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Abstract. A new spectral signature analysis method for tumor seg-
mentation in breast magnetic resonance images is presented. The
proposed method is called an independent component texture analy-
sis (ICTA), which consists of three techniques including independent
component analysis (ICA), entropy-based thresholding, and texture
feature registration (TFR). ICTA was mainly developed to resolve
the inconsistency in the results of independent components (ICs)
due to the random initial projection vector of ICA and then accordingly
determine the most likely IC. A series of experiments were conducted
to compare and evaluate ICTA with principal component texture
analysis, traditional ICA, traditional principal component analysis
(PCA), fuzzy c-means, constrained energy minimization, and orthogo-
nal subspace projection methods. The experimental results showed
that ICTA had higher efficiency than existing methods.© The Authors.
Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole
or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JEI.22.2.023027]

1 Introduction
Breast magnetic resonance imaging (MRI) has gradually
gained much popularity in clinical use because results have
shown that the screening accuracy of MRI is significantly
higher than that of mammography and ultrasound.1

Currently, doctors generally rely on breast MRI for obtaining
the region of tumor since it is usually an important sign of
breast cancer for diagnosis. Based on these considerations,

this study proposes a new scheme that adopts mathematical
algorithms from multispectral image processing techniques
for specific object contrast enhancement. The tumor region
can be segmented from contrast-enhanced images and shown
as a binary image. We anticipate that the generated binary
tumor region images will aid doctors in clinical diagnosis.

Over the years, many computer-assisted methods have
been developed for analyzing single-spectral MRI, such as
principal component analysis (PCA),2 eigenimage analysis,3

neural networks,4 and fuzzy c-means (FCMs).5 Eigenimage
analysis has been shown to be effective in segmentation and
feature extraction, and neural networks have been found to
perform well in segmenting brain tissues and have been com-
pared with classical maximum likelihood methods. However,
because multispectral images provide more information for
processing or analysis, multispectral analysis techniques can
be used to improve the performance. Hence, several methods
have been developed for processing multispectral MRIs,
such as orthogonal subspace projection (OSP)6 and Kalman
filter,7 but both of them require prior knowledge. With these
considerations, we have developed a new method called the
independent component texture analysis (ICTA) to segment
the tumor region in multispectral breast MRIs. ICTA com-
prises three techniques: independent component analysis
(ICA), entropy-based thresholding (ET), and texture feature
registration (TFR). Among them, ICA, originally, is a blind
source separation (BSS) method in the signal processing
field, and it is a powerful tool for feature extraction and
data representation such as speech recognition, image recog-
nition, and statistical analysis.8
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The proposed method initially assumes multispectral
breast MRIs to be gray-level values in a three-dimensional
space composed of several independent components (ICs)
that can be regarded as different tissues of the breast such
as fat, glands, tumor mass, and muscle. First, the ICA tech-
nique is used to separate the ICs. Second, the binary images
that indicate the suspicious tumor region are generated using
the ET technique. Finally, texture feature extraction is
employed to find the consistency of the tumor texture feature
in suspicious tumor regions, which is called TFR. The tex-
ture features adopted for feature description are called the
texture spectrum (TS), which is based on the varying rela-
tionship between the gray levels of both image pixels and
surrounding pixels. We divided the TS according to three
feature descriptors named black-white symmetry (BWS),
geometric symmetry (GS), and degree of direction (DD).9

According to the experimental results, the three feature val-
ues may effectively reflect differences between tumors and
normal tissues. The binary image of the tumor region
selected by TFR is the output of proposed ICTA method
that could assist doctors in their diagnosis. A flowchart of
the proposed ICTA is shown in Fig. 1. The performance
of ICTA is compared with that of principal component tex-
ture analysis (PCTA), FCM, constrained energy minimiza-
tion (CEM), and OSP methods using a set of breast MRIs
to evaluate the feasibility of this new method in medical
and clinical applications.

The remainder of this paper is organized as follows:
Sec. 2 presents the existing multispectral image blind sepa-
ration technique, ICA. Section 3 describes in detail the
proposed method, ICTA. Section 4 explains the experiments
and their results. Finally, the conclusions are presented
in Sec. 5.

