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Abstract. Considering the relatively poor real-time performance when extracting transform-domain image fea-
tures and the insufficiency of spatial domain features extraction, a no-reference remote sensing image quality
assessment method based on gradient-weighted spatial natural scene statistics is proposed. A 36-dimensional
image feature vector is constructed by extracting the local normalized luminance features and the gradient-
weighted local binary pattern features of local normalized luminance map in three scales. First, a support vector
machine classifier is obtained by learning the relationship between image features and distortion types. Then
based on the support vector machine classifier, the support vector regression scorer is obtained by learning the
relationship between image features and image quality scores. A series of comparative experiments were car-
ried out in the optics remote sensing image database, the LIVE database, the LIVEMD database, and the
TID2013 database, respectively. Experimental results show the high accuracy of distinguishing distortion
types, the high consistency with subjective scores, and the high robustness of the method for remote sensing
images. In addition, experiments also show the independence for the database and the relatively high operation
efficiency of this method. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.28.1.013033]
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1 Introduction
Optical remote sensing imaging is widely applied in many
aspects such as weather forecast, environmental monitoring,
resource detection, and military investigation. The quality of
remote sensing images can be affected by various factors in
the imaging procedure. Blur can be caused by the atmos-
pheric environment and defocus of the sensor. The noises
such as photon noise and shot noise can be introduced to
the image in the photoelectric sampling process. Block effect
tend to generate in the process of compression transmission.
These factors degrade the remote sensing images and nega-
tively affect their practical applications. In view of the fact
that perfect reference images are usually unavailable in prac-
tice, the no-reference image quality assessment (NR-IQA) is
of high value in research and practical applications.

In the image quality assessment field, natural scene sta-
tistics (NSS) is widely used in NR-IQA. The NSS-based
algorithms can effectively evaluate image quality. Moorthy
and Bovik1 proposed a blind image quality index (BIQI),
which extracts NSS features using two-step framework.
The framework consists of support vector machine (SVM)-
based distortion type classification and support vector regres-
sion (SVR)-based quality prediction. The final quality score
is obtained by probabilistic weighting. BIQI only extracts
features in wavelet domain, spatial domain features are
not under consideration. Saad et al.2 proposed blind image
integrite notator using DCT statistics (BLIINDS-II), which
extracts NSS features in discrete cosine transform (DCT)
domain and calculate the quality score based on Bayesian
model. The BLIINDS-II has a better performance comparing

with the BIQI, but the real-time performance is relatively
poor due to DCT transformation. Liu et al.3 proposed spa-
tial–spectral entropy-based quality (SSEQ) assessment
method, which extracts NSS features of entropy in spatial
and DCT domain. Comparing with BLIINDS-II, SSEQ has
higher real-time performance. However, SSEQ spends a lot
of time on extracting features. Mittal et al.4,5 proposed blind/
referenceless image spatial quality evaluator (BRISQUE),
which extracts local and adjacent normalized luminance
features. The SVR is used to calculate the quality score.
BRISQUE performs well and has high real-time perfor-
mance. However, the orientation information used in the
BRISQUE does not fully express the structure features of
the image. Li et al.6 proposed a no-reference quality assess-
ment using statistical structural and luminance features
(NRSL), which extracts local normalized luminance features
and local binary pattern (LBP) features of local normalized
luminance map to build the NR model. NRSL has high con-
sistency between predicted scores and subjective scores.
However, the contrast features that are closely related to
the human visual system (HVS) are not extracted. Liu
et al.7 proposed oriented gradients image quality assessment
(OGIQA), which extracts the gradient feature and uses the
AdaBoosting_BP to obtain the quality score. OGIQA per-
forms well, yet its applicability to remote sensing images
remains to be tested and verified.

Considering the relatively poor real-time performance
when extracting transform-domain image features and the
insufficiency of spatial domain features extraction, a no-
reference remote sensing image quality assessment method
based on gradient-weighted spatial natural scene statistics
(GWNSS) is proposed in this paper. The feature vector of
remote sensing image is constructed by extracting local*Address all correspondence to Junhua Yan, E-mail: yjh9758@126.com
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normalized luminance features and gradient-weighted LBP
features of local normalized luminance map in three scales.
A two-step framework based on SVM is then used to obtain
the relationship between features and distortion types as well
as quality scores.

2 Space-Domain NSS Feature Extraction
High-quality natural images have regular statistical proper-
ties, and the distortions can alter the image structure as
well as the statistical properties. Thus the type and degree
of distortion can be characterized by the changes in statistical
properties. Ruderman8 found that the nonlinear operation of
local normalized for the image has a decorrelating effect.
They established an NSS model based on the local normal-
ized luminance map. The contents of remote sensing images
are natural scenes, so they have regular statistical character-
istics as natural image. Thus the similar NSS model and fea-
ture extraction method can be used for remote sensing
images. However, remote sensing image is richer in texture
compared with ordinary natural image,9 so the method suit-
able for ordinary natural images may not suitable for remote
sensing images. Thus the algorithm should be improved
according to the characteristics of remote sensing images.
In this paper, for remote sensing images, the proposed
method extracts local normalized luminance features ~F1

and gradient-weighted LBP features ~F2 of local normalized
luminance map in three scales to construct a 36-dimensional
(36-D) image feature vector ~F ¼ ð~F1; ~F2ÞT.

2.1 Local Normalized Luminance Features
Local normalized luminance can be used as a preprocessing
stage to emulate the nonlinear masking of visual perception
in many image processing applications. Due to the rich tex-
ture and complex image structural information of remote
sensing images, local rather than global normalized lumi-
nance can reduce the loss of image structure information.
Therefore, in this paper, the local normalized luminance
map is first determined, and then the local normalized lumi-
nance features are extracted.

