting an additional image of the
back of the hand, which is inconvenient and time-consuming. Moreover, the knuckle prints on
the back of the hand are complex, which can lead to errors in extracting ROI.

3 Method

3.1 Lightweight Knuckle Print Siamese Network for Feature Extraction
(LKSNet)

Figure 3 illustrates the algorithm flowchart of this paper. We input RGB images by splicing the
knuckle prints of three different parts of a single finger through channel level, which has the
advantage of reducing the defect of a few features in the gray image of a single part.
Different from the Siamese network in,39 we propose a new backbone network LKSNet as a
branch network of the Siamese network, which can fully extract highly recognizable features.
At the same time, we use two fully connected layers for multi-feature prediction, which are used
for feature extraction and category classification respectively. In addition, the depth separable
module and inverted residual module from MobileNet-V340 are widely utilized in LKSNet,
which makes the accuracy and speed of the network have a good performance. Table 1 presents
the specific structure of LKSNet, Mb_i is an inverted-residual bottleneck module in
MobileNet-V3.

3.2 Robust Loss
To train LKSNet networks well, it is necessary to define a differentiable cost function. Because
twin networks are not designed to classify inputs, directly using the cost function of classification
(such as cross-entropy) is not suitable. We propose a cost function named Robust_Loss, which
consists of two parts, illustrated in Eq. (1). The first half is contrastive loss with modulation
factor, and the second part uses the binary cross-entropy cost function BCE loss as an auxiliary
cost function. Let x1 and x2 be the inputs to the LKSNet network, and bel denotes the binary

Fig. 3 Algorithm flow chart.
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label of whether x1 and x2 match or not, with label ∈ f0;1g. If x1 and x2 are similar, the label is
0. If not, the label is 1.
EQ-TARGET;temp:intralink-;e001;114;326

Robust_Lossðω; label; x1; x2; predÞ ¼
1

2
· α · ð1 − labelÞ · d2ω

þ 1

2
· β · label · ½maxðmargin − dω; 0Þ�2 þBCEðpred; labelÞ; (1)

where α ¼ num_1∕ðnum_0þ num_1Þ and β ¼ num_0∕ðnum_0þ num_1Þ are the modulation
factor, which has a certain effect of eliminating class imbalance. dω is the Euclidian distance
of two feature vectors output by the LKSNet network, namely dω ¼ kFðx1Þ − Fðx2Þk; F
denotes that LKSNet maps inputs x1 and x2 to their eigenvectors; and ω denotes the weights.
Margin is used to define a boundary on F such that only negative samples within that range have
an effect on the cost function. For all training samples, the total cost function is given by Eq. (2)

EQ-TARGET;temp:intralink-;e002;114;195LðωÞ ¼ 1

N

XN

i¼1

Robust_Lossðω; ðlabel; x1; x2; predÞiÞ: (2)

3.3 Multi-Inner-Knuckle Print Fusion Network
This section will use all the inner knuckle prints of the four finger regions for fusion recognition
to achieve higher recognition accuracy. As shown in Fig. 4, we proposed a simple fusion network
framework, which fed the RGB-ROI of four fingers into LKSNet as inputs to obtain four sim-
ilarity values, and then made fusion decisions on the four similarity values to obtain the final
forecast output. When making a positive prediction, the decision fusion equation is given by
Eq. (3).

Table 1 Model architecture.

