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Quantification of blood flow index in
diffuse correlation spectroscopy using

a robust deep learning method
Quan Wang , Mingliang Pan , Zhenya Zang , and David Day-Uei Li *

University of Strathclyde, Department of Biomedical Engineering, Faculty of Engineering, Glasgow,
United Kingdom

ABSTRACT. Significance: Diffuse correlation spectroscopy (DCS) is a powerful, noninvasive
optical technique for measuring blood flow. Traditionally the blood flow index
(BFi) is derived through nonlinear least-square fitting the measured intensity auto-
correlation function (ACF). However, the fitting process is computationally intensive,
susceptible to measurement noise, and easily influenced by optical properties
(absorption coefficient μa and reduced scattering coefficient μ 0

s) and scalp and skull
thicknesses.

Aim: We aim to develop a data-driven method that enables rapid and robust analy-
sis of multiple-scattered light’s temporal ACFs. Moreover, the proposed method
can be applied to a range of source–detector distances instead of being limited to
a specific source–detector distance.

Approach: We present a deep learning architecture with one-dimensional convo-
lution neural networks, called DCS neural network (DCS-NET), for BFi and coherent
factor (β) estimation. This DCS-NET was performed using simulated DCS data
based on a three-layer brain model. We quantified the impact from physiologically
relevant optical property variations, layer thicknesses, realistic noise levels, and
multiple source–detector distances (5, 10, 15, 20, 25, and 30 mm) on BFi and β
estimations among DCS-NET, semi-infinite, and three-layer fitting models.

Results: DCS-NET shows a much faster analysis speed, around 17,000-fold and
32-fold faster than the traditional three-layer and semi-infinite models, respectively. It
offers higher intrinsic sensitivity to deep tissues compared with fitting methods. DCS-
NET shows excellent anti-noise features and is less sensitive to variations of μa and
μ 0
s at a source–detector separation of 30 mm. Also, we have demonstrated that

relative BFi (rBFi) can be extracted by DCS-NET with a much lower error of 8.35%.
By contrast, the semi-infinite and three-layer fitting models result in significant
errors in rBFi of 43.76% and 19.66%, respectively.

Conclusions: DCS-NET can robustly quantify blood flow measurements at consid-
erable source–detector distances, corresponding to much deeper biological tissues.
It has excellent potential for hardware implementation, promising continuous real-
time blood flow measurements.
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1 Introduction
Cerebral blood flow (CBF) is essential for monitoring metabolic oxygenation,1,2 neurovascular
coupling,3,4 and metabolic response to functional stimuli.5,6 For example, CBF abnormalities are
caused by ischemic strokes,7 head trauma,8 or brain injury.9,10 There are several blood flow meas-
urement techniques, including computed tomography,11 magnetic resonance imaging,12 and posi-
tron emission tomography.13 However, although they are well-established, they cannot provide
continuous, long-term measurements at the bedside. Laser Doppler flowmetry can measure
microvascular blood flow but only probe shallow tissues.14 Doppler ultrasound techniques can
only measure blood flow in larger vasculatures and are unsuitable for longitudinal monitoring for
unstable probe orientations.15 Near-infrared diffuse optical methods are becoming popular in
blood flow measurements as they are noninvasive, nonionized, portable, and faster. Among them
is diffuse correlation spectroscopy (DCS),16,17 using a laser with a long coherence length (>5 m)
to illuminate tissue surfaces and collect remitted scattered light at a distance, typically 1 to 3 cm,
away from the incident position. The scattered light from flowing red blood cells causes a speckle
pattern fluctuating at a rate proportional to the flow rate. This blood-flow-dependent information
can be quantified based on the normalized temporal intensity autocorrelation function (ACF)

g2ðτÞ ≡ hIðtÞIðtþτÞi
hIðtÞi2 , where IðtÞ is the measured scattered light and τ is the correlation lag

time.17,18 DCS can measure blood flow in vivo in small animals,19,20 human brains,16 and
muscles.21 Traditionally, to derive blood flow index (BFi), the measured g2ðτÞ is fitted with
a homogenous semi-infinite one-layer analytical model22 or the Monte Carlo model.23 This fitting
process typically utilizes nonlinear least-square methods (NLSMs) with Levenberg–Marquardt
optimization or trust-region-reflective methods.24–26 However, treating biological tissues with
a homogenous semi-infinite model is not quite realistic, as significant signal contamination
from superficial tissue layers (e.g., scalp/skull) occurs when measuring deep flow in the brain.
Research has been conducted to minimize the discrepancy, with the diffusion equation for
layered geometries developed for fitting methods, including two-27,28 and three-layer analytical
models.29,30 Unfortunately, multilayer models highly rely on a priori knowledge of each layer’s
optical properties (namely the absorption coefficient μa and reduced scattering coefficient μ 0

s)
and thickness to estimate blood flow within each layer. Commonly, layer optical properties and
thicknesses are assumed from literature, and the errors in these assumed values can lead to
significant errors in brain blood flow estimations. Additionally, the multilayer model is suscep-
tible to measurement noise, especially for the three-layer model, although its accuracy in BFi
estimations has been validated.24,31 Moreover, these methods are iterative and time-consuming.
To overcome these limitations, the N’th-order linear (NL) algorithm,32,33 least-absolute minimi-
zation (L1 norm), and the support vector regression (SVR)34 were proposed. However, under the
NL framework, BFi extraction is significantly influenced by the linear regression approach
adopted.34 Although L1 norm and SVR are new approaches to processing DCS data, they are
sensitive to signal deviations.35,36 Additionally, the BFi computing time is 28.07 and 52.93 s
(using L1 norm and SVR, respectively), still slow for practical applications, particularly for
real-time monitoring.34

Deep learning, an increasingly popular method, has been widely applied to biomedical time
sequence data, including electroencephalogram (EEG) and electrocardiogram (ECG),37,38 but has
yet to be broadly used in DCS. Very recently, Zhang et al.39 proposed the first recurrent neural
network (RNN) regression model to DCS, followed by 2D convolution neural networks (2D
CNNs),40 long short-term memory (LSTM),41 and ConvGRU.42 LSTM, as a typical RNN struc-
ture, has proven stable and robust for quantifying relative blood flow in previous studies in phan-
tom and in vivo experiments.41 2D CNN, on the other hand, tends to require large training datasets
for complex structures, demanding massive memory resources. ConvGRU, the newest deep learn-
ing method introduced to DCS, has also exhibited excellent performances in BFi extraction.

Nevertheless, all existing algorithms are designed for a single source–detector distance (ρ),
corresponding to a specific depth in biological tissues. To accommodate a wider range of ρ,
retraining the model becomes necessary. Inspired by a recently published one-dimensional con-
volutional neural network (1D CNN)43 for fluorescence lifetime imaging (FLIM), we proposed
the DCS neural network (DCS-NET) based on 1D CNN for quantifying the coherent factor β
and BFi.
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The primary objective of this work is to present and evaluate an artificial intelligence (AI)
framework, called DCS-NET, in β and BFi estimations. We established the Monte Carlo sim-
ulation model based on the open-source tool Monte Carlo eXtreme (MCX) developed by Fang
and Boas44 to generate g2ðτÞ emulating experiment data. The DCS-NET training, validation, and
testing datasets are from the semi-infinite geometry model.22 We investigated DCS-NET’s per-
formance on absolute BFi and relative BFI (rBFi)’s estimations and compared them with semi-
infinite and three-layer model fitting methods. To best link our work with actual outcomes
expected in practice, we modeled DCS measurement noise based on realistic experimental con-
ditions, considering various noise levels controlled by the integration time (T int). We define a
metric that accounts for the intrinsic sensitivity of the brain blood flow and evaluate it between
DCS-NET and traditional fitting methods. We also show BFi estimation errors induced by the
inaccurate assumptions about layer optical properties and thicknesses when using fitting methods
based on the semi-infinite and three-layer solutions of the correlation diffusion equation. Figure 1
summarizes the main concept of our work. All essential parameters are defined in Table 6 in the
Appendix to facilitate our discussion.