2.1.1 Determination of image distortion type based
on image local normalized luminance features

Remote sensing image and natural image both exhibit the
regular natural scenes statistics characteristics. According
to the literature,4,5 distortion types of natural images can
be distinguished by changes of the histogram distribution
of local normalized luminance. Starting from the two points
discussed above, our experiments verified that the distortion

type of remote sensing images can be distinguished by the
change of the histogram distribution of local normalized
luminance. As shown in Fig. 1, an reference image and
the corresponding three different types distorted images
with similar difference mean opinion scores (DMOS) are
randomly selected from optics remote sensing image database
(ORSID).10 The distortion types include JP2K compression,
Gaussian white noise (WN), and Gaussian Blur (BLUR).
Local normalized luminance features are extracted from the
four images in three scales. The histograms of local normal-
ized luminance maps in the first scale are shown in Fig. 2.

Figure 2 shows that the histogram distributions of local
normalized luminance for different types of distorted images
are different. The peak values of the histogram are different
with different kinds of distortion. For JP2K and BLUR,
though their distribution curves are similar in the overall
shape, they have different degrees in increasing of the peak
value. Different from the higher peak values JP2K and
BLUR are, WN leads to a lower peak value and more flat
curve than the reference image. The above three types of dis-
tortion can be distinguished by histogram of local normal-
ized luminance. Thus the differences in the histogram
distribution of local normalized luminance can reflect
differences in distortion types of remote sensing images.

2.1.2 Determination of image distortion degree based
on image local normalized luminance features

It is verified by our experiments that the changes of histo-
gram distribution of local normalized luminance can be

(a) (b) (c) (d)

Fig. 1 Reference images and the corresponding three different types of distorted images: (a) reference
image; (b) JP2K, DMOS ¼ 72.01; (c) WN, DMOS ¼ 75.11; and (d) blur, DMOS ¼ 66.67.

Fig. 2 The histograms of local-normalized luminance maps for
images in Fig. 1 in the first scale.
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used to distinguish the different degrees of distortion of
remote sensing images. As shown in Fig. 3, taking WN
as an example, a reference image and the five corresponding
distorted images with different degrees of distortion are ran-
domly taken from the ORSID. The first-scale local normal-
ized luminance histograms of the remote sensing images are
shown in Fig. 4. It is shown that with the degree of distortion
increasing (higher DMOS value), the peak value of the histo-
gram becomes lower and the curve becomes flatter. Thus the
histogram distribution of local normalized luminance can be
used as an indicator of the degree of distortion for remote
sensing images.

2.1.3 Extracting image local normalized luminance
features

For an image Iðx; yÞ whose size is M × N, after local nor-
malized operation of size ð2K þ 1Þ × ð2Lþ 1Þ, the normal-
ized luminance at pixel ði; jÞ is defined as4,5

EQ-TARGET;temp:intralink-;e001;326;374I
∧ði; jÞ ¼ Iði; jÞ − μði; jÞ

σði; jÞ þ C
: (1)

The normalized luminance histogram distribution of
images can be fitted with a generalized Gaussian distribution
(GGD) with mean of zero.8 The zero-mean GGD model is
expressed as follows:

EQ-TARGET;temp:intralink-;e002;326;285fðx; α; σ2Þ ¼ α

2βΓð1∕αÞ exp

�
−
�jxj
β

�
α
�
: (2)

The parameters α and σ of GGD can represent the distri-
bution, therefore α and σ of the normalized luminance histo-
gram distribution can represent the character of normalized
luminance. After extracting the normalized luminance map,
the BRISQUE method extracts the features using ordinary
moment. In remote sensing images, there are various scenes
with different terrain characteristics and image structures.
L-moments can be defined for any random variable whose
mean exists, and being linear functions of the data, it suffers
less from the effects of sampling variability. Thus L-
moments are more robust than conventional moments to out-
liers in the data.11–13 So L-moments are used to enhance the
robustness for image quality assessment.14 Considering these
reasons, L-moments estimation is used in this paper to
enhance the robustness of the proposed method comparing
with that of BRISQUE. On the one hand, L-moments

(a) (b) (c)

(d) (e) (f)

Fig. 3 Reference image and the corresponding five different degrees of WN distorted images: (a) refer-
ence image, (b) DMOS ¼ 33.55, (c) DMOS ¼ 37.59, (d) DMOS ¼ 44.60, (e) DMOS ¼ 49.93, and
(f) DMOS ¼ 61.94.

Fig. 4 The histograms of local-normalized luminance map for images
in Fig. 3 in the first scale.
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estimation is insensitive to different scenes of remote sensing
images, and thus robust to parameter estimation of scenes.
On the other hand, L-moments estimation is sensitive to
the distortion of different scenes in distorted remote sensing
images, and thus can be used for parameters estimation of
different distortion degrees. For an image normalized
luminance histogram Xi, i ¼ 1; 2; : : : ; n, the first four
L-moments can be expressed as

EQ-TARGET;temp:intralink-;e003;63;557L1 ¼ b0; (3)

EQ-TARGET;temp:intralink-;e004;63;527L2 ¼ 2b1 − b0; (4)

EQ-TARGET;temp:intralink-;e005;63;502L3 ¼ 6b2 − 6b1 þ b0; (5)

EQ-TARGET;temp:intralink-;e006;63;477L4 ¼ 20b3 − 30b2 þ 12b1 − b0; (6)

where br denotes the r’th probability-weighted moment and
can be expressed as

EQ-TARGET;temp:intralink-;e007;63;429b0 ¼
P

n
i¼1 Xi

n
; (7)

EQ-TARGET;temp:intralink-;e008;63;388br ¼
P

n
i¼rþ1

ði−1Þði−2Þ · · · ði−rÞ
ðn−1Þðn−2Þ · · · ðn−rÞXi

n
: (8)

The parameter L1 and L3 are zero due to the symmetry of
GGD. Thus in this paper, L2 and L4 are used to characterize
the distribution of local normalized luminance, yielding local
normalized luminance features. For a distorted image, there
are six local normalized luminance parameters can be
extracted in three scales. A six-dimensional (6-D) vector
consists of six parameters, i.e., ~F1 ¼ ðf1; f2; : : : ; f6Þ. The
meanings of the elements in this 6-D vector are shown in
Table 1.