Input Operator Out-channel Stride

100 × 100 × 3 (stem) Conv2d 32 2

50 × 50 × 32 (separable_conv) Conv2d 32 1

25 × 25 × 32 (separable_conv) Conv2d 16 1

25 × 25 × 16 mb_0 32 2

13 × 13 × 32 mb_1 32 2

7 × 7 × 32 mb_2 80 2

7 × 7 × 80 mb_3 80 1

7 × 7 × 80 mb_4 80 1

7 × 7 × 80 mb_5 80 1

4 × 4 × 80 mb_6 192 2

4 × 4 × 192 mb_7 192 1

4 × 4 × 192 mb_8 192 1

4 × 4 × 192 mb_9 192 1

4 × 4 × 192 mb_10 320 1

4 × 4 × 320 (conv_before_pooling) Conv2d 1280 1

4 × 4 × 1280 AvgPooling 1280 1

1 × 1 × 1280 FC_1 500 –

1 × 1 × 500 FC_2 10 –

1 × 1 × 10 FC_3 1 –
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EQ-TARGET;temp:intralink-;e003;117;555ðScore1 < 1&&Score2 < 1&&Score3 < 1ÞjjScore1 < 1&&Score2< 1&&Score4< 1Þjj
ðScore2 < 1&&Score3< 1&&Score4< 1Þ;

(3)

EQ-TARGET;temp:intralink-;e004;117;506ððScore1 < 1&&Score2< 1ÞjjðScore1 < 1&&Score3< 1ÞjjðScore2 < 1&&Score3< 1ÞÞ
&&ðScore1þScore2þScore3þScore4 < 4Þ:

(4)

Since the results of the knuckle prints within the four fingers are fused at the decision layer,
the number of fingers is not an odd number, so a constraint needs to be added to limit the case
where only two fingers predict correctly [i.e., Eq. (4)]. When the decision of Eqs. (3) and (4) is
satisfied, we consider it to be a correct match. Among them, Eq. (3) can effectively prevent
decision-making errors affected by excessive similarity weight, and Eq. (4) can ensure that only
half of the predictions are correct, preventing the problem of excessive proportion of nega-
tive cases.

4 Experiment
In this section, we will conduct relevant experiments. First, we introduce the algorithm for
extracting the ROI of knuckle print and obtain relatively accurate ROI images. Second, we intro-
duce the relevant settings of the experiment in this paper. Finally, we selected nine methods as
comparative experiments, including non-Siamese methods: competitive code,41 ordinal code,42

RLOC,43 LLDP,44 EEPNet,45 CCNet46, CO3Net,47 and Siamese methods: FK-Siamese48 and
CHKM-Siamese.49 The effectiveness of LKSNet and MIKPF algorithms has been verified
through experimental comparisons from multiple angles and levels.

4.1 Performance Metrics
Generally speaking, the system performance evaluation standard of the inner knuckle print rec-
ognition algorithm is shown in Table 2. Average recognition rate (ARR), equal error rate (EER),
gallium nitride (GAN, false acceptance rate (FAR), and receiver operating characteristic (ROC)
curve will be used as experimental evaluation indexes in the following experiments.

4.2 ROI Extraction

4.2.1 Dataset introduction

This study has received the necessary ethical approval from the Institutional Review Committee
of Anhui Xinhua University and strives to obtain informed consent for the palm picture from the
participant or their authorized representative office.

The region of interest (ROI) for knuckle creases, also known as knuckle crease analysis, is a
vital area of study in various fields, including biometrics, forensic science, and medical diag-
nostics. Knuckle creases, or dermatoglyphics, refer to the intricate patterns formed by the folds
and ridges on the skin’s surface around the joints, particularly prominent at the knuckles.

Fig. 4 MIKPF framework.
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Because the published datasets of inner-knuckle print are very few and the fact that they do
not include the inner-knuckle prints of all fingers except the thumb, the datasets used in this
article were obtained from the original hand images for the required ROI.

XINHUA is a dataset collected by ourselves, which contains 2000 hand images of 50
subjects, including 41 males and 9 females, all aged between 20 and 30. The database was
collected in two phases from January 2022 to April 2022, with each stage providing 10 left-
hand and 10 right-hand images per person. It collects the indoor scene through an iPhone XR
smartphone.

The IIT Delhi50 contact palmprint database contains 2601 images collected from 460 palms,
with a total of 230 people providing data, among which 5 to 7 palmprint images per palm were
collected under different hand postures. In addition to the original images, the Indian Institute of
Technology (ITT) Delhi palmprint database also provides 150 × 150 pixel normalized and
cropped palmprint images.