2 Independent Component Analysis
ICA has been developed to solve BSS problems such as the
cocktail party problem, and it is an extension of the covari-
ance-based PCA method. The observed signals are consid-
ered to be a linear combination of the original signals and

a mixing matrix. The goal is to find the mixing matrix.
In this paper, we applied the ICA technique to separate
multispectral breast MR images of different tissues. First,
let us define an n-dimensional original signal denoted as
a vector S ¼ ðs1; s2; : : : ; snÞT. Through linear transforma-
tion, we obtain an m-dimensional observed signal denoted
as a vector X ¼ ðx1; x2; : : : ; xmÞT. We assume that the linear
transformation X is composed of a mixing matrix A of size
m × n and the original signal S

2
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For simplicity, we rewrite the above equation as follows:

X ¼ AS: (2)

To obtain the mixing matrix A, we compute its inverse W ¼
A−1 and obtain the IC as

Ŝ ¼ WX; (3)

Ŝ ¼ S: (4)

Currently, many algorithms have been developed for the
implementation of ICA, but most of them either require com-
plex computation or have slow convergence. In this paper,
we applied the fast fixed-point algorithm (FastICA)10 pro-
posed by Hyvarinen and Oja for the effective implementation
of ICA. The principal advantages of this algorithm are fast
convergence and simple computation.

3 Independent Component Texture Analysis
Because ICs generated by ICA are inconsistent and cannot
identify tissue automatically, this paper proposes ICTA,
which combines ICA, ET, and TFR, to cope with the afore-
mentioned problems of ICA and accordingly determine the
target tumor region from ICs. The following sections
describe ET and TFR in more detail.

3.1 Entropy-Based Thresholding
In ICTA, ET (Refs. 11 and 12) is first used to segment suspi-
cious regions from an IC. For a start, we let tij be the (i, j)’th
element of a co-occurrence matrixW that considers the gray-
level transitions between two adjacent pixels. We define it as

tij ¼
XM
l¼1

XN
k¼1

δðl; kÞ; (5)

where

Independent component analysis

(ICA)

Independent components (ICs) and negative ICs

Local entropy thresholding method

Suspicious tumor regions

Texture features extraction

Proven tumor region

Texture features extraction

Identified IC and tumor region

Texture feature registration

(TFR)

Multispectral breast 

MRIs

Fig. 1 Flow chart of independent component texture analysis (ICTA).
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δd;θðl; kÞ ¼
�
1; if Iðl; kÞ ¼ i; Iðl; kþ 1Þ ¼ j and∕or Iðl; kÞ ¼ i; Iðlþ 1; kÞ ¼ j
0; otherwise

: (6)

The probability of a transition from gray level i to j is
obtained as

pij ¼
tijP

L−1
i¼0

P
L−1
j¼0 tij

: (7)

Assume that t is the threshold used to threshold an image.
Then, t partitions the co-occurrence matrix defined by
Eq. (6) into four quadrants, A, B, C, and D, as shown
in Fig. 2.

These four quadrants can be further grouped into two
classes. We assume that pixels with gray levels above the
threshold are assigned to the foreground (objects) and
those equal to or below the threshold are assigned to the
background. Quadrants A and C correspond to local transi-
tions within the background and foreground, respectively,
whereas quadrants B and D represent transitions across
boundaries between the background and foreground. The
probabilities associated with each quadrant are then given by

Pt
A ¼

Xt

i¼0

Xt

j¼0

pij; Pt
B ¼

Xt

i¼0

XL−1
j¼tþ1

pij;

Pt
C ¼

XL−1
i¼tþ1

Xt

j¼0

pij; Pt
D ¼

XL−1
i¼tþ1

XL−1
j¼tþ1

pij:

(8)

The probabilities in each quadrant can be further obtained by
so-called cell probabilities:

pt
ijjA ¼ pij

Pt
A
; pt

ijjB ¼ pij

Pt
B
; pt

ijjC ¼ pij

Pt
C
; pt

ijjD ¼ pij

Pt
D
;

(9)

which are conditional probabilities for a specific quadrant.
Three definitions—local entropy, joint entropy, and

global entropy—can be derived on the basis of the cell prob-
abilities, each of which yields a different method. According
to experimental results, the threshold obtained from the local
entropy is better than that obtained from the joint and global
entropies. Therefore, we focused on the local entropy in
this study.