2.2 Gradient-Weighted LBP Features of Local
Normalized Luminance Map

The surface of the earth has obvious spatial characteristics,
which can be represented by texture in remote sensing
images. Thus remote sensing images usually have more
structural information than ordinary natural images. The
LBP patterns can effectively express image structural fea-
tures, such as edges, lines, corners, and spots. The LBP
map can be obtained by processing the local normalized
luminance map using rotation invariant LBP operator. On
the LBP map, the value 0 stands for bright spot in the dis-
torted image, the value 8 stands for flat area or dark spot in
the distorted image, the value (1 to 7) stands for edges of
different curvature.15 Based on the assumption that local
normalized luminance features and LBP features of local

normalized luminance map is independent,15,16 the combina-
tion of the two kinds of features can improve the effective-
ness of image quality assessment. However, LBP can reflect
the structural information while the histogram of local nor-
malized luminance reflecting statistical distribution of image
luminance. Neither of the two can characterize the contrast
information of the image. Considering the high sensitivity of
contrast in HVS, contrast information is extracted by weigh-
ing the LBP features of local normalized luminance map
using gradient. The gradient-weighted LBP features of
local normalized luminance map can express both structural
features and local contrast features of images, thus the
method can be better applied to remote sensing images with
complex structural information.

2.2.1 Determination of image distortion type based
on gradient-weighted LBP features of local
normalized luminance map

There exist regular natural scenes statistics characteristics in
remote sensing images and natural images. The changes of
histogram distribution of gradient-weighted LBP in local
normalized luminance map can be used to distinguish
the distortion types of natural images.17 According to the
above two points, our experiments verified that the distortion
types of remote sensing images can be distinguished by the
changes of histogram distribution of gradient-weighted LBP
in local normalized luminance map. Using the reference
image and three different types distorted images in Fig. 1
as input, the gradient-weighted LBP histograms of local nor-
malized luminance map in the first scale are shown in Fig. 5.

Figure 5 shows that the LBP histogram distribution of
JP2K image is high in the middle and low on both sides.
This attributes to the block effect the JP2K caused, which
makes flat areas become edges, i.e., the statistical probability
of pixels with LBP values of 2 to 6 significantly increases.
On the contrary, the LBP histogram distribution curve of WN
is low in the middle and high on both sides due to the fact
that WN can increase the bright and dark spots on the image.
BLUR distortion can make the data tend to uniformity. This
is due to though there is reduction of the number of bright
and dark spots, the statistical probability of edge points is not
changed significantly. The above three types of distortion
can be distinguished clearly using gradient-weighted LBP
histograms of local normalized luminance map. Thus it
can be concluded that the histogram distribution of gra-
dient-weighted LBP of local normalized luminance map
can be used as an indicator to distinguish the distortion
types of remote sensing images.

2.2.2 Determination of image distortion degree based
on image gradient-weighted LBP features of
local normalized luminance map

It is verified that the changes of gradient-weighted LBP
histogram distribution of local normalized luminance can
be used to distinguish the different degrees of remote sensing
image distortion according to our experiments. As shown in
Fig. 6, taking JP2K distortion as an example, a reference
image and the corresponding five different degrees JP2K dis-
torted images are randomly taken from the ORSID database.
The first scale local normalized luminance histograms of the
images are shown in Fig. 7. With the degree of JP2K distor-
tion increasing (higher DMOS), the blocking artifact

Table 1 Meanings of image local-normalized luminance feature vec-
tor elements.

Vector elements Meaning

f 1–f3 The L2 linear moments in three scales

f 4 − f 6 The L4 linear moments in three scales
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becomes severer, the flat areas in the image become edges,
the statistical probability of pixels with LBP values of 8
decreases, and the statistical probability of pixels with
LBP values of 2 to 6 increases. At the same time, with
the increasing severity of JP2K distortion, the blur distor-
tion introduced by the block effect exacerbates the decrease
in the statistical probability of pixels with LBP values of 1
and 8. Thus it can be concluded that the gradient-
weighted LBP histogram distribution of local normalized
luminance map can reflect the distortion degrees of
JP2K images.

2.2.3 Extracting image gradient-weighted LBP fea-
tures elements of local normalized luminance
map

LBP operation is performed on the local normalized lumi-
nance map, which is obtained according to Eq. (1). The
local rotation invariant uniform LBP value is defined as17

EQ-TARGET;temp:intralink-;e009;326;113LBPriu2J;R ði; jÞ ¼
�P

J−1
t¼0 sðgt − gcÞ; if u½LBPJ;Rði; jÞ� ≤ 2

J þ 1; else
:

(9)
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Fig. 5 Gradient-weighted LBP histograms of local-normalized luminance map for images in Fig. 1 in the
first scale.

(a) (b) (c)

(d) (e) (f)

Fig. 6 Reference image and the corresponding five different degrees JP2K distorted images: (a) refer-
ence image, (b) DMOS ¼ 36.58, (c) DMOS ¼ 41.81, (d) DMOS ¼ 48.63, (e) DMOS ¼ 62.73, and
(f) DMOS ¼ 69.53.
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After rotation invariant uniform LBP operation of Eq. (9),
there are J þ 2 different values in LBP map, that is,
0; 1; : : : ; J þ 1. The rotation-invariant LBP feature can
express the detailed image structure information so as to bet-
ter distinguish the difference between the central pixel and
the surrounding pixel. Thus it is suitable for the remote sens-
ing image with complex structure information.