BJTU-V251 contains 2663 hand images of 148 volunteers, including 91 males and 57
females, ranging in age from 8 to 73. The database was collected in two s from November
2015 to December 2017, with each person providing 3 to 5 left-handed images and 3 to 5
right-handed images in each stage. BJTU-V2 has been built in both indoor and outdoor scenes
via smartphones such as iPhone 6, Nexus 6p, Huawei Mate8, Nubia Z9, and Xiaomi Redmi 1S.

Figure 5 presents 12 hand images, where Fig. 5(a) is a XINHUA image, Fig. 5(b) is an IIT
Delhi image, and Fig. 5(c) is a BJTU-V2 image.

4.2.2 ROI extraction method

For the preprocessing algorithm of the inner knuckle print, the position of the region of interest of
the inner knuckle print is generally determined based on the energy intensity of the inner knuckle
line. To obtain the approximate position of each finger region, it is necessary to accurately local-
ize to the four boundaries of the finger region: top, bottom, left, and right. Here, the position of
the finger area is preliminarily located in the form of a rectangular box, illustrated in Fig. 6. To
obtain the rectangular box, it is necessary to traverse the coordinate sequence of the finger out-
line. As long as the coordinate positions of the two points P1 and P2 can be obtained, the final
ROI can be obtained through subsequent simple preprocessing.

Next, we need to locate the starting point P1 and the ending point P2 of the finger contour
sequence. We first use the palmprint ROI linear cluster algorithm52 to find each finger gap point.
Suppose we have found the two key points K1 between the index and middle fingers and K3
between the thumb and index fingers. The position information of these two key points can be
used to help us obtain the starting point P1 and the ending point P2 of different finger contour
sequences.

Table 2 The main performance metrics of biometric recognition systems.

Performance metrics Abbreviation Description

Recognition ARR Proportion of the total number of correctly predicted results

False acceptance rate FAR Probability of accepting biometric features from non-A
as features of A by mistake.

Genuine rejection rate GRR Probability of judging non-A biological features as non-A
features, where FAR + GRR = 1.

False rejection rate FRR Probability of rejecting the biometric feature from
A as the feature of other individuals.

Genuine acceptance rate GAR Judging the biological characteristics of A as the probability
of biological characteristics of A, where FRR + GAR = 1.

Equal error rate EER Error rate when FAR and FRR are equal

Receiver operating
characteristic curve

ROC curve FAR and FRR show two curves with the change of threshold,
one is ROC, and the other is FAR and GAR.
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Here, taking the region of interest of the inner-knuckle prints of the index finger as an exam-
ple, and other finger extraction algorithms are similar and will not be described again. The steps
are illustrated in Fig. 7.

Let the starting point of the contour sequence be P1 and the ending point be P2. Assume that
the key points between the thumb and index finger are K1, the key points at the tip of the index
finger are K2, and the key points between the index and middle finger are K3. Let the contour
coordinate sequence F1ðx; yÞ traverse from K1 to K2, the Euclidean distance minimum point
from the contour point to K3 is P1. Similarly, if the contour coordinate sequence F2ðx; yÞ tra-
verses from K2 to K3, the Euclidean distance minimum point from the contour point to K1 is P2.

To keep the inner knuckle print information of the second little knuckle, we take the points
P3 and P4 with a certain unit length (50 coordinate distances here) from the key points P1 and
P2 on the contour line and connect P1P3 and P2P4 to make an extension line (50 coordinate
distances here) to P5 and P6. Up to this point, all the coordinates of the finger outline sequence
used to describe the rectangular frame have been collected. By traversing the coordinate
sequence, it is easy to locate the top, bottom, left, and right boundaries of the target rectangular
frame in the finger region.

Fig. 5 Palm images of various datasets: (a) XINHU, (b) IIT Delhi, and (c) BJTU-V.