3.1.1 Local entropy

Because quadrants A and C contain local transitions from
background to background (BB) and objects to objects (FF),
respectively, the local entropy of BB, denoted by HBBðtÞ,
and the local entropy of FF, denoted by HFFðtÞ, can be
defined as

HBBðtÞ ¼ −
Xt

i¼0

Xt

j¼0

pt
ijjA log pt

ijjA; (10)

HFFðtÞ ¼ −
XL−1
i¼tþ1

XL−1
j¼tþ1

pt
ijjC log pt

ijjC: (11)

By summing up the local within-class transition entropies of
the foreground and the background, a second-order local
entropy, denoted by HLEðtÞ, has been derived by Pal and
Pal11 as

HLEðtÞ ¼ HBBðtÞ þHFFðtÞ: (12)

The LE method proposed by Pal and Pal11 selects a
threshold tLE by maximizing HLEðtÞ as defined in Eq. (12)
over t so that

tLE ¼ arg
n
max

t
HLEðtÞ

o
: (13)

3.2 Texture Feature Registration
After ICs are segmented by ET, the TS (Ref. 9) is then
applied to extract texture features from the segmented region
(suspicious region) for identifying the optimum IC. TS is
intended for feature description based on the varying rela-
tionship between the gray levels of the image pixels and
the surrounding pixels. It has shown high efficiency in tissue
discrimination. The feature value (TS) calculated from the
suspicious region is then compared with the value calculated
from a proven tumor region to define its probability and
determine the most probable IC, and so is referred to as
“TFR.” In TFR, TS is subdivided into three feature descrip-
tors named BWS, GS, and DD,9 which are described as
follows.

3.2.1 Texture spectrum

A group of vectors V ¼ fV0;V1; : : : ;V8g is defined for the
pixel of which V0 represents the gray level of the mask cen-
tral pixel and V1; V2; : : : ; V8 represent the gray levels of the
surrounding eight points. The relationship E between the
central pixel V0 and the surrounding eight pixels is

Ei ¼
8<
:

0 if Vi

1 if Vi ¼ V0 for i ¼ 1; 2; : : : ; 8
2 if Vi > V0

: (14)

The relationship between the central pixel and its eight
adjacent pixels is defined as a texture unit (TU),

A

C

(BB)

(FF)(FB)

(BF)B

D

0 L-1

L-1

t

t

Fig. 2 Co-occurrence matrix with four quadrants divided by thresh-
old t .
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TU ¼ fE1; E2; : : : ; E8g, with each element having three pos-
sibilities. Thus, the possible available number of TU is 38 ¼
6561, which is associated with a TU code NTU, defined as

NTU ¼
X8
i¼1

Ei × 3i−1: (15)

The surrounding eight pixels are assigned letters a to h
clockwise, as illustrated in Fig. 3. Using the TS, it is possible
to define the following texture features that represent the tex-
tures of images:

BWS:

BWS ¼
�
1 −

P
3279
i¼0 jSðiÞ − Sð3281þ iÞjP

6560
i¼0 SðiÞ

�
; (16)

GS:

GS ¼
�
1 −

1

4

X4
j¼1

P
6560
i¼0 jSjðiÞ − Sjþ4ðiÞj
2 ×

P
6560
i¼0 SjðiÞ

�
; (17)

DD:

DD ¼
�
1 −

1

6

X3
m¼1

X4
n¼mþ1

P
6560
i¼0 jSmðiÞ − SnðiÞj
2 ×

P
6560
i¼0 SmðiÞ

�
; (18)

where SðiÞ represents the occurrence frequency of the i’th TU
code, i ¼ 0; : : : ; 6560 and SjðiÞ represents the occurrence

Fig. 3 Assigned letters of texture units for texture spectrum (TS).

Table 1 Mean value of tumor texture features.

Bands

Texture descriptor

Black-white
symmetry

Geometric
symmetry

Degree of
direction

PD 0.0175 0.6449 0.5649

T1 0.0296 0.6484 0.5203

T2 0.0168 0.7198 0.6026

Fig. 4 A demonstrated case of breast magnetic resonance images (MRIs) which contain a medium-size tumor with four different sequences
(bands): PD-weighted (a), T1-weighted (b), T2-weighted (c), and T1_FS (d).
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frequency of the i’th TU code with j as the starting position,
j ¼ 1; 2; : : : ; 8 (corresponding to a; b; : : : ; h in Fig. 3).