2 Methods

2.1 DCS Theory
The transport of the unnormalized electric field auto-correlation function,
G1ðρ; τÞ ≡ hE�ðρ; tÞ · Eðρ; tÞi, is well described by the correlation diffusion equation:17,45

EQ-TARGET;temp:intralink-;e001;117;183

�
−

1

3μ 0
s
∇2 þ μa þ

1

3
αk20μ

0
shΔr2ðτÞi

�
G1ðρ; τÞ ¼ SðρÞ; (1)

where k0 ¼ 2πn∕λ is the wavenumber of light, n and λ are the refractive index and wavelength in
the scattering medium, respectively. α is the fraction of dynamic photon scattering events in the
medium. hΔr2ðτÞi is the mean squared displacement of scatterers in the turbid medium during a
time interval τ. SðρÞ is the point source located at ρ; ρ is the source–detector distance. μa and μ 0

s

are the tissue’s absorption and reduced scattering coefficients, respectively. For a semi-infinite
medium, the solution of Eq. (1) using the extrapolated boundary condition for continuous-wave
DCS is

Fig. 1 Flowchart of the proposed analysis. Step 1 generates the ACF g2ðτÞ from MCX at different
source–detector distances (5, 10, 15, 20, 25, and 30 mm), optical properties (μa1;2;3, μ 0

s1;2;3), scalp/
skull thicknesses (Δ1, Δ2), and different noise levels using the three-layer slab. Step 2 obtains
training datasets containing noise. The datasets are generated using a semi-infinite diffusion
model with μa ∈ ð0.01; 1� mm−1, μ 0

s ∈ ð0.5; 1.6� mm−1, β ∈ ð0; 1�, and BFi ∈ ½10−8; 10−5� mm2∕s.
Then, the simulated g2ðτÞ from step 1 is analyzed by the pretrained model to predict β and
BFi. Step 3 fits the simulated data from step 1 with semi-infinite and three-layer models with
known/assumed optical properties/thicknesses to extract β and BFi. Step 4 assesses BFi and
β estimations and concludes the intrinsic sensitivity and errors in terms of the variations in μa,
μ 0
s, Δ1, and Δ2.
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3μaμ

0
s þ αμ 02
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p
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p
, r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz0 þ 2zbÞ2

p
,

z0 ¼ ðμa þ μ 0
sÞ−1, and zb ¼ 5∕ð3μ 0

sÞ to be consistent with Ref. 46. Previous studies have shown
that the scatters’ Brownian diffusion motion model18,47 aligns well with in vivo DCS experi-
ments, and therefore, the mean-squared displacement can be derived as hΔr2ðτÞi ¼ 6Dbτ, where
Db represents the effective diffusion coefficient. BFi in DCS is typically defined as αDb.

21,48

g2ðτÞ is linked to the normalized electric field auto-correlation function as

EQ-TARGET;temp:intralink-;e003;114;443g2ðρ; τÞ ¼ 1þ βg1ðρ; τÞ2; g1ðρ; τÞ ¼
���� G1ðρ; τÞ
G1ðρ; τ ¼ 0Þ

����; (3)

where β is a constant accounting for the collection setup, such as the number of detected speckles
and the numerical aperture of the detection fiber.

However, realistic biological tissues49 show multiple layers with different physiological and
optical properties. Using DCS to conduct in vivo CBF measurements, light must propagate
through different layers, including the scalp and skull.50,51 Thus, layered analytical models have
been proposed for BFi extraction. These include the two-27,28 and three-layer analytical
models.24,30,31,52 This study considers the three-layer analytical model, where a turbid medium
consisting of N slabs is considered, as shown in Fig. 2(c). Each slab has its thickness,
Δp ¼ Lp − Lp−1, p ¼ 1, 2, 3, where L0;1;2;3 are the coordinates along the z-axis and μa1;2;3,
and μ 0

s1;2;3 are absorption and scattering coefficients. To solve Eq. (1) in the layered medium
(along z direction), we can use the Fourier transform Gðr; τÞ for the transverse coordinate ρ as

EQ-TARGET;temp:intralink-;e004;114;272Ĝðq; z; τÞ ¼
Z

d2ρGðr; τÞ expðiq · ρÞ; (4)

where q is the radial spatial frequency. Equation (1) can then be rewritten as

EQ-TARGET;temp:intralink-;e005;114;224

�
∂2

∂z2
− Θ2

ðpÞðq; τÞ
�
Ĝðq; z; τÞ ¼ −3μ 0

sðpÞδðz − z 0Þ; (5)

where Θ2
ðpÞðq; τÞ ¼ 3μaðpÞμ 0

sðpÞ þ 6k20μ
02
sðpÞDbðpÞτ þ q2, z 0 ¼ 1∕μ 0

s1, and p ¼ 1; 2; 3.

We divided the top layer into two sublayers: layer 0 (0 < z < z 0) identified by p ¼ 0, and
layer 1 (z 0 < z < Δ1). Then, the solution of Eq. (5) inside the p’th layer (p ¼ 1; 2; 3) can be
written as

EQ-TARGET;temp:intralink-;e006;114;135Ĝðq; z; τÞ ¼ AðpÞ expðΘðpÞzÞ þ BðpÞ expð−ΘðpÞzÞ; (6)

where AðpÞ and BðpÞ are coefficients for each layer determined by the boundary conditions

Fig. 2 Simulation layered model and analytical models. (a) A large slab representing a human
brain consisting of three layers of the scalp (5 mm), skull (7 mm), and brain (50 mm). (b) The
homogenous semi-infinite analytical model used for fitting methods and generating deep-learning
training datasets. (c) Three-layer geometric scheme including the position of the source and detec-
tor, each layer has its own thickness Δ1;2;3 and characterized by the absorption coefficient μa1;2;3
and reduced scattering coefficient μ 0

s1;2;3.
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Ĝ0ðq; z; τÞ ¼
∂
∂z

Ĝ1ðq; z; τÞ þ 3μ 0
s1; z ¼ z 0;
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Ĝ3ðq; z; τÞ ¼ 0; z ¼ L3; (7)

where z0 ∼ 1∕μ 0
s1 and z3 ∼ 1∕μ 0

s3 are the extrapolation lengths accounting for internal reflections
at the tissue surface (z ¼ 0) and the back surface (z ¼ L3), respectively. Dp ¼ c∕3μ 0

sðpÞ is the
photon diffusion coefficient in layer p, and c is the speed of light.