The eye is more sensitive to image features with higher
contrast, and gradient can characterize image contrast infor-
mation, so gradient can be used to weight LBP histogram of
local normalized luminance map. The operation of gradient
weighted can distinguish the degree of difference between
the center pixel and the surrounding pixels. The gradient-
weighted LBP histogram is calculated by accumulating
the gradient of pixels with the same LBP value

EQ-TARGET;temp:intralink-;e010;63;360hðkÞ ¼
XM
i¼0

XN
j¼0

fI 0ði; jÞ · g½LBPriu2J;R ði; jÞ; k�g; (10)

where I 0ði; jÞ is the gradient at pixel ði; jÞ, k ∈ 0; 1; : : : ; J þ
1 denotes possible LBP values

EQ-TARGET;temp:intralink-;e011;63;287gðx1; x2Þ ¼
�
1; x1 ¼ x2
0; otherwise

: (11)

In this paper, the number of neighboring pixel J is 8, and
the radius of the neighborhood R is 1, so there are 10

different values in the LBP map. Thus the gradient-weighted
LBP features can be represented by gradient-weighted stat-
istical probabilities of these 10 values. The parameters are
extracted in three scales. So the 30-dimensional (30-D) vec-
tor of each image can be denoted as ~F2 ¼ ðf7; f8; : : : ; f36Þ.
The meanings of the elements in this 30-D vector are shown
in Table 2.

3 Method of No-Reference Image Quality
Assessment Based on SVM

The proposed method extracts ~F1 and ~F2 of the local nor-
malized luminance map from known distorted images.
Then the corresponding feature matrix is constructed. The
feature matrix and the distortion types of known distorted
images are used to train a SVM classifier to determine the
image distortion type and the probability of different distor-
tion types. Based on the SVM classifier, the feature matrix
and subjective scores are used to train SVM scorer to deter-
mine the image distortion degree. The local normalized lumi-
nance features ~F1 and the gradient-weighted LBP features ~F2

of the to-be-evaluated distorted images are then extracted in
the same way. The constructed feature matrix of the to-be-
evaluated distorted image is then entered into the trained
SVM model to derive the distortion type and the objective
score.

3.1 SVM Image Distortion Classification Algorithm
SVM is widely applied to learn the mapping function
between the feature space and quality measure.4,6 For a train-
ing set fFtrain; Ztraing, Ftrain is the image feature matrix of the
training set, Ztrain is the distortion type matrix of the training
set, ~Zk

train is its k’th row vector, representing the distortion
type of the k’th image in the training set

EQ-TARGET;temp:intralink-;e012;326;154

~Zk
train ¼

8<
:

ð1Þ; JP2K

ð2Þ; WN

ð3Þ; BLUR

: (12)

Given parameters C > 0 and ϵ > 0, the standard form of
SVM is represented as

0 1 2 3 4 6 7 8 9
0

0.05

0.1
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0.3
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DMOS = 36.58
DMOS = 41.81
DMOS = 48.63
DMOS = 62.73
DMOS = 69.53

Gradient weighted LBP value

eulav
P

B
L

hc ae
fo

y tilibabor plac its ita t
S

5

Fig. 7 Gradient-weighted LBP histograms of local-normalized luminance map for images in Fig. 6 in the
first scale.

Table 2 Meanings of gradient-weighted LBP feature vector elements
of local normalized luminance map.

Vector elements Meaning

f 7–f16 The statistical probabilities of gradient-weighted
LBP values of 0,1,. . . ,9 in the first scale

f 17–f26 The statistical probabilities of gradient-weighted
LBP values of 0,1,. . . ,9 in the second scale

f 27–f36 The statistical probabilities of gradient-weighted
LBP values of 0,1,. . . ,9 in the third scale
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EQ-TARGET;temp:intralink-;e013;63;752 min
ω;b;ξ;ξ�

1

2
ωTωþ C

�XK
k¼1

ξk þ
XK
k¼1

ξ�k

�
: (13)

The corresponding constraint conditions are as follows:

EQ-TARGET;temp:intralink-;e014;63;701−ðϵþ ξ�Þ ≤ ωTϕð~Fi
trainÞ þ b − j~Zk

trainj ≤ ϵþ ξ; (14)

EQ-TARGET;temp:intralink-;e015;63;668ξk; ξ�k ≥ 0; k ¼ 1;2; : : : ; Kl ðI ∈ f1; 2; 3gÞ; (15)

where ω represents the matrix that needs to be trained, and
b is a constant of 1. The radial basis function kernel
KFð~Fi

train; ~F
j
trainÞ ¼ expð−γk~Fi

train − ~Fj
trainkÞ is used to re-

present the kernel function KFð~Fi
train; ~F

j
trainÞ ¼

ϕð~Fi
trainÞTϕð~Fj

trainÞ.
Taking training set fFtrain; Ztraing as the input of SVM

classifier. The constructed image feature matrix Ftest of
the test set is entered into the trained SVM classifier to obtain
the distortion type matrix Tp of the test set images and the
determination probability T ¼ ðT1; T2; T3Þ of each type of
distortion.

3.2 SVR Image Quality Score Algorithm
The SVR image quality score algorithm is basically the same
as the SVM image distortion classification algorithm men-
tioned above except for the form of the input and the output.
Taking fF1

train; Z
1
traing, fF2

train; Z
2
traing, fF3

train; Z
3
traing as input,

the three SVR scorers for JP2K, WN and BLUR distortion
are trained, respectively. After obtaining the trained SVR
scorers, the constructed image feature matrix Ftest in the
test set is entered into the trained SVR scorers to obtain
objective quality scores S ¼ ðS1; S2; S3Þ of each type of dis-
tortion, the image quality objective quality score Sp is
obtained using weighted probability of distortion type.

4 Experimental Results and Analysis
To illustrate the subjective consistency of the proposed
GWNSS method, experiments of the proposed GWNSS and
other existing IQA methods are performed on the ORSID
database,10 the LIVE database,18,19 and the LIVEMD data-
base,20 respectively. The subjective consistency performance
of GWNSS is verified by four indices, which are root-
mean-squared error (RMSE), Pearson linear correlation coef-
ficient (PLCC), Spearman rank order correlation coefficient
(SROCC), and Kendall rank order correlation coefficient
(KROCC). In order to verify that the performance of
GWNSS is not restricted to a specific database, the database
independence experiments are performed on the LIVE and
TID2013 database,21 and SROCC is used as the evaluation
index. All experiments were performed on a Lenovo desktop
computer, which has an Intel core i3-2130 processor with
4 GB memory and 3.4G frequency. The operating system
is win7, and the experimental platform is MATLAB R2015a.