For the implementation of TFR, the tumor regions of T1,
T2, and PD were first identified by experienced radiologists
and then the TS was used to extract the texture features from
these known tumor regions. Different sections in cases were
utilized to obtain the reference tumor texture features.
Table 1 shows the texture feature mean values extracted
from the proven tumor regions.

4 Experimental Results
In this section, the performances of CEM, OSP, FCM, PCTA,
and the proposed ICTA are evaluated with breast MRI
datasets.

4.1 Experimental Data
In total, 16 cases of breast MRIs were acquired from Tri-
Service General Hospital in Taiwan for performance evalu-
ation, of which 11 cases contain tumor and five cases without
tumor. The MRIs were performed on a 1.5T MAGNETOM
Vision Plus system (Siemens, Erlangen, Germany). One
demonstrated case which contains a medium size tumor is
selected as an example and shown in Fig. 4 with four
different sequences (bands): PD-weighted spectral image
acquired with TR∕TEðrepetition time∕echo timeÞ ¼ 3000∕
15 ms, T1-weighted spin-echo image acquired with
TR∕TE ¼ 832∕20 ms, T2-weighted spin-echo image
acquired with TR∕TE ¼ 3000∕105 ms, and T1_FS (T1-
weighted fat-saturated image). The resolution and size of

each band are 8-bit gray level and 427 × 427, respectively.
The slice thickness of all MRIs is 2 mm.

In each case, the standard tumor region required for per-
formance evaluation was conformably verified by three
experienced radiologists as shown in Fig. 5(d). In Fig. 5,
Fig. 5(a)–5(c) shows the contours of the tumor mass delin-
eated by three experienced radiologists, and Fig. 5(d) is the
result of the intersection of Fig. 5(a)–5(c).

4.2 Evaluation Methods
4.2.1 Abundance percentage thresholding method

In order to quantitatively study and compare the results with
different methods, we converted the abundance fractional
images generated by the different methods to binary images.
Hence, we adopted the method proposed in Ref. 13, which
used the abundance fraction percentage as the cutoff
threshold value for such a conversion. First, using the nor-
malized abundance fraction of the image with the range
of [0, 1], let r be the pixel vector of the image and
â1ðrÞ; â2ðrÞ; : : : ; âpðrÞ be the estimated abundance fractions
of a1; a2; : : : ; ap in r; then the normalized abundance frac-
tion ãjðrÞ of each estimated abundance fraction α̂jðrÞ can be
obtained by

ãjðrÞ ¼
α̂jðrÞ −minr α̂jðrÞ

maxr α̂jðrÞ −minr α̂jðrÞ
: (19)

Assume that α% is the cutoff abundance fraction threshold
value. If the normalized abundance fraction of the pixel

Fig. 5 (a)–(c) Contours of tumor mass delineated by three different experienced radiologists. (d) Result of intersection of (a)–(c).
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vector is greater than or equal to α%, then the pixel will be
detected as a desired object pixel and set to “1”; otherwise, it
will be set to “0” and not be detected as a desired object
pixel. The use of this cutoff threshold value to threshold a
fractional abundance image will be referred to as the “α%
thresholding method.”

4.2.2 Receiver operating characteristic curve
analysis

Using the α% thresholding method, we were able to calculate
the number of detected pixels in the generated fractional
abundance image. Then the performance indices were
calculated using receiver operating characteristic (ROC)

Table 2 Tumor correct-classification rates of ICA for a case. IC 1’ represents the negative film of IC 1, and so forth.

Run times IC 1 (%) IC 2 (%) IC 3 (%) IC 4 (%) IC 1’ (%) IC 2’ (%) IC 3’ (%) IC 4’ (%)

1 31.25 19.28 99.14 25.25 68.75 80.72 0.85 74.76

2 68.76 99.20 27.64 75.20 31.25 0.80 72.33 24.78

3 31.26 99.20 72.34 75.19 68.75 0.80 27.63 24.79

4 31.25 80.72 0.85 74.76 68.76 19.28 99.14 25.25

5 31.25 99.20 27.64 75.19 68.75 0.80 72.33 24.79

6 31.26 80.72 99.14 74.77 68.75 19.28 0.85 25.25

7 68.75 0.80 27.64 75.20 31.25 99.20 72.33 24.79

8 31.26 99.20 72.33 24.78 68.75 0.80 27.64 75.20

9 31.26 99.20 72.34 24.79 68.75 0.80 27.64 75.19

10 68.75 19.28 0.85 25.25 31.26 80.72 99.14 74.76

Average 42.51 69.68 49.99 55.04 57.50 30.32 49.99 44.96

Table 3 Tumor classification rates of ICA and PCA for three demon-
strated cases with different tumor sizes (big, medium, and small), by
mean values of 10 highest classification rates in 100 run times.