Substituting Eq. (6) into Eq. (7), AðpÞ and BðpÞ can be determined (p ¼ 1, 2, 3), and
we obtain the solution of Eq. (5) at z ¼ 0 as

EQ-TARGET;temp:intralink-;e008;117;529Ĝðq; z ¼ 0; τÞ ¼ Num

Denom
; (8)

where Num and Denom (when p ¼ 3 and Δ3 → ∞) are
EQ-TARGET;temp:intralink-;e009;117;484

Num ¼ 3μ 0
s1ðz0Θ1D1 coshðΘ1ðΔ1 − z 0ÞÞðΘ2D2 coshðΘ2Δ2Þ þ Θ3D3 sinhðΘ2Δ2ÞÞ

þ Θ2D2ðΘ3D3 coshðΘ2Δ2Þ þ Θ2D2 sinhðΘ2Δ2ÞÞ sinhðΘ1ðΔ1 − z 0ÞÞÞ; (9)

EQ-TARGET;temp:intralink-;e010;117;430

Denom ¼ Θ2D2 coshðΘ2D2ÞðΘ1ðD1 þ Θ3D3z0Þ coshðΘ1D1Þ
þ ðΘ3D3 þ Θ2
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1Θ3D1D3z0Þ sinhðΘ1D1Þ Þ sinhðΘ2Δ2Þ: (10)

Therefore, by performing the inverse Fourier transform of Eq. (8) with respect to q, the field
ACF at z ¼ 0 can be written as

EQ-TARGET;temp:intralink-;e011;117;363Gðρ; z ¼ 0; τÞ ¼ 1

ð2πÞ2
Z

d2qĜðq; z ¼ 0; τÞ expð−iq · ρÞ ¼ 1

2π

Z
dqĜðq; z ¼ 0; τÞqJ0ðq · ρÞ;

(11)

EQ-TARGET;temp:intralink-;e012;117;301g2ðρ; z ¼ 0; τ ¼ 0Þ ¼ Gðρ; z ¼ 0; τÞ
Gðρ; z ¼ 0; τ ¼ 0Þ ; (12)

where J0 denotes the zero-order Bessel function of the first kind. The integral bound for q in
Eq. (11) should theoretically be from 0 to þ∞. However, in practice, the numerical integration is
performed with a limited range as ½0 mm−1; 30 mm−1� advised in Ref. 29.

2.2 Noise Models
This study evaluates the impact from noise on BFi and β. We employed a broadly accepted noise
model proposed by Zhou et al.53 The standard deviation (σðτÞ, noise) of g2ðτÞ is given as

EQ-TARGET;temp:intralink-;e013;117;197

σðτÞ ¼
ffiffiffiffiffiffiffi
Tb

T int

s �
β2

ð1þ e−2ΓTbÞð1þ e−2ΓτÞ þ 2mð1 − e−2ΓTbÞe−2Γτ
1 − e−2ΓTb

þ 2hni−1βð1þ e−2ΓτÞ þ hni−2ð1þ e−ΓτÞ
�
1∕2

; (13)

where Tb is the bin width of the correlator,m is the bin index corresponding to τ. hni ≡ ITb is the
average number of photons detected within the bin time, where I is the detected photon count
rate, and T int is the integration time (e.g., measurement duration). Γ is the decay rate of g2ðτÞ,
which is obtained from fitting the measured g2ðτÞ to the theoretical g2ðτÞ ≈ 1þ β expð−ΓτÞ.
Gaussian noise54,55 was added to g2ðτÞ based on a statistical noise model to determine the noise
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(σðτÞ). Considering realistic photon budgets, the photon count rate at 785 nm was assumed to be
8.05 kcps.55 Three different noise levels were defined according to T int (= 1, 10, or 30 s).

2.3 Intrinsic Sensitivity Estimation
To evaluate the sensitivity to changes in blood flow in the deeper layer, we fixed the effective
diffusion coefficient Db ¼ 1 × 10−6 mm2∕s in layer 1 and increased Db in layer 3 as αDb ¼
½1þ 0.1 × ðw − 1Þ� × 6 × 10−6 mm2∕s, w is an integer and w ¼ 1;2; : : : ; 11. The physiological
and optical parameters listed in Table 1 are taken as baseline conditions. Similar to Ref. 54,
the intrinsic sensitivity (ηH) is defined as

EQ-TARGET;temp:intralink-;e014;114;514ηH ¼ ðBFiH − BFi0Þ∕BFi0
ðCBFperturb − CBF0Þ∕CBF0

× 100%; (14)

where BFiH and BFi0 represent the estimated BFi (H ¼ D, S, or T, meaning DCS-NET, the semi-
infinite, and three-layer fitting methods) for the perturbed and baseline conditions, respectively,
and CBFperturb and CBF0 areDb in layer 3 for the perturbed and baseline conditions, respectively.

2.4 Monte Carlo Simulations
We utilized a simplified model comprising three layers to emulate the scalp (5 mm), skull
(7 mm), and brain (50 mm, large enough so that we can treat the medium as semi-infinite),
respectively.57 All layers were assumed homogeneous, as demonstrated in Fig. 2(a), and their
corresponding optical properties are summarized in Table 1.

MCX utilized an anisotropic factor (g) of 0.89 and a refractive index (n) of 1.3744 for all
layers. We launched 2 × 109 photons from a source with a diameter of 1 mm and set the detector
radii to 0.13, 0.28, 0.45, 0.7, 1, and 1.5 mm for ρ ¼ 5, 10, 15, 20, 25, and 30 mm, respectively,
recording data frommultiple distances simultaneously. An example of the source and the detector
was arranged as shown in Fig. 2(a). MCX records the path lengths and momentum transfer from
the detected photons for obtaining the electric field ACF G1ðτÞ:22

EQ-TARGET;temp:intralink-;e015;114;295G1ðτÞ ¼
1

Np

XNp

s¼1

exp

�
−
1

3
k20

XNt

i¼1

Ys;ihΔr2ðτÞii
�
exp

�
−
XNt

i¼1

μa;iLs;i

�
; (15)

where Np is the number of detected photons, Nt is the number of tissue types (3 for our sim-
ulations), and Ys;i and Ls;i stand for the total momentum transfer and the total path length of
photon s in layer i, respectively. μa;i is the absorption coefficient, and hΔr2ðτÞii is the mean
square displacement of the scattered particles in layer i. Here, hΔr2ðτÞii ¼ 6Diτ, where Di

is the effective diffusion coefficient of layer i. The simulated G1ðτÞ is normalized to G1ð0Þ,
and then we can obtain g2ðτÞ using the Siegert relationship with β ¼ 0.5. In this simulation,
the delay time 1 μs ≤ τ < 10;000 μs (127 data points) was used for g2ðτÞ.

2.5 Deep Learning Architecture Design
The structure of DCS-NET is shown in Fig. 3(a). DCS-NET takes g2ðτÞ to estimate β and
BFi independently. DCS-NET consists of (1) a shared branch for temporal feature extraction
and (2) two subsequent independent branches for estimating β and BFi, with a similar structure
to the shared branch. The two CNN layers in the shared branch have a wider sliding window with
a larger kernel size of 13 and a giant stride of 5. They are expected to capture more general
features of the auto-correlation decay curves. The batch normalization (BN) layer58 is employed

Table 1 Physiological and optical parameters56 at 785 nm in the human head model.