Fig. 6 Cut the finger image region.
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Based on the principle of image connectivity, the finger image containing only the target
finger is extracted from the finger image that has been cut. In the last step of cutting the finger
image, we have ensured that the connected component belonging to the finger part is the largest
connected component (using the default eight-neighborhood connectivity). Therefore, we only
need to find the maximum connected component in the already cut finger image, that is, the
finger image that we need to extract. First of all, the image needs to be low-pass filtering, binary,
and then select the largest connected region and finally select the corresponding target region in
the original image according to the coordinates of the connected region, that is, the finger image
we need to extract.

Although the extracted finger image has included all the contents of the target finger region,
to extract the ROI of the inner knuckle print in the future, it is inevitable to perform directional
normalization processing. As illustrated in Fig. 8, this step involves finding the centroid of the
finger and the position of the tip and calculating the angle to correct.

In the inner finger image, there are generally three distinct flexor muscle line areas, corre-
sponding to the three knuckle prints, respectively. They are the first knuckle print, the main
knuckle print, and the second knuckle print. This section extracts the rectangular ROI for the
first knuckle-print, main knuckle-print, and second knuckle-print regions. The main idea is that
in the gray image, the gray value of the knuckle print area has an obvious gradient change in the
horizontal direction, so its position can be determined according to this feature, and the coor-
dinate system can be established on this basis to extract ROI of the knuckle print.

In the inner knuckle print region, especially in the main knuckle print region, due to the wide
pixel distribution of the knuckle print, many edge information that can be found only by the
human eye is easily ignored in the gradient convolution of traditional edge extraction operators
(such as Sobel, Prewitt). In addition, the convolution kernel here only considers the gradient
change in the vertical direction. In fact, most of the knuckle print information is tilted at an angle
in the vertical direction.

To solve this problem, we constructed a 9 × 9 medication-related falls risk assessment tool
(MFRAT)33 filter template suitable for the edge detection of the knuckle print region, as illus-
trated in Fig. 9. The line width L is set to 3, which is used to solve the problem of wide pixel
distribution and tilting of knuckle prints in the vertical direction. The edge detection effect after
convolution using the MFRAT template is illustrated in Fig. 10.

Fig. 8 Direction normalization of finger images: (a) original image, (b) calculate the angle between
the finger direction and the vertical axis, and (c) finger image after direction normalization.

Fig. 7 Process of locating the finger region target rectangular box: (a) traversal of contour
sequence, (b) contour point location, and (c) finger region processing.
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According to the gray energy of the inner knuckle print in the binary diagram, a curve graph
was plotted [Fig. 11(a)], and the position of the inner knuckle prints was determined [Fig. 11(b)].
Finally, a coordinate system was established to cut out the region of interest of the inner knuckle
prints [Fig. 11(c)].

4.3 Experimental Setting
The setting of the database is particularly important, and this paper carries on two kinds of data-
base settings, namely staged type and mixed type. For the setting of a staged database, the data is
divided into two stages according to the collection stage, with the first stage data used as the
training set and the second stage data used as the testing set. It should be noted that due to the
excessive number of negative samples (that is, sample pairs that do not belong to the same class),
our positive and negative samples are set in a ratio of nearly 1:1. To enhance the generalization of
data, we do not force the positive and negative ratio to be set at 50%, but simulate the generation
of positive and negative labels by a random function.

Fig. 9 MFRAT filter template.

Fig. 10 MFRAT template detection result: (a) original image and (b) edge detection image.

Fig. 11 Inner knuckle print ROI extraction: (a) a curve graph, (b) location graph, and (c) region of
interest.
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In addition, our experiments were carried out on NVIDIAGPU GTX2080 and Intel CPU i7-
8700 hosts with 8 GB of memory on the graphics card. The network learning rate in the experi-
ment is 0.0005, the optimizer uses the Adam optimizer, the batch size is 4, and the epoch is 150.