Methods
Case 1
(big) (%)

Case 2
(medium) (%)

Case 3
(small) (%)

ICA 99.17 99.38 91.30

PCA 95.63 99.09 91.03

Table 4 Comparison between classification rate and distance defined in Eq. (27) for three demonstrated cases by using ICA.

Method

Case 1(big) Case 2 (medium) Case 3 (small)

Distance

Tumor
classification

rates (%) Distance

Tumor
classification
rates (%) Distance

Tumor
classification
rates (%)

IC 1 0.8423 68.75 0.9527 80.99 0.6094 8.63

IC 2 0.8050 0.80 0.3462 99.36 0.5833 15.99

IC 3 0.8563 27.64 0.4158 60.70 0.8758 73.10

IC 4 0.2553 75.20 0.4548 63.56 0.6181 39.32

IC 1’ 0.2552 31.25 1.0990 19.78 0.3269 91.30

IC 2’ 0.1878 99.20 1.0999 1.45 0.5185 83.99

IC 3’ 0.2077 72.33 1.1421 40.19 0.3983 26.89

IC 4’ 0.8388 24.79 1.1330 37.28 0.6962 60.57
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analysis.14 We define fd1; d2; : : : ; dpg ¼ fdigpi¼1 as p inter-
esting objects to be classified. NðdiÞ is the total number of
pixels specified by the i’th object signature di, NDðdiÞ is the
number of pixels specified by the i’th object signature di and
actually detected as di, and NFðdiÞ is the number of false-
alarm pixels that are not specified by the object signature di
but are detected as di. Using the definitions of NðdiÞ,
NDðdiÞ, and NFðdiÞ, we further define the detection rate
RDðdiÞ, false alarm rate RFðdiÞ, mean detection rate RD,
and mean false rate RF as follows:

RDðdiÞ ¼
NDðdiÞ
NðdiÞ

; (20)

RFðdiÞ ¼
NFðdiÞ

N − NðdiÞ
; (21)

RD ¼
Xp
i¼1

RDðdiÞpðdiÞ; (22)

RF ¼
Xp
i¼1

RFðdiÞpðdiÞ; (23)

where N is the total number of pixels in the image and
pðdiÞ ¼ NðdiÞ∕

Pp
i¼1 NðdiÞ. Note that the mean detection

rate RD as defined by Eq. (22) is the average of the detection
rates for all detected objects; similarly, the mean false-
alarm rate RF as defined by Eq. (23) is the average of the
false-alarm rates for all detected objects. According to
Eqs. (20) and (21), each fixed α% can generate a pair of
RD and RF. Furthermore, increasing α% from 0% to
100% gradually can generate a set of pairs ðRD; RFÞ. A
two-dimensional ROC curve of ðRD; RFÞ is then plotted,
and the area size under the ROC curve (AUC) is measured
as a performance index (classification rate).

Table 5 Correct IC identification rates by using texture feature regis-
tration (TFR) calculated in 100 run times for 16 cases (11 contain
tumor and five without tumor).

IC identification rates (%)

Correct-classification rate 92.09

False-alarm rate 6.36

Fig. 6 High-contrast images resulting from the demonstrated case by using ICTA (a), principal component texture analysis (PCTA) (b), constrained
energy minimization (CEM) (c), and orthogonal subspace projection (OSP) (d), respectively.
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4.3 Experimental Results
The experimental results obtained by the traditional ICA
method are shown in Table 2, where the highest classification
rates are given in bold face. In Table 2, four IC and four IC’
(negative film of IC) values are generated in 10 run times. As
seen in Table 2, the highest classification rates did not appear
in the same IC in each run time. Therefore, the classification
rates would not be high as shown in the last row if we chose a
fixed IC as the classification result. Table 3 presents the mean
values of the 10 highest classification rates manually selected
from ICs in 100 run times for three cases with different tumor
sizes (big, medium, and small). From the results of Table 3,
we can see that the performance of the ICA method was bet-
ter than the PCA method, but both of them were unable to
identify the tumor region by employing a fixed IC.