Layer Thickness (mm) μa (mm−1) μ 0
s (mm−1) Blood flow index (mm2∕s)

Scalp (Δ1) 5 0.019 0.660 1 × 10−6

Skull (Δ2) 7 0.014 0.860 0

Brain 50 0.019 1.110 6 × 10−6
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after each convolutional layer. It reduces the shift of internal covariance and accelerates network
training when processing normalized data. To implement feature pooling and effectively recon-
struct β and BFi, we use a pointwise convolution layer with a kernel size of 1 after the convolu-
tional neural network, followed by the activation function, the Sigmoid function. The model
input is measured (here, we used data from MCX) g2ðτÞ, of which the size is 1 × 127. Both
the estimated β and BFi have a size of 1 × 1. Note that the simulated g2ðτÞ was normalized to
(0, 1] before being fed into the model.

2.6 Training Dataset Preparation
The training datasets can be easily obtained using synthetic data based on the homogenous semi-
infinite analytical model, as shown in Fig. 2(b). Thus, according to Eqs. (2) and (3), 200,000
training datasets (200;000 × 127) were generated and split into the training (80%) and the
validation (20%) groups. Each dataset consists of the input, g2ðτÞ, and its corresponding labels
are BFi and β, which are the output. The training batch size is 128, with 800 training epochs.
We used an early stopping callback with 20 patient epochs to prevent overfitting. To match the
realistic experiments, in the dataset, we set μa ∈ Uð0.01; 1� mm−1, μ 0

s ∈ Uð0.5; 1.6� mm−1,
β ∈ Uð0; 1�, BFi ∈ ½10−8; 10−5� mm2∕s, and ρ ∈ U½5; 30� mm, where U stands for a uniform
distribution. g2ðτÞ training datasets contain noisy and noiseless (the noise model has been described
in Ref. 53) ACFs, as shown in Fig. 3(c). The green, yellow, and red lines represent noisy g2ðτÞ, and
the blue line represents noiseless g2ðτÞ. We used the optimizer Adam59 for the training process,
with the learning rate fixed at 1 × 10−5 in the standard back-propagation. We used the mean square
error loss function for updating the network by controlling the following problem:

EQ-TARGET;temp:intralink-;e016;117;134Lð℘Þ ¼ 1

M

XM
i

kF ðXi;℘Þ − Yik22; (16)

whereX is the network output (estimated BFi or β), and Y is the corresponding label (true BFi or β)
in the i’th training pairs.F is the mapping function,℘ is the trainable weights of our networks, and

Fig. 3 Design and evaluation of the convolution neural network (CNN). (a) The proposed DCS-
NET includes a CNN, BN, and sigmoid activation layers. The convolution layer parameters are the
filter number × the kernel size × the stride. (b) Training and validation losses of DCS-NET. (c) g2ðτÞ
with noise-free (blue), and with realistic noise added, assuming an 8.05 kcps at 785 nm at different
noise levels with T int ¼ 1, 10, and 30 s.
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M is the number of training pairs. Figure 3(b) shows that the training and validation losses decrease
rapidly and reach the plateau after 85 epochs. The training process’s best score reaches a small
value of 0.000725, indicating that the network is well trained as the estimated β and BFi are close to
the ground truth. The model was conducted in Python using Pytorch with Intel (R) Core (TM) i9-
10900KF CPU @3.70 GHz.

3 Results

3.1 Absolute BFi Recovery Versus Detection Depths
To investigate how the absolute BFi and β behave in terms of ρ among DCS-NET, semi-infinite,
and three-layer fitting approaches, we generated g2ðτÞ via MCX Monte Carlo simulations for
ρ ¼ 5, 10, 15, 20, 25, and 30 mm, as described in Sec. 2.4. Table 1 shows all the relevant param-
eters used in MCX simulations. The absolute BFi in this study corresponds to the Brownian
diffusion coefficient Db (assumed α ¼ 1). When using DCS-NET, g2ðτÞ was fed into the
pre-trained model. For the semi-infinite fitting procedure, g2ðτÞ was fitted to Eqs. (2) and (3),
and we assumed μa ¼ 0.019 mm−1, μ 0

s ¼ 1.099 mm−1, for the brain layer (layer 3), as provided
in Table 1.

We also fitted the simulated g2ðτÞ with the three-layer model, Eqs. (11) and (12), and
Db1 ¼ 1 × 10−6 mm2∕s, Db2 ¼ 0 mm2∕s, Db3 ¼ 6 × 10−6 mm2∕s, μa1 ¼ 0.019 mm−1, μ 0

s1 ¼
0.635 mm−1, μa2 ¼ 0.014 mm−1, μ 0

s2 ¼ 0.851 mm∕s, μa3 ¼ 0.019 mm−1, μ 0
s3 ¼ 1.099 mm−1,

Δ1 ¼ 5 mm, and Δ2 ¼ 7 mm. Meanwhile, we set β ¼ 0.3 and Db3 ¼ 2 × 10−7 mm2∕s as the
initial guesses. For the fitting, we used NLSM (lsqcurvefitð·Þ in MATLAB with the Levenberg–
Marquardt optimization) to minimize the unweighted least squares objective function,

EQ-TARGET;temp:intralink-;e017;114;457 arg min
Xj¼Nτ

j¼1

½g2ðτÞMCX − g2ðτÞH�2; H ¼ ðS; TÞ; (17)

where Nτ is the number of sampled g2ðτÞ, and g2ðτÞH is from Eq. (3) or Eq. (12). Fitting was
performed on τ from 1 to 10;000 μs.

Table 2 presents the true β and BFi and estimated β and BFi using DCS-NET, semi-infinite,
and three-layer fitting methods. All input parameters for fitting are assumed as described above,
and βGT ¼ 0.5. We define BFiD, BFiS, and BFiT (also βD, βS, and βT) for DCS-NET, the semi-
infinite, and three-layer fitting methods, respectively. We define εBFi;Dð%Þ ¼ jBFiD − BFiGTj∕
BFiGT × 100%, where εBFi;D is the BFi error with DCS-NET. Similarly, εBFi;S and εBFi;T are the
BFi estimated errors with the semi-infinite and three-layer fitting methods.

Table 2 shows when the semi-infinite model is used, the estimated BFi is closer to layer 1
(αDb ¼ 1 × 10−6 mm2∕s), even for ρ ¼ 30 mm, suggesting that a homogenous fitting procedure
is more sensitive to the superficial layers’ dynamic properties. This finding is consistent
with the results reported by Gagnon et al.27 Using the three-layer fitting model, we obtained
BFiT ¼ 7.15 × 10−7 mm2∕s, close to 1 × 10−6 mm2∕s when ρ ¼ 5 mm. This is because the
mean light penetration depth is ∼ρ∕3 to ρ∕2.19 When ρ is small, most detected photons predomi-
nantly travel through layer 1. As ρ increases (ρ ≥ 10 mm), the estimated BFi decreases, reaching
5.63 × 10−6 mm2∕s at ρ ¼ 25 mm, with εBFi;T of 6.17%. This is because as ρ increases, the
detected photons penetrate inside the skull layer (αDb ¼ 0 mm2∕s), resulting in an increased
contribution of layer 2. This phenomenon is expected, because the three-layer modeling can
remove the contribution from superficial layers52 to obtain accurate BFi. Interestingly, when
using DCS-NET, the estimated BFi increases as ρ increases, reaching 5.71 × 10−6 mm2∕s with
εBFi;D of 4.83% at ρ ¼ 30 mm. These results suggest that the AI model is capable of recognizing
the depth. Regarding β estimation, there is no significant difference among the three methods.