4.4 Results
Figure 12 illustrates some examples of similarity matching, where Figs. 12(a) and 12(b) are data
pairs of the same type and Figs. 12(c) and 12(d) are data pairs of different type. When the sim-
ilarity is less than 1, we consider it to be of the same kind; otherwise, it is considered to be of
different kind. The smaller the similarity, the more similar it is.

4.4.1 LKSNet experiment results and comparison with non-Siamese methods

Tables 3, 4, and 5 present the experimental results on the XINHUA dataset, IIT Delhi dataset, and
BJTU-V2 dataset, respectively. It can be seen that the recognition rate of LKSNet is the best on
any data set and any finger data, and we only need to train 150 iterations on LKSNet to achieve
a good generalization effect. In other training based on the depth model, we have trained 300
iterations, which also proves that LKSNet is a lightweight model that can be trained quickly. For
each method, we focus on its ARR and EER values for each finger’s inner knuckle print. ARR

Fig. 12 Example of similarity matching.

Table 3 Experimental results of XINHUA dataset.

XINHUA

Middle finger Ring finger Index finger Little finger

ARR
(%)

EER
(%)

ARR
(%)

EER
(%)

ARR
(%)

EER
(%)

ARR
(%)

EER
(%)

Competitive code 88.30 7.8990 97.80 2.8000 95.80 3.9005 94.60 6.1025

Ordinal code 86.10 8.6015 98.00 1.9586 96.00 3.0869 96.50 2.8121

LLDP 76.50 11.4880 95.20 5.9940 87.40 7.8920 95.30 6.0240

RLOC 88.10 6.8636 97.90 2.4035 96.00 3.6374 97.10 2.4520

EEPNet 91.30 4.0453 92.90 3.7111 90.90 4.4845 92.80 5.3809

CCNet 78.90 9.7481 95.90 3.9598 91.90 6.9133 96.50 3.4997

CO3Net 79.10 8.4101 91.50 6.3632 84.80 7.6501 94.80 5.1475

LKSNet(ours) 97.30 2.9825 98.30 1.4714 97.60 2.6875 97.80 2.1442
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represents the correct recognition rate in model prediction, whereas EER indicates the probability
of incorrectly accepting authorized users when rejecting unauthorized ones.

The following conclusions can be drawn from Table 3. First, it is notable that different meth-
ods show performance disparities across different fingers. For instance, regarding the middle
finger, we observe that LKSNet (our proposed method) achieves the best performance with
an ARR of 97.30% and an EER of 2.9825%. In comparison, other methods exhibit slightly differ-
ent performances, but overall, LKSNet demonstrates superior performance on this finger.
Similarly, for other finger knuckle prints, LKSNet also exhibits similar advantages. Second,
differences between methods are observed in terms of ARR and EER. For example, compared
to competitive methods, LKSNet achieves higher ARR values for all fingers, indicating its ability
to more effectively reduce risks. Furthermore, LKSNet also achieves lower EER values for all
fingers, implying its reliability in rejecting incorrectly identified unauthorized users (Fig. 13).

From Table 4, finger recognition experiments were conducted on the IIT Delhi dataset, and
the performance of different algorithms on this dataset was analyzed. We observed that the image
quality of the IIT Delhi dataset is relatively poor, which poses challenges for finger recognition
tasks. However, through a comparative analysis of the experimental results, we identified some
interesting findings. First, we noted that most algorithms exhibited relatively similar average

Table 4 Experimental results of the IIT Delhi dataset.

IIT Delhi

Middle finger Ring finger Index finger Little finger

ARR
(%)

EER
(%)

ARR
(%)

EER
(%)

ARR
(%)

EER
(%)

ARR
(%)

EER
(%)

Competitive code 97.85 1.3578 96.72 2.0124 94.71 2.8056 88.16 5.3449

Ordinal code 98.46 1.1093 98.27 1.3571 97.01 2.6641 96.39 2.4787

LLDP 96.21 1.9663 95.09 2.3965 94.24 3.5969 90.73 4.2525

RLOC 97.75 1.5755 97.10 1.7349 95.84 3.0341 94.90 3.3851

EEPNet 95.42 2.4279 94.02 2.8695 92.34 3.9346 84.40 8.6311

CCNet 89.35 6.2705 87.53 5.8264 84.34 6.5301 75.44 8.4102

CO3Net 84.35 6.8902 81.64 7.9720 76.34 8.7950 68.95 12.6605

LKSNet(ours) 99.78 0.2496 99.13 0.5332 99.78 0.1834 99.57 0.4688

Table 5 Experimental results of BJTU-V2 dataset.