4.1 Comparison of GWNSS Performance in
One-Step and Two-Steps Framework

In this paper, a one-step framework, which is similar to that
proposed in Ref. 3, is also investigated. In this approach, the
features extraction is the same as the two-steps framework.
Instead of using SVM classifier and SVR scorer, the one-step
framework directly constructs the SVR scorer using all dis-
torted image feature matrix and subjective score matrix in

the training set as training data. As shown in Table 3,
SROCC of one-step GWNSS is slightly lower than that of
the two-steps GWNSS. The reason is that under the two-
steps framework, different parameters can be selected for
each SVM scorer for different distortion types. Thus each
SVR scorer can more accurately predict the corresponding
distortion type. However, under the one-step framework,
the parameter that the SVR scorer selected is an excellent
parameter for all types of distorted images in the training
set instead of optimum parameter for specific distortion type.

4.2 Comparison of Subjective Consistency with
Other Objective IQA Methods in the ORSID
Database

The subjective consistency performance of the four FR-IQA
methods [peak signal-to-noise ratio (PSNR), structural sim-
ilarity index (SSIM),22 feature similarity index (FSIM),23 and
visual information fidelity (VIF)24] and the six NR-IQA
methods [BLIINDS-II,2 BRISQUE,4,5 SSEQ,3 blind image
quality assessment metric based on high order derivatives
(BHOD),25 blind image quality assessment (BIQA),26 and
NRSL6] for images of three distortion types in the ORSID
database are shown in Table 4. The performance of the
GWNSS is compared with those of the abovementioned
10 IQA methods. The subjective consistency performance
is assessed by four indices, which are SROCC, PLCC,
KROCC, and RMSE. The experiments are repeated 1000
times to obtain the median of the subjective consistency per-
formance. In Table 4, the top three correlation indices within
each distortion category are marked in bold and the best cor-
relation indices are highlighted with the standard red color.

Table 4 shows that the proposed GWNSS and the state-of-
the-art methods NRSL and BIQA have high subjective con-
sistency. The performance of the 11 methods for 3 types of
distorted images is evaluated by 4 correlation coefficient
indices, yielding 12 indices for per method. The proposed
GWNSS method has 12 indices in the top 3 and 8 indices
in the top 1. BIQA and NRSL have 8 and 7 out of 12 indices
in the top 3, respectively. Taking all distortion images in the
ORSID database together, all four correlation coefficient
indices of the proposed GWNSS method are the best
among all IQA methods. The proposed GWNSS method
achieves good assessment results for all types of distortion
and thus exhibits high robustness for different distortions.
The proposed GWNSS, even when compared with the
FR-IQA methods, still shows relatively high subjective con-
sistency. The performance of GWNSS is superior to PSNR,
SSIM, FSIM, and VIF methods.

The scatter plots of the subjective and objective consis-
tency scores of four well-performing methods, which are
GWNSS, BRISQUE, NRSL, and BIQA, are shown in Fig. 8.
The x axis denotes the objective score obtained by the image

Table 3 The subjective consistency comparison of the GWNSS
methods under the one-step framework and under the two-step
frameworks for all distorted images in the ORSID database.

JP2K WN BLUR ALL

GWNSS (one-step) 0.9336 0.9278 0.9444 0.9385

GWNSS (two-step) 0.9594 0.9338 0.9669 0.9429
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quality assessment method and the y axis denotes the sub-
jective score obtained by human eyes. Figure 8 shows that
the scatter points of GWNSS, BRISQUE, NRSL, and BIQA
are concentrated close to the fitting curves, indicating high
objective–subjective consistency.

4.3 Comparison of Subjective Consistency with
Other Objective IQA Methods in the LIVE
Database and the LIVEMD Database.

There are 29 different reference images and 779 distorted
images in the LIVE database. The distortion types include
JP2K, JPEG, WN, BLUR, and fast fading (FF), and the sub-
jective DMOS of distorted images are given as well. There
are 15 different reference images and 450 multiply distorted
images in the LIVEMD database. The distortion types
include BLUR followed by JPEG (BJ) and BLUR followed
by noise (BN). The subjective DMOS of multiply distorted
images are given as well.

The subjective consistency performance of the four FR-
IQA methods (PSNR, SSIM,22 FSIM,23 and VIF24), the six
NR-IQA methods (BLIINDS-II,2 BRISQUE,4,5 SSEQ,3

BHOD,25 BIQA,26 and NRSL6), and one deep learning-
based method on the use of deep learning for blind IQA
(DeepBIQ)27 in the LIVE database is shown in Table 5.
The performance indices of these methods in the LIVEMD
database are shown in Table 6. 80% of all distorted images
are randomly selected as the training set and 20% as the
test set. The above experiments are repeated 1000 times to
obtain the median of the subjective consistency performance.

Tables 5 and 6 show that the proposed GWNSS method
has high subjective consistency. The performance of the 11
methods for 5 types of distorted images in the LIVE database
is evaluated by 4 correlation coefficient indices, yielding 20
indices for per method. The proposed GWNSS has 16 out of
20 indices in the top 3 of respective distortion categories.
Taking all distortion images in the LIVEMD database
together, all four correlation coefficient indices of the pro-
posed GWNSS method are the best among all IQA methods.

Table 4 Comparison of the subjective consistency of different IQA
methods in the ORSID database.