3.2 Absolute BFi Recovery with Noise
Figure 3(c) displays the semi-infinite analytical example g2ðτÞ curves with noise using the
model proposed by Zhou et al.53 The curves were obtained with ρ ¼ 30 mm at different
noise levels (T int ¼ 1; 10; 30 s), μa ¼ 0.019 mm−1, and μ 0

s ¼ 1.099 mm−1 with an assumed
BFi ¼ 2 × 10−7 mm2∕s. To assess DCS-NET’s performance in practical scenarios, we modified

Wang et al.: Quantification of blood flow index in diffuse correlation spectroscopy. . .

Journal of Biomedical Optics 015004-8 January 2024 • Vol. 29(1)



the Monte Carlo code to generate g2 curves including noise according to Zhou et al.’s noise
model.53 We generated 100 g2 sets for each noise level (including noiseless). Still, we minimized
Eq. (17) using the Levenberg–Marquardt optimization routine. We performed the residual analy-
sis to assess the efficiency of the semi-infinite and three-layer models. We define the residual δ
and resnorm (the squared 2-norm of the residual) ϵ as

EQ-TARGET;temp:intralink-;e018;117;242δ ¼ fðβ;BFi; τqÞ − g2ðτqÞ; ϵ ¼
Xq¼Q

q¼1

δ2; (18)

where q is the lag time index, andQ is the length of the time trace. fðβ;BFi; τqÞ is the fitted g2ðτÞ
obtained from fitting methods based on analytical models at the lag time τq, and the correspond-
ing true value is g2ðτqÞ from MCX. The fitting results using the semi-infinite and three-
layer analytical models are presented in Fig. 4, in which noisy g2ðτÞ curves from MCX
(blue star-shaped) and fitted g2ðτÞ curves (red lines) at different noise levels are shown.
Figures 4(a)(i)–4(a)(iv) show the MCX-generated and fitted g2 using the semi-infinite model,
and they exhibit an increasing trend in δ, ranging from ð−0.0025; 0.0025Þ to ð−0.5; 0.5Þ,
indicating that the semi-infinite method becomes inaccurate when the noise level increases.
Additionally, ϵ reaches 3.02 when T int ¼ 1 s. Similar behaviors are observed in the three-layer
fitting, as shown in Figs. 4(b)(i)–4(b)(iv).

Table 2 BFi in the brain estimated using DCS-NET, homogeneous semi-infinite and three- layer
fitting models.

ρ (mm) Layer BFiGT (mm2∕s) BFiD (mm2∕s)

BFi estimated by fitting methods (mm2∕s)

BFiS BFiT

5 1 1 × 10−6 βD ¼ 0.521 βS ¼ 0.501 βT ¼ 0.493

2 0 BFiD ¼ 8.45 × 10−7 BFiS ¼ 7.15 × 10−7 BFiT ¼ 7.15 × 10−7

3 6 × 10−6

10 1 1 × 10−6 βD ¼ 0.509 βS ¼ 0.499 βT ¼ 0.493

2 0 BFiD ¼ 7.36 × 10−7 BFiS ¼ 5.47 × 10−7 BFiT ¼ 2.17 × 10−5

3 6 × 10−6

15 1 1 × 10−6 βD ¼ 0.501 βS ¼ 0.498 βT ¼ 0.504

2 0 BFiD ¼ 1.03 × 10−6 BFiS ¼ 4.79 × 10−7 BFiT ¼ 1.43 × 10−5

3 6 × 10−6

20 1 1 × 10−6 βD ¼ 0.499 βS ¼ 0.495 βT ¼ 0.506

2 0 BFiD ¼ 2.07 × 10−6 BFiS ¼ 4.57 × 10−7 BFiT ¼ 8.17 × 10−6

3 6 × 10−6

25 1 1 × 10−6 βD ¼ 0.499 βS ¼ 0.493 βT ¼ 0.505

2 0 BFiD ¼ 4.82 × 10−6 BFiS ¼ 4.63 × 10−7 BFiT ¼ 5.63 × 10−6

3 6 × 10−6

30 1 1 × 10−6 βD ¼ 0.499 βS ¼ 0.491 βT ¼ 0.505

2 0 BFiD ¼ 5.71 × 10−6 BFiS ¼ 4.88 × 10−7 BFiT ¼ 4.97 × 10−6

3 6 × 10−6
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We also calculated the mean BFi and β over 100 trials. As for β, we arrive at the same con-
clusion as Sec. 3.1 that all three methods exhibit similar behaviors at the same noise level. A high
noise level (T int ¼ 1 s) leads to a significant standard deviation, as shown in Fig. 5(a). Figure 5(b)
shows the estimated BFi. The estimated BFi for the semi-infinite model deviates significantly from
the ground truth. When using the three-layer fitting method, εBFi;T is 82.30% at the lower noise
level (T int ¼ 30 s). As the noise level increases, εBFi;T also increases, with εBFi;T reaching 390.10%
at the high noise level (T int ¼ 1 s). Furthermore, a high noise level leads to a more significant
standard deviation, indicating that BFi estimation is highly sensitive to noise when the three-layer
fitting method is applied, in accordance with previous findings.52 In contrast, εBFi;D (using DCS-
NET) at a high noise level (T int ¼ 1 s) is 12.87%, whereas at a low noise level (T int ¼ 30 s), it is
only 1.93%, indicating that DCS-NET is not susceptible to noise. Figure 5(b) also shows that when
the three-layer fitting method is used, the BFi precision can be enhanced through increasing T int.

Fig. 4 MCX-generated (scattered stars) and fitted (red solid lines) g2 curves using semi-infinite
and three-layer fitting methods. [(a) (i)–(iv), respectively] noisy MCX simulated data (scattered
star-shaped) at different noise levels fitted with the semi-infinite homogeneous model; [(b) (i)–(iv)]
noisy MCX-generated data fitted with the for the three-layer fitting procedure. The corresponding
residual δ and resnorm ϵ curves are also included.
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3.3 Relative Blood Flow
In practice, we do not aim to obtain absolute BFi measurements. Instead, the relative variation in
blood flow (e.g., rBFi ¼ BFi∕BFi0) is oftener used.19 To evaluate DCS-NET for extracting rBFi
in the brain, we assigned αDbðwÞ ¼ ½1þ 0.05 × ðw − 1Þ� × 6 × 10−6 mm2∕s, w ¼ 1;2; : : : ; 21
in layer 3 (brain) and fixed αDb in other layers. Figure 6 presents rBFi calculated on noiseless
data at ρ ¼ 30 mm.

In Fig. 6, rBFi calculated by DCS-NET, the semi-infinite, and three-layer fitting methods on
noiseless data for ρ ¼ 30 mm for αDb ranges from 6 × 10−6 to 1.2 × 10−5 mm2∕s
(w ¼ 1; : : : ; 21) with a step of 0.05 × 10−6. rBFi ¼ BFi∕BFi0, we define the estimated BFi as
BFi0 at the start point.