BJTU-V2

Middle finger Ring finger Index finger Little finger

ARR
(%)

EER
(%)

ARR
(%)

EER
(%)

ARR
(%)

EER
(%)

ARR
(%)

EER
(%)

Competitive code 99.55 0.6761 99.21 1.5209 98.70 1.1952 92.68 4.9465

Ordinal code 99.77 0.2816 99.61 0.4563 99.15 0.8561 97.24 2.6742

LLDP 99.10 0.9558 98.14 1.5765 98.14 1.7016 95.38 3.5863

RLOC 99.72 0.6755 98.87 1.2294 98.65 1.3882 96.28 2.8996

EEPNet 100 0.0985 99.77 0.4021 99.77 0.3495 97.84 2.2894

CCNet 98.82 0.9635 97.67 1.6173 97.69 1.9266 94.59 4.1719

CO3Net 96.00 1.9003 93.97 2.8048 93.80 3.5197 86.14 4.5206

LKSNet(ours) 100 0.0778 99.83 0.1995 99.93 0.0826 98.37 0.8977
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recognition rates (ARR) and average equal error rates (EER) on this dataset, but there were
noticeable differences in certain cases. Particularly, we found that the LKSNet algorithm per-
formed the best on the IIT Delhi dataset, due to its combination of deep separable convolution,
lightweight convolution, and attention mechanism in the design process to optimize the network
structure and improve the feature representation ability. Second, we observed that some algo-
rithms exhibited poorer performance on the IIT Delhi dataset, with relatively higher EER. These
included algorithms such as CCNet and CO3Net, which demonstrated weaker performance when
dealing with noisy and low-quality images in the dataset. This further underscores the challenges
posed by the IIT Delhi dataset and highlights the sensitivity of algorithms to dataset character-
istics (Figs. 14 and 15).

Analyzing the results from Table 5, several observations can be made. Overall, the algo-
rithms achieved high average recognition rates (ARR) across all finger positions. This indicates
that they were generally effective in identifying fingers in the BJTU-V2 dataset. While the ARR
is high for most algorithms, there are variations in the average error rates (EER) across different
finger positions. Some algorithms, such as CCNet and CO3Net, show relatively high EER for
some finger positions compared with other algorithms. This is because CCNet and CO3Net use
competitive coding with adjustable parameters, and their adjustment of Gabor filter parameters is
not as good as the empirical value set manually. Notably, LKSNet, the algorithm developed in
this study, achieved the highest ARR and lowest EER across all finger positions. This indicates
its superior performance compared to other algorithms on the BJTU-V2 dataset. LKSNet con-
sistently demonstrated excellent accuracy and robustness in identifying fingers, showcasing its
effectiveness for finger recognition tasks.

Overall, the recognition effect of traditional methods and deep learning methods have
mutual advantages, but traditional methods tend to have better stability. On one hand, deep learn-
ing requires big data to enhance the generalization of the model; on the other hand, due to the
problem of finger image resolution, it has to be scaled to adapt to the input of the model, resulting
in the loss of original data information. In addition, a good training strategy is often the key to

Fig. 13 ROC curve of knuckle prints in XINHUA: (a) middle finger, (b) ring finger, (c) index finger,
and (d) little finger.
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Fig. 14 ROC curve of knuckle prints in IIT Delhi: (a) middle finger, (b) ring finger, (c) index finger,
and (d) little finger.