Performance indices Methods JP2K WN BLUR ALL

SROCC PSNR 0.8192 0.9541 0.6807 0.8012

SSIM 0.9032 0.9244 0.8435 0.8765

FSIM 0.9485 0.9367 0.9037 0.8819

VIF 0.9587 0.9579 0.9587 0.9232

BLIINDS-II 0.9338 0.9008 0.9383 0.9225

BRISQUE 0.8617 0.9567 0.9173 0.9173

SSEQ 0.9083 0.9218 0.8992 0.8641

BHOD 0.8767 0.8045 0.9248 0.8331

BIQA 0.9353 0.9338 0.9504 0.9334

NRSL 0.9128 0.9353 0.9459 0.9280

GWNSS 0.9594 0.9347 0.9669 0.9425

PLCC PSNR 0.8427 0.9594 0.7003 0.8018

SSIM 0.9060 0.9275 0.8649 0.8710

FSIM 0.9616 0.9373 0.9274 0.8850

VIF 0.9747 0.9706 0.9720 0.9253

BLIINDS-II 0.9533 0.9124 0.9497 0.9275

BRISQUE 0.8938 0.9747 0.9356 0.9217

SSEQ 0.9083 0.9218 0.8992 0.8641

BHOD 0.9150 0.7908 0.9376 0.8451

BIQA 0.9664 0.9366 0.9615 0.9372

NRSL 0.9345 0.9517 0.9513 0.9300

GWNSS 0.9799 0.9573 0.9750 0.9489

KROCC PSNR 0.6108 0.8158 0.4880 0.5967

SSIM 0.7367 0.7519 0.6513 0.6788

FSIM 0.8108 0.7797 0.7108 0.6815

VIF 0.8316 0.8215 0.8184 0.7421

BLIINDS-II 0.8000 0.7368 0.8000 0.7548

BRISQUE 0.6947 0.8438 0.7579 0.7503

SSEQ 0.7579 0.7684 0.7263 0.6734

BHOD 0.7158 0.6316 0.7757 0.6407

BIQA 0.8000 0.7924 0.8316 0.7763

NRSL 0.7597 0.8307 0.8105 0.7627

GWNSS 0.8526 0.8000 0.8632 0.7944

Table 4 (Continued).

Performance indices Methods JP2K WN BLUR ALL

RMSE PSNR 8.4029 5.2879 9.2354 7.8421

SSIM 5.4992 5.0237 6.4935 6.4477

FSIM 3.5638 4.6823 4.8391 6.1108

VIF 2.9012 3.2343 3.0408 4.9755

BLIINDS-II 3.9108 5.3494 4.0273 4.8948

BRISQUE 5.7471 2.9943 4.5507 5.1060

SSEQ 5.3702 4.6813 5.0498 6.3781

BHOD 5.0897 8.5256 4.4150 7.3328

BIQA 3.2794 4.5785 3.5494 4.5805

NRSL 4.6141 4.0530 4.0827 4.9333

GWNSS 2.5585 4.2127 2.8728 4.1035
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The proposed GWNSS method, even when compared with
the FR-IQA methods, still shows relatively high subjective
consistency. The performance of GWNSS is superior to
PSNR method, close to SSIM, FSIM, and VIF methods
in the LIVE database and it is superior to PSNR, SSIM,
FSIM, and VIF methods in the LIVEMD database.

Taking all distortion images in the LIVE database
together, KROCC and RMSE of the proposed GWNSS
method are the best among all IQA methods. When com-
pared with deep learning-based method DeepBIQ, SROCC
and PLCC are merely 0.01 less than DeepBIQ. The reason is
that the features extracted by CNN-based method are suffi-
cient, leading to a good performance. However, GWNSS is
more efficient than DeepBIQ, which can efficiently extract
features and conduct training. In addition, the GWNSS has
low requirement for hardware and can be used in wider
applications.

The scatter plots of the subjective and objective consis-
tency scores of GWNSS, BRISQUE, NRSL, and BIQA
methods are shown in Fig. 9. The x axis denotes the objective
score obtained by the image quality assessment method and
the y axis denotes the subjective score obtained by human

eyes. Figure 9 shows that the scatter points of the above
four NR-IQA methods are concentrated close to the fitting
curves, indicating high objective–subjective consistency.

4.4 Database Independence Experiments
To verify that the performance of GWNSS is not restricted to
the particular database used, database independence experi-
ments are performed on the LIVE database and the TID2013
database.21 In the TID2013 database, the selected images for
independence experiments are 24 different reference images
and 480 distorted images with the same 4 common distortion
categories: JP2K, JPEG, WN and BLUR. Distorted images
in the LIVE database are used to train an SVM model, and
then distorted images, which are selected in the TID2013
database, are tested in the trained model. The SROCC is
used as the testing index. The subjective consistency perfor-
mance of the four FR-IQA methods (PSNR, SSIM,22

FSIM,23 and VIF24) and the six NR-IQA methods
(BLIINDS-II,2 BRISQUE,4,5 SSEQ,3 BHOD,25 BIQA,26 and
NRSL6) for images of four different distortion types in the
TID2013 database are shown in Table 7. Conversely, dis-
torted images in the TID2013 database are used to train

Fig. 8 Scatter plots of the subjective and objective consistency scores of GWNSS, BRISQUE, NRSL,
and BIQA methods in the ORSID database.
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Table 5 Comparison of the subjective consistency of different NR-IQA methods in the LIVE database.