To compare the accuracy of the three different methods in quantifying rBFi, we defined the
error in rBFi as εrBFi;H ¼ jrBFiH − rBFiGTj∕rBFiGT × 100% (H ¼ D, S, or T), meaning the rBFi
estimation error using DCS-NET, the semi-infinite, and three-layer fitting methods, respectively.
We can observe that rBFiD (red star) is close to the true rBFi (blue solid line) with εrBFi;D ranging
from 0.15% to 8.35%. By contrast, the semi-infinite and three-layer methods result in more
significant errors of 3.41% ≤ εrBFi;S ≤ 43.76% and 0.36% ≤ εrBFi;T ≤ 19.66%, respectively.
As expected, the semi-infinite homogenous solution resulted in significant errors in rBFi,
in agreement with Ref. 33.

Fig. 5 Estimated β by DCS-NET, semi-infinite, and three-layer fitting methods at different noise
levels (T int ¼ 1, 10, and 30 s). The bar height means the average value for estimated BFi or β, the
error bar means the standard deviations σ. (b) The estimated BFi by the three methods at different
noise levels. The red dot line stands for the ground truth. (All the average values were obtained
over 100 trials.)

Fig. 6 rBFi calculated by DCS-NET, the semi-infinite, and three-layer fitting methods on noiseless
data for ρ ¼ 30 mm for αDb ranges from 6 × 10−6 mm2∕s to 1.2 × 10−5 mm2∕s (w ¼ 1; : : : ; 21) with
a step of 0.05 × 10−6. rBFi ¼ BFi∕BFi0, we define the estimated BFi as BFi0 at the start point.
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3.4 Intrinsic Sensitivity
As described in Sec. 2.3, the input Db in layer 3, denoted as CBF0 ¼ 6 × 10−6 mm2∕s, serves
as the base point, and its corresponding recovered BFi is denoted as BFi0. Similarly, we
assigned αDb ¼ ½1þ 0.05 × ðw − 1Þ� × 6 × 10−6 mm2∕s (w is an integer; w ¼ 1;2; : : : ; 21),
and it is referred to as the perturbed blood flow CBFperturb. We also define a perturbation level
ζ ¼ ðCBFperturb − CBF0Þ∕CBF0 × 100%. We calculated the corresponding BFi for αDb, and
then used Eq. (14) to obtain ηD, ηS and ηT . We considered physiological noise by utilizing the
noise model described in Sec. 2.2. Figure 7(a) shows the noiseless intrinsic sensitivity, demon-
strating that DCS-NET exhibits ηD > 71.34%. The intrinsic sensitivity reaches 2.5 × when
ζ ¼ 20%, then decreases with ζ increasing. In comparison, the three-layer fitting method
achieved ηT ¼ 61.96%, whereas the semi-infinite fitting method yielded ηS of only 14.12%
on noiseless data. Figures 7(b)–7(d) illustrate sensitivity curves at various noise levels.
Especially noteworthy are the instances where ηD > 0 at T int ¼ 10 s and T int ¼ 30 s.
Conversely, with the semi-infinite and three-layer fitting models, η predominantly assumes neg-
ative values, underscoring the considerable impact of measurement noise on sensitivity.
Furthermore, the impact of measurement noise on the sensitivity overgrows, particularly for the
three-layer fitting method, as apparent in Fig. 7(d).

3.5 BFi Extraction with Varied Optical Properties and Scalp/Skull Thicknesses
In practical applications, a patient’s head parameters can vary significantly, and the ideal scenario
is to measure them before conducting DCS measurements. However, it is not always straightfor-
ward, and we usually assume average values. However, we must evaluate the impact of assumed
errors on BFi estimation. Since μa and μ 0

s are typically unknown and have to be measured

Fig. 7 (a) Intrinsic sensitivity on noiseless data. (b)–(d) The sensitivities for noise with T int ¼ 30 s,
T int ¼ 10 s, T int ¼ 1 s, respectively. η is the intrinsic sensitivity that defined in Eq. (14),
and ζ is the perturbation level in layer 3 (brain). Red, blue, and dark lines present ηD , ηT , and
ηS , respectively. The perturbation levels in the graphs start at ζ ¼ 20%.
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separately or taken from literature. We examined how μa and μ 0
s of layer 3 (brain) impact BFi

extraction. Changing the scalp/skull thickness also varies BFi, which can be observed using the
multi-layered model fitting method. Here, we use the three-layer fitting method, and all BFi were
obtained at ρ ¼ 30 mm. Additional details are presented in Table 3.

3.5.1 μa variation

To study how μa impacts BFi, we set μa ¼ 0.011, 0.015, 0.019, 0.023, and 0.027 and
μ 0
s ¼ 1.099 mm−1 in MCX. The baseline is at μa ¼ 0.019 mm−1, with �20% and �40% varia-

tion. In this case, two BFi groups were calculated. The first group was calculated assuming a
constant μa ¼ 0.019 mm−1 (0%), defined as μa;m, and the calculated BFi is defined as BFim. The
second group was calculated using the known μa set in MCX, which we considered as true μa,
and the corresponding calculated BFi is considered as BFiGT.

3.5.2 μ 0
s variation

Similarly, we conducted simulations with μ 0
s ¼ 0.666, 0.888, 1.110, 1.332, and 1.554 mm−1 and

a fixed μa ¼ 0.019 mm−1 to investigate how μ 0
s impacts BFi estimation. We define the estimated

BFi as BFim when μ 0
s ¼ 1.099 mm−1 (at 0%, defined as μ 0

s;m). Additionally, BFiGT was calcu-
lated using the known μ 0

s set in MCX, considered as true μ 0
s.

The mean and standard deviation of the estimated BFi (versus μa) over 100 trials are shown
in Fig. 8(a). We also compare BFim and BFiGT. The blue (BFiGT) and green (BFim) dashed
lines are for the semi-infinite model, whereas the red (BFiGT) and purple (BFim) dashed line
are for the three-layer model. The red solid (BFiGT) and black dashed lines are for DCS-NET.
Similarly, the BFi’s mean and standard deviation (versus μ 0

s) over 100 trials are shown in
Fig. 8(b).

Figure 9 shows the BFi variation (in %) versus the μa and μ 0
s variations (in %). The per-

centage error for μa is defined as Eμa ¼ ½μa;m−μaμa
� × 100%. Similarly, we define the percentage

error for μ 0
s as Eμ 0

s
¼ ½μ 0

s;m−μ 0
s

μ 0
s

� × 100%. The BFi error (in %) caused by assumed error in Eμa or

Eμ 0
s
is defined as EBFi ¼ ½BFim−BFiGT

BFiGT
� × 100%.

Figures 8 and 9 show that EBFi is positively related to Eμa and negatively related to Eμ 0
s
for

semi-infinite and three-layer fitting models, in good agreement with previous findings.26,31 On
the other hand, EBFi curves obtained from DCS-NET are close and are not sensitive to Eμa and
Eμ 0

s
. This result is expected, as from Eq. (2), μ 0

s should yield a more pronounced impact compared
to μa, primarily due to the second-order contribution from μ 0

s and μ 0
s ≫ μa observed in biological

tissues. Extreme EBFi examples are shown in Fig. 9, namely, a more extensive Eμa ∼þ62%

results in EBFi ∼þ25% and Eμa ∼ −30% results in EBFi ∼ −10%. When Eμ 0
s
reaches +62%,

EBFi reaches ∼ − 50% and Eμ 0
s
∼ −30% gives EBFi ∼þ70%.