The texture features calculated from the suspicious tumor
region for each IC were then compared with the reference
tumor texture features to find out the most probable ICs
according to their Euclidean distance calculated as

Fig. 7 Receiver operator characteristic (ROC) curves for tumor classification results for the demonstrated case in Fig. 6. (a), Correct-classification
rate (RD) versus false-alarm rate (RF). (b), RD versus α%. (c), RF versus α%.

Table 6 Area under ROC curve (RD versus RF) for ICTA, PCTA,
CEM, and OSP.

Methods
Case 1
(big)

Case 2
(medium)

Case 3
(small)

Blind source separation

ICTA 0.9920 0.9936 0.9130

PCTA 0.9563 0.9909 0.9103

Prior knowledge required

CEM 0.9935 0.9952 0.9649

OSP 0.9852 0.9714 0.8095
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ICBWS
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPDBWS − PDBWS

S Þ2 þ ðT1BWS − T1BWS
S Þ2 þ ðT2BWS − T2BWS

S Þ2
q

; (24)

ICGS
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPDGS − PDGS

S Þ2 þ ðT1GS − T1GSS Þ2 þ ðT2GS − T2GSS Þ2
q

; (25)

Fig. 8 Segmentation results of applying ICTA (a), PCTA (b), fuzzy c-means (FCM) (c), CEM (d), and OSP (e) methods on images in Fig. 4.
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ICDD
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPDDD − PDDD

S Þ2 þ ðT1DD − T1DDS Þ2 þ ðT2DD − T2DDS Þ2
q

; (26)

where S is the number of ICs, and the texture features
distance between ICs and the known tumor is calculated
by

ICTAS ¼ ðICBWS
S þ ICGS

S þ ICDD
S Þ∕3 (27)

with a most probable IC selected using minimum distance
as

minfICTA1; ICTA2; : : : ; ICTASg: (28)

Table 4 shows the tumor classification rates for all IC and
IC’ values of the three cases using traditional ICA, and the
minimum distances are given in bold face. From Table 4, we
can see that ICs with minimum distance will have highest
classification rate. Such a result also indicates that correct
ICs could be found by using TFR. Table 5 shows the correct
IC identification rates of TFR for 16 cases, of which 11 cases
contain tumor and five cases without tumor. According to
experimental experience, the result of a case will be identi-
fied as no tumor within if all the distances of ICs are >0.4.

Figure 6 shows high-contrast images resulting from
ICTA, PCTA, CEM, and OSP methods, where the PCTA
method has the same procedure with ICTA, but using
PCA instead of ICA. Figure 7 shows ROC curves for the
classified sections shown in Fig. 6. Table 6 presents the
area under the ROC curves for ICTA, PCTA, CEM, and
OSP. Figure 8 shows the segmentation results of applying
ICTA, PCTA, CEM, and OSP on the images shown in
Fig. 4. In addition, we add an FCM into Fig. 8 for compari-
son because it is a common representative in classification.
Table 7 shows the averaged tumor correct-classification and
false-alarm rates obtained from applying ICTA, PCTA,
FCM, CEM, and OSP in our experimental data set. From
Tables 6 and 7, we can see that ICTA has good performance
with lowest false-alarm rate, as does CEM. But unlike CEM,

which requires prior knowledge, ICTA is a blind classifica-
tion technique.

5 Conclusion
Although ICA shows good performance in multispectral
MRI analysis, it may produce inconsistent results for ICs
because ICA uses random initial projection vectors. To solve
this problem, we propose a new method called the ICTA
for tumor contrast enhancement and segmentation using
breast MRIs. ICTA consists of three processes: ICA, ET,
and TFR.

After comparison with PCTA, FCM, CEM, OSP, and con-
trast-injected breast MRIs, our results indicate the possibility
of using ICTA for accurate diagnosis. First, ICTA is a BSS
method that, unlike CEM or OSP, does not require prior
knowledge. Second, the correct IC identification rate by
TFR is as high as 92.09%. Third, the tumor region correct-
classification rate is as high as 95.78% with a 2.05% false-
alarm rate. We anticipate that the high-contrast and binary
images generated by ICTA will assist radiologists in breast
MRI screening and increase the accuracy of breast tumor
diagnosis.
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