Performance indexes Methods JP2K JPEG WN BLUR FF ALL

SROCC PSNR 0.8545 0.8749 0.9397 0.7266 0.8599 0.8526

SSIM 0.9838 0.9836 0.9822 0.9719 0.9742 0.9729

FSIM 0.9844 0.9872 0.9835 0.9830 0.9720 0.9813

VIF 0.9790 0.9799 0.9894 0.9819 0.9774 0.9765

BLIINDS-II 0.9534 0.9614 0.9701 0.9330 0.9180 0.9428

BRISQUE 0.9372 0.9295 0.9879 0.9518 0.9185 0.9464

SSEQ 0.9417 0.9689 0.9747 0.9476 0.8946 0.9284

BHOD 0.9462 0.9461 0.9728 0.9649 0.9198 0.9316

BIQA 0.9297 0.9566 0.9888 0.9556 0.9420 0.9578

NRSL 0.9514 0.9508 0.9801 0.9420 0.9029 0.9493

DeepBIQa — — — — — 0.97

GWNSS 0.9578 0.9522 0.9874 0.9802 0.9227 0.9609

PLCC PSNR 0.8603 0.8819 0.9262 0.7536 0.8571 0.8470

SSIM 0.9810 0.9855 0.9896 0.9630 0.9681 0.9648

FSIM 0.9875 0.9894 0.9852 0.9770 0.9638 0.9743

VIF 0.9864 0.9929 0.9934 0.9845 0.9719 0.9758

BLIINDS-II 0.9688 0.9815 0.9806 0.9316 0.9376 0.9388

BRISQUE 0.9543 0.9674 0.9931 0.9600 0.9408 0.9562

SSEQ 0.9574 0.9846 0.9804 0.9577 0.9225 0.9295

BHOD 0.9662 0.9726 0.9801 0.9660 0.9445 0.9432

BIQA 0.9469 0.9850 0.9936 0.9655 0.9592 0.9644

NRSL 0.9671 0.9764 0.9868 0.9447 0.9238 0.9574

DeepBIQa — — — — — 0.98

GWNSS 0.9745 0.9787 0.9925 0.9841 0.9470 0.9673

KROCC PSNR 0.6607 0.6840 0.8019 0.5372 0.6701 0.6578

SSIM 0.8958 0.9053 0.894 0.8581 0.8722 0.8635

FSIM 0.9129 0.9218 0.8976 0.8959 0.8734 0.8898

VIF 0.8814 0.8957 0.9152 0.8880 0.8740 0.8666

BLIINDS-II 0.8318 0.8551 0.8659 0.7920 0.7718 0.7967

BRISQUE 0.7975 0.7966 0.9270 0.8413 0.7721 0.8124

SSEQ 0.8075 0.8657 0.8852 0.8209 0.7535 0.7848

BHOD 0.8180 0.8206 0.8756 0.8547 0.7760 0.7926

BIQA 0.7821 0.8505 0.9273 0.8370 0.8113 0.8330

NRSL 0.8243 0.8294 0.8916 0.8081 0.7535 0.8184

GWNSS 0.8402 0.8358 0.9205 0.8948 0.7792 0.8404
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Table 5 (Continued).

Performance indexes Methods JP2K JPEG WN BLUR FF ALL

RMSE PSNR 12.8608 15.0175 10.5510 12.1417 14.6769 14.5263

SSIM 5.6132 5.9841 4.7635 6.4592 7.8525 8.2263

FSIM 4.5557 5.1087 5.6853 5.1128 8.3547 7.0428

VIF 4.7595 4.4494 3.7947 4.2027 6.3682 6.8427

BLIINDS-II 7.1143 6.7336 6.5052 8.6120 10.8826 10.7628

BRISQUE 8.5236 8.8775 3.9044 6.6777 10.4482 9.1711

SSEQ 8.3212 6.1472 6.5911 6.8417 11.7803 11.5335

BHOD 7.4821 8.1735 6.5544 6.1669 10.1813 10.3761

BIQA 9.2625 6.6053 3.6843 6.2217 8.7842 8.2580

NRSL 7.3111 7.5684 5.3846 7.8504 11.9348 9.7637

GWNSS 6.4379 7.2052 4.0390 4.4284 10.0280 7.9198
aThe values in the rows of DeepBIQ are experimental results in the original paper. The original paper does not give the scores for specific distortion,
only gives the overall scores of SROCC and PLCC for all distorted images in the LIVE database.

Table 6 Comparison of the subjective consistency of different NR-
IQA methods in the LIVEMD database.

Performance indices Methods BJ BN ALL

SROCC PSNR 0.6395 0.6150 0.5784

SSIM 0.8488 0.8760 0.8604

FSIM 0.8556 0.8691 0.8666

VIF 0.8788 0.8807 0.8823

BLIINDS-II 0.9070 0.8706 0.8866

BRISQUE 0.9071 0.9034 0.8952

SSEQ 0.8743 0.8582 0.8560

BHOD 0.8931 0.9310 0.9065

BIQA 0.8862 0.8020 0.8133

NRSL 0.8813 0.9079 0.8901

GWNSS 0.9193 0.9232 0.9222

PLCC PSNR 0.7026 0.7164 0.6729

SSIM 0.7971 0.8333 0.8152

FSIM 0.8190 0.8233 0.8211

VIF 0.9052 0.8492 0.9013

BLIINDS-II 0.9332 0.8843 0.9045

BRISQUE 0.9346 0.9199 0.9209

SSEQ 0.9119 0.8704 0.8737

BHOD 0.9251 0.9362 0.9179

BIQA 0.9199 0.8234 0.8520

NRSL 0.9253 0.9190 0.9098

GWNSS 0.9404 0.9356 0.9338

Table 6 (Continued).

Performance indices Methods BJ BN ALL

KROCC PSNR 0.4550 0.4445 0.4116

SSIM 0.6520 0.6867 0.6695

FSIM 0.6625 0.6750 0.6768

VIF 0.6922 0.6930 0.6970

BLIINDS-II 0.7434 0.6889 0.7095

BRISQUE 0.7374 0.7418 0.7238

SSEQ 0.7007 0.6673 0.6626

BHOD 0.7287 0.7818 0.7364

BIQA 0.7152 0.6222 0.6292

NRSL 0.7091 0.7442 0.7138

GWNSS 0.7636 0.7674 0.7643

RMSE PSNR 13.6341 13.0151 13.9892

SSIM 11.5705 10.3120 12.9355

FSIM 10.9930 10.5890 10.7942

VIF 8.1427 9.8500 8.1945

BLIINDS-II 6.7771 8.5013 7.8832

BRISQUE 6.7655 7.0593 7.4149

SSEQ 7.6746 9.0659 9.2097

BHOD 7.0880 6.4840 7.4597

BIQA 7.4521 10.2781 9.7848

NRSL 7.2367 7.3409 7.8356

GWNSS 6.3160 6.5225 6.7329
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an SVMmodel, and then distorted images in the LIVE database
are tested in the trained model. The subjective consistency per-
formance of the four FR-IQAmethods (PSNR, SSIM,22 FSIM,23

and VIF24) and the six NR-IQA methods (BLIINDS-II,2

BRISQUE,4,5 SSEQ,3 BHOD,25 BIQA,26 and NRSL6) for
images of four different distortion types in the LIVE database
are shown in Table 8. In Tables 7 and 8, the top 3 SROCC
indices, within each distortion category, are marked in bold
and the best SROCC indices are highlighted with italics.