The results from the three-layer fitting model show similar behaviors. Namely, EBFi is
positively related to Eμa and negatively related to Eμ 0

s
in layer 3, this result aligns well with

the conclusions from Zhao et al.’ conclusion.31 In contrast, DCS-NET only shows −1% ∼þ5%

in EBFi caused by Eμa and Eμ 0
s
(blue solid and brown solid lines for μa and μ 0

s, respectively in
Fig. 9), indicating that the variations in μa and μ 0

s have negligible impact on BFi estimation.

Table 3 Varying optical properties and scalp (Δ1) and skull (Δ2) thicknesses.

−40% −20% 0% +20% +40%

μa (mm−1) 0.011 0.015 0.019 0.023 0.027

μ 0
s (mm−1) 0.659 0.879 1.099 1.319 1.539

Δ1 (mm) 3.000 4.000 5.000 6.000 7.000

Δ2 (mm) 4.200 5.600 7.000 8.400 9.800
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3.5.3 Scalp thickness variation

To investigateΔ1’s impact on BFi, we variedΔ1 (= 3, 4, 5, 6, and 7 mm) and fixedΔ2 ¼ 7 mm in
MCX. We define the estimated BFi as BFim when Δ1 ¼ 5 mm (0%, defined as Δ1;m).
Additionally, BFiGT was calculated using the known Δ1 set in MCX, considered as true Δ1.

3.5.4 Skull thickness variation

Similarly, to investigate Δ2’s impact on BFi, we varied Δ2 (= 4.2, 5.6, 7.0, 8.4, and 9.8 mm) and
fixed Δ1 ¼ 5 mm in MCX. We define the estimated BFi as BFim calculated when Δ2 ¼ 7.0 mm

Fig. 8 (a) Estimated BFi versus μa, the green and purple dashed lines are for BFim assuming
μa ¼ 0.019 mm−1, the red solid and black dashed lines are for BFiGT and BFiD , respectively, and
the red and blue dashed lines are for BFiGT using the three-layer and semi-infinite fitting methods.
(b) Estimated BFi versus μ 0

s, the green and purple dashed lines are for BFim assuming
μ 0
s ¼ 1.10 mm−1, the red solid and black dashed lines are for BFiGT and BFiD , respectively, and

the red and blue dashed lines are for BFiGT using the three-layer and semi-infinite fitting methods.

Fig. 9 BFi error (in %) versus errors in the μa and μ 0
s variation (in %) among DCS-NET, semi-

infinite, and three-layer fitting methods.
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(0%, defined as Δ2;m). Additionally, BFiGT was calculated using the known Δ2 set in MCX,
considered as true Δ2.

Figure 10(a) presents BFi’s mean value (represented by bar plots) and standard deviation
(depicted by error bars) over 100 trials versus Δ1. The rightmost bar group represents the results
obtained with Δ1 ¼ 5 mm. Figure 10(b) shows BFi’s mean value and standard deviation versus
Δ2, the rightmost bar group represents the results obtained with Δ2 ¼ 7 mm. Still, we can see
that the semi-infinite model cannot provide accurate BFi at a deeper layer. When Δ1 changed,
εBFi;D falls into 1.17% ∼ 8.33% [the bar group 1 in Fig. 10(a)] when using DCS-NET, whereas
εBFi;T falls into 4.30% ∼ 14.66% [the bar group 3 in Fig. 10(a)] using the three-layer fitting
model, slightly larger than that using DCS-NET. However, εBFi;T increases to 11.67% ∼ 16.05%

when Δ1 estimation error occurs using the three-layer fitting method [shown in the rightmost bar
group in Fig. 10(a)]. Whereas for the variation in Δ2, εBFi;D falls into 0.33% ∼ 10.33% when
DCS-NET is used [the bar group 1 in Fig. 10(b)], whereas εBFi;T falls into 1.50% ∼ 13.33%

when the three-layer fitting method is used [the bar group 3 in Fig. 10(b)]. Both present similar
accuracy. However, when Δ2 is not accurate, εBFi;T becomes more pronounced and reaches
41.09% ∼ 193.40% [the rightmost bar group in Fig. 10(b)].

Figure 11 shows the BFi variation (in %) versus the Δ1 and Δ2 variations (in %). The per-

centage error for Δ1 is defined as EΔ1
¼

h
Δ1;m−Δ1

Δ1

i
× 100%. Similarly, we define the percentage

Fig. 10 (a) BFi’s mean value and standard deviation versus Δ1, and the rightmost bar group rep-
resents the results obtained with Δ1 ¼ 5 mm. (b) BFi’s mean value and standard deviation versus
Δ2, and the rightmost bar group represents the results obtained with Δ2 ¼ 7 mm. Each bar in
the plot represents the average BFi over 100 trials calculated using three different methods,
whereas the error bar stands for the standard deviation of BFi over 100 trials.
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error for Δ2 as EΔ2
¼

h
Δ2;m−Δ2

Δ2

i
× 100%. The BFi error (in %) caused by assumed error in EΔ1

and EΔ2
is defined as EBFi ¼

h
BFim−BFiGT

BFiGT

i
× 100%.

As it is commonly known, EΔ1
and EΔ2

cause a significant EBFi. Figures 10(a) and 10(b)
demonstrate a positive correlation between EBFi and EΔ1

(and EΔ2
). Furthermore, as observed in

Fig. 11, EBFi resulting from EΔ2
ranges from −176.41% to +43.68%. In contrast, EBFi caused by

EΔ1
ranges from −44.29% to +53.47%. This error range is significantly narrower than that

caused by the skull thickness, agreeing with the findings in Ref. 31. For DCS-NET, EBFi caused
by both Δ1 and Δ2 falls within the limited range of −6% to þ8%.

3.6 BFi Estimation Time
In addition, the BFi estimation time is also an important parameter, especially in real-time mea-
surements, and Table 4 compares the three extraction methods. We record it for single decays and
batch decays (e.g., 100 trials) at different noise levels. It is clear that DCS-NET is promising
for real-time applications. All data reported in Table 4 are standard deviations and means for
repeating three times after discarding the first few runs that usually take longer. The analysis
were performed using the workstation (CPU: Intel(R) Core(TM) i9-10900X @3.70 GHz;
Memory: 128 GB; graphics processing unit (GPU): NVIDIA Quadro RTX 5000).

Table 4 The BFi estimation time (with Matlab parfor for semi-infinite and three-layer fitting
models).