Fig. 15 ROC curve of knuckle prints in BJTU-V2: (a) middle finger, (b) ring finger, (c) index finger,
and (d) little finger.
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success. In the comparative experiment in this paper, the methods based on deep learning all
adopt the experimental settings in53 to pursue the best effect, but only training 300 iterations
may not be able to achieve the optimal solution of the model.

4.4.2 LKSNet experiment results and comparison with Siamese methods

This section will comprehensively compare the similarities and differences between LSKNet and
Siamese methods. Table 6 offers a comprehensive comparison between our proposed LKSNet
method and two Siamese network-based approaches, FK-Siamese and CHKM-Siamese, across
different finger positions and datasets. Upon meticulous examination of the outcomes, several
crucial insights emerge. LKSNet consistently outperforms both FK-Siamese and CHKM-
Siamese methods in terms of both average recognition rate (ARR) and equal error rate (EER)
across all datasets and finger positions. This is because FK-Siamese and CHKM-Siamese have
simple neural network structures, which only combine some convolution and fully connected
layers, whereas our method combines multiple separable convolution operations. In terms of
the loss function, FK-Siamese uses contrastive loss, CHKM-Siamese uses binary cross-entropy
loss, and LKSNet uses a combination of the two, which makes our method make better use of the
correlation and nonlinear characteristics of data. In addition, our model uses more complex opti-
mization strategies and regularization techniques in the training process to improve the gener-
alization ability and stability of the model.

4.4.3 MIKPF experiment results

In this section, the inner knuckle prints of four fingers will be fused and output. The recognition
scores of the inner knuckle prints of each finger will be obtained by the LKSNet network, and the
decision output will be made by voting fusion. Table 7 presents the recognition results of MIKPF
networks, and it can be seen that the fusion results have been further improved. It should be noted
that the number of training iterations for MIKPF has been reduced from 150 to 100, which also
indicates that each branch model works together to accelerate the model training and achieve a
good balance between accuracy and speed. It can be seen from the experimental results that a
100% recognition rate is achieved on the IIT Delhi and BJTU-V2 datasets, which is a satisfactory

Table 6 Experimental results and comparison with Siamese methods.

Middle finger Ring finger Index finger Little finger

ARR
(%)

EER
(%)

ARR
(%)

EER
(%)

ARR
(%)

EER
(%)

ARR
(%)

EER
(%)

XINHUA

FK-Siamese 87.50 7.3348 93.60 3.9326 91.80 5.3328 94.30 3.7214

CHKM-Siamese 92.40 4.9710 95.50 3.3472 94.90 3.6825 95.20 3.3892

LKSNet(ours) 97.30 2.9825 98.30 1.4714 97.60 2.6875 97.80 2.1442

IIT Delhi

FK-Siamese 96.37 2.8542 96.18 3.0516 96.86 2.6715 96.55 2.7044

CHKM-Siamese 99.05 0.9773 98.04 1.7526 98.33 1.6524 98.19 1.6822

LKSNet(ours) 99.78 0.2496 99.13 0.5332 99.78 0.1834 99.57 0.4688

BTJU-V2

FK-Siamese 99.26 0.9012 94.67 4.0328 96.38 2.8345 92.15 5.0716

CHKM-Siamese 99.45 0.7236 97.56 1.9783 98.12 1.7124 96.44 2.8044

LKSNet(ours) 100 0.0778 99.83 0.1995 99.93 0.0826 98.37 0.8977
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result and fully proves the effectiveness of the MIKPF strategy. Although the XINHUA dataset
failed to achieve a very high recognition rate, it also achieved acceptable results.

4.5 Properties
Here, we mainly compare indicators such as model convergence speed and model size in deep
learning methods. A model with good generalization ability has the characteristics of fast con-
vergence speed, high accuracy, and small model parameters. In this section, we will focus on
performance evaluation in deep learning methods.