Tables 7 and 8 show that all 10 indices of the proposed
GWNSS method are in the top 3 for four different types of
distorted images, indicating that the proposed GWNSS
method achieves high database independence for all four
types of distortion. Even comparing with the FR-IQA meth-
ods, GWNSS still shows relatively high database independ-
ence. The database independence of GWNSS is superior to
PSNR method and close to SSIM, FSIM, VIF methods.

4.5 Accuracy of the Distortion Type Judgment of the
GWNSS Method

Table 9 shows the accuracy of the GWNSS method in deter-
mining the type of image distortion. 80% of all distorted images

are randomly selected as the training set and 20% as the test set,
then the training set and the test set are entered into an SVM
model for training and testing. The above experiment is
repeated 1000 times to obtain the median of the subjective con-
sistency performance for the ORSID database. The experimen-
tal results show that the GWNSS method is up to 95% accurate
in determining the type of image distortion on the whole
ORSID database, demonstrating that the GWNSS method per-
forms well in classifying the type of image distortion.

The classification performance for different distortion types
in the form of an average confused matrix is shown in Fig. 10.
The numerical values are means of the confusion probabilities
obtained over 1000 experiments. Figure 10 shows that the most
accurate prediction of the distortion type is WN. As for BLUR
and JP2K, they confuse with each other, with 0.0479 of the
BLUR mistaken as JP2K, and 0.0317 of JP2K mistaken as
BLUR. This is because that JP2K can introduce blur into
the image, resulting in confusion with BLUR.

4.6 Time Consumption of the GWNSS
Since the runtime of NR-IQA methods is mainly spent on
extracting image features, the comparison of mean time

Fig. 9 Scatter plots of the subjective and objective consistency scores of GWNSS, BRISQUE, NRSL,
and BIQA methods in the LIVE database and the LIVEMD database.
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spent for feature extraction of all images in the ORSID data-
base of the five good performance NR-IQA methods
(BLIINDS-II,2 BRISQUE,4,5 SSEQ,3 BIQA,26 and NRSL6)
and GWNSS are shown in Table 10. Table 10 shows that
the mean time spent by the proposed GWNSS method is
far less than that of SSEQ and BLIINDS-II. On average,
the proposed GWNSS method only spent 0.1790 s more
than that of the BRISQUE method and 0.2114 s more
than that of the BIQA method. Thus the proposed
GWNSS method has high evaluation accuracy and operation
efficiency.

5 Conclusion
In this paper, a 36-D image feature vector consists of the
local normalized luminance features and the gradient-
weighted LBP features of local normalized luminance
map in three scales. First, the feature matrix and the corre-
sponding distortion type are used to train the SVM classifier.
Then on the basis of the SVM classifier, the feature matrix
and the corresponding DMOS are used to train the SVR
scorer. A series of comparative experiments were carried
out in the ORSID database, the MDORSID database, the
LIVE database, the LIVEMD database, and the TID2013
database, respectively. Experimental results show that the
proposed method has high accuracy in distortion type clas-
sification of remote sensing images, high consistency with
subjective scores, and high robustness for different types
of distortions. In addition, the efficacy of the proposed
method is not restricted to a particular database and the oper-
ation efficiency is high. The research of this paper mainly

Table 7 Comparison of the subjective consistency of different NR-
IQA methods in the LIVE database (training set) and the TID2013
database (test set).

JP2K JPEG WN BLUR ALL

PSNR 0.8904 0.9150 0.9420 0.9661 0.9216

SSIM 0.9489 0.9316 0.8742 0.9704 0.9212

FSIM 0.9579 0.9329 0.9003 0.9590 0.9547

VIF 0.9538 0.9289 0.9302 0.9659 0.9336

BLIINDS-II 0.9458 0.9001 0.7789 0.9077 0.8742

BRISQUE 0.8785 0.9016 0.9008 0.8966 0.8907

SSEQ 0.9108 0.9247 0.8952 0.8935 0.8692

BHOD 0.9155 0.8815 0.7489 0.9148 0.8943

BIQA 0.9446 0.9013 0.9157 0.9029 0.9164

NRSL 0.7779 0.9092 0.8422 0.9094 0.8797

GWNSS 0.9282 0.9028 0.9042 0.9153 0.9284

Table 8 Comparison of the subjective consistency of different NR-
IQA methods in the LIVE database (test set) and the TID2013 data-
base (training set).

JP2K JPEG WN BLUR ALL

PSNR 0.9041 0.8946 0.9829 0.8073 0.8834

SSIM 0.9838 0.9836 0.9822 0.9719 0.9729

FSIM 0.9844 0.9872 0.9835 0.9830 0.9813

VIF 0.9790 0.9799 0.9894 0.9819 0.9765

BLIINDS-II 0.9404 0.9277 0.9641 0.8959 0.9348

BRISQUE 0.9178 0.9354 0.9306 0.9182 0.9297

SSEQ 0.9252 0.9343 0.8632 0.8053 0.8087

BHOD 0.9273 0.9236 0.9444 0.9036 0.9050

BIQA 0.9291 0.9185 0.9872 0.8093 0.9260

NRSL 0.9300 0.9355 0.9701 0.8408 0.9130

GWNSS 0.9401 0.9426 0.9746 0.9259 0.9282

Table 9 Accuracy of the distortion type judgment of the GWNSS
method in the ORSID database.

JP2K WN BLUR ALL

Accuracy (%) 95 95 95 95

Fig. 10 Accuracy of the distortion type judgment of the GWNSS
method in the ORSID database.

Table 10 Mean time spent extracting all images features by different
NR-IQA methods in the ORSID database.

SSEQ BLIINDS-II BRISQUE BIQA NRSL GWNSS

Mean
time (s)

2.9752 82.3711 0.1498 0.1174 0.3297 0.3288
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focuses on single-distorted images. Assessment of multiply
distorted images, which is of more practical significance,
will be addressed in the future research.
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