Noise level

1 trial 100 trials

DCS-NET
(s)

Semi-infinite
(s)

Three-layer
(s)

DCS-NET
(s)

Semi-infinite
(s)

Three-layer
(s)

T int ¼ 30 s 0.001�
4.567 × 10−4

0.034�
0.012

17.141�
2.027

0.004�
8.728 × 10−4

0.159�
0.030

180.176�
3.029

T int ¼ 10 s 0.001�
2.846 × 10−4

0.031�
0.021

16.946�
3.157

0.004�
7.367 × 10−4

0.157�
0.029

181.023�
2.025

T int ¼ 1 s 0.001�
2.544 × 10−4

0.030�
0.039

17.946�
4.587

0.004�
2.765 × 10−4

0.160�
0.032

187.118�
5.398

Noiseless 0.001�
3.007 × 10−4

0.032�
0.001

17.002�
1.248

0.004�
9.415 × 10−4

0.156�
0.012

180.169�
3.017

Fig. 11 BFi error (in %) versus errors in Δ1 and Δ2 (in %) between DCS-NET and three-layer fitting
methods.
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4 Discussion
Our study shows that DCS-NET can robustly quantify DCS-based blood flow measurements. We
used DCS-NET to analyze the ACFs generated from MCX. The proposed network is based on
1DCNN,43 which is straightforward, quicker to train, and faster than high-dimension CNNs for
time sequence analysis, such as FLIM data.43,60 To evaluate DCS-NET, we compared it with the
semi-infinite, three-layer fitting methods by changing tissue optical properties (μa and μ 0

s), depths
(related to ρ), and scalp/skull thicknesses (Δ1 and Δ2). BFi estimated by DCS-NET shows a
small error range −1% ∼þ5% induced by μa and μ 0

s (see Fig. 9) and a slightly wider error range
−6% ∼þ8% induced by Δ1 and Δ2 (see Fig. 11). For rBFi, the error from DCS-NET (8.35%) is
much less than that of the semi-infinite and three-layer fitting methods (43.76% and 19.66%,
respectively). Moreover, DCS-NET yields more than 71.34% sensitivity to brain blood flow,
whereas the semi-infinite and three-layer fitting methods yield 14.12% and 61.96%, respectively
[Fig. 7(a)]. We considered measurement noise using a stochastic noise model53 to reflect
experimental realities. With DCS-NET, εBFi;D is 12.87% at a high noise level (T int ¼ 1 s),
whereas it increases to 390.10% when using the three-layer fitting method. At a low noise level
(T int ¼ 30 s), the three-layer fitting model yields εBFi;T of 82.30%, much worse than 1.93%
obtained by DCS-NET, suggesting that DCS-NET is less sensitive to noise [see Fig. 5(b)].
Figures 10(a) and 10(b) show that the three-layer analytical method (modeling the head, i.e.,
scalp, skull, and brain) can minimize the influence of extracerebral layers on measured DCS
signals. However, this model requires a priori knowledge of layer optical properties and thick-
nesses. Therefore, accurately estimating scalp and skull thicknesses is required for reliable CBF
estimation when using a three-layer analytical model.

Besides accuracy and robustness, the computational cost is a critical factor that impacts
practical applications, especially for real-time monitoring. Table 4 reveals that it took 0.004 s
for DCS-NET to quantify 100 g2 curves with 127 data points. In contrast, it took 0.160 and
181.697 s, respectively, for the semi-infinite fitting and three-layer fitting procedures. For quan-
tifying a single autocorrelation decay curve, it only took 0.001 s for DCS-NET. In contrast,
it took 0.032 and 17.496 s, respectively, for the semi-infinite fitting and three-layer fitting pro-
cedures. DCS-NET is the fastest among the three, around 17,000-fold faster than the three-layer
model and 32-fold faster than the semi-infinite model.

Table 5 lists existing deep learning methods applied to DCS techniques. It shows that DCS-
NET’s training is much faster than 2DCNNs,40 approximately 140-fold faster. Although the
remaining models, RNN,39 LSTM,41 and ConvGRU,42 have fewer total layers, they are limited
to a specific ρ.

Although DCS-NET is more robust than the semi-infinite and three-layer fitting methods,
our study has several limitations. First, DCS-NET’s training datasets were generated using the
semi-infinite diffusion model as advised in Ref. 40. Nevertheless, this model does not consider
scalp and skull thicknesses, which could potentially explain why the error range ð−6% ∼þ8%Þ
caused by Δ1 and Δ2 is much broader than that ð−1% ∼þ5%Þ caused by μa and μ 0

s (Figs. 9 and
11). The complexity of including training datasets generated from a layered model is beyond the
scope of this study, given this report’s already long length. In future, we will train new networks
using datasets generated from a layered model, and alternatively, obtaining training datasets from

Table 5 Comparison of existing AI methods for BFi estimation.

Model Training parameters Training time Total layer ρ (mm) Year

DCS-NET 25,506 ∼13 min 18 5 to 30 2023

RNN39 174,080 N/A 20 25 2019

CNN(2D)40 75,552 ∼30.5 h 161 27.5 2020

LSTM41 1161 N/A 2 15 2021

ConvGRU42 11,557 N/A 10 20 2022

Notes: the training parameters of RNN and CNN(2D) are not given in the literature; we calculate them according
to the structure shown in the literature.

Wang et al.: Quantification of blood flow index in diffuse correlation spectroscopy. . .

Journal of Biomedical Optics 015004-17 January 2024 • Vol. 29(1)



in vivo measurements, as demonstrated in Refs. 41 and 42 will also be considered. Second,
current rBFi calculations do not consider variations in optical properties between the baseline
and activation states. Indeed, μa and μ 0

s in the brain can vary according to interventions (e.g.,
functional activation), which are recognized to impact perfusion. Failing to account for these
changes could introduce additional uncertainties in rBFi measurements. Third, we did not
include a comparison with the two-layered analytical model in this report; it may be worth further
investigation. Fourth, as we all know, analytical fitting methods suffer from partial volume effects
and recover only a fraction of the actual change; still, the relationship between the recovered
change and the actual change remains linear. However, from Fig. 7(a), we can see the BFi values
from DCS-NET reflect various degrees of the relative ground truth change according to the rel-
ative change; thus, they have a non-linear relationship with actual brain blood flow. This suggests
processing data with our DCS-NET could result in non-physiological distortions. We will further
investigate this and improve our network models in future studies. Finally, our study was solely
conducted using simulation data. In the future, we will perform phantom and in vivo experiments
to validate our findings.

5 Conclusion
We compared the proposed DCS-NET against the semi-infinite and the three-layer models
for estimating β, BFi and rBFi. We used Monte Carlo simulations to validate their performances.
This study evaluated the cerebral sensitivity using a deep learning method and the influence of
scalp/skull thickness and μa∕μ 0

s variations on BFi extraction. Additionally, we examined the
impact of noise. Our findings revealed that the homogenous model is sensitive to superficial
layers. In contrast, the three-layer model performs better in estimating BFi in deeper layers but
is more susceptible to measurement noise.

Furthermore, DCS-NEToutperforms the semi-infinite and three-layer fitting models in rBFi
recovery. Using DCS-NET, variations in μa and μ 0

s have less impact on BFi, unlike variations in
scalp and skull thicknesses, which show a more significant error in BFi. Moreover, iterative
fitting methods are much slower and unsuitable for real-time “online” processing. In contrast,
our DCS-NET is 32-fold faster than the semi-infinite model and 17,000-fold faster than the three-
layer model, showing great potential for continuous real-time clinical applications.

6 Appendix
Table 6 shows all essential parameters used in the throughout article, ensuring accessibility to
comprehensive details for interested readers.

Table 6 Essential parameters list.

Variable Variable full names

α The fraction of dynamic photon scattering events in the medium

β Coherent factor

μa Absorption coefficient

ηD Intrinsic sensitivity using