Table 8 presents several common model indicators. It can be seen that LKSNet far outper-
forms other methods in terms of total memory, computational complexity, floating-point arith-
metic, and time delay indicators. It should be noted here that latency refers to the time required to
complete a prediction, which is particularly important. Although total MAdd and total Flops can
reflect the performance of the model to a certain extent, the model may not be suitable when
combined with hardware. Therefore, it is necessary and reasonable to compare latency.

Figure 16 illustrates the corresponding indicator histogram. It can be seen that there are
obvious differences in the performance of four different model methods in total MAdd, total
Flops, and latency. Total MAdd and total flops are usually considered important indicators

Table 8 Depth model performance indicators.

Method Total MAdd (G) Total Flops (G) Latency (ms)

EEPNet 0.77 0.39 7.8

CCNet 0.32 0.17 5

CO3Net 0.41 0.24 4.8

LKSNet(ours) 0.31 0.15 3

Fig. 16 Histogram of performance indicators.

Table 7 MIKPF experiment results.

Datasets ARR EER

XINHUA 98.90 0.9374

IIT Delhi 100 0.1034

BJTU-V2 100 0.0635
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to evaluate the computational complexity of the model, whereas latency directly affects the speed
and efficiency of the model in practical application. First of all, by comparing EEPNet, CCNet,
and CO3Net, we can observe that the values of these models are quite different on total MAdd
and total Flops. EEPNet shows the highest computational complexity, whereas CCNet and
CO3Net are relatively low. This shows that CCNet and CO3Net may be more attractive choices
in the case of limited computing resources because they can reduce computing costs while main-
taining good performance. LSKNet shows lower total MAdd and total Flops. This means that
LSKNet needs fewer computing resources when performing the same task, thus saving time
and energy costs. On the other hand, we notice that the value of latency also shows obvious
differences. EEPNet has the highest latency, which indicates that it takes a long time to complete
the prediction of an image. In contrast, CCNet and CO3Net show lower latency values, which
means that they may have higher response speeds in practical applications. LSKNet has the low-
est latency value, which indicates that our proposed model is very efficient in completing the
prediction task and may be of great significance to real-time applications.

5 Conclusion
In conclusion, this paper introduces LSKNet, a novel deep inner-knuckle print recognition
method that leverages a lightweight Siamese network model and a robust cost function. Our
method represents a significant advancement in knuckle print recognition for several reasons.
First, it is the first approach to utilize similarity as a deep network metric for knuckle print rec-
ognition, enhancing the accuracy of recognition. Second, we propose a fast and universal method
for obtaining the region of interest (ROI) of knuckle prints, simplifying the preprocessing step.
Third, in the absence of a public dataset on inner-knuckle prints, we provide a self-collected
dataset, facilitating further research in this domain. Fourth, our lightweight network, LKSNet,
outperforms traditional methods and other deep learning approaches in terms of both speed and
accuracy. In addition, by introducing the robust loss function, we improve training accuracy and
address the imbalance between categories in knuckle databases, enhancing the model’s robust-
ness. Finally, the proposed MIKPF algorithm demonstrates the effectiveness of fusing the ROI of
four fingers, achieving the best recognition rate. Overall, our contributions advance the field of
inner-knuckle print recognition by providing an efficient, accurate, and robust method for
recognition tasks.

One of the difficulties in large-scale retrieval is the retrieval speed. In future research, we will
search the inner finger knuckles hierarchically according to gender and age to speed up the
retrieval speed and recognition accuracy, which will be beneficial to promote the inner finger
knuckles as the biological features of large-scale retrieval scenes. In addition, the task of multi-
modal recognition has been paid more and more attention recently, and we will explore multi-
modal fusion recognition modes, such as the fusion algorithm of inner finger knuckles, palm
prints, and faces, to achieve higher recognition accuracy.

Code and Data Availability
To replicate or interpret the findings reported in the paper, access to the computer code, data, and
materials is necessary. The computer code used in the study can be found at the GitHub reposi-
tory: https://github.com/HewelXX/LKSNet. The code and database will be publicly accessible and
can be downloaded or cloned from the repository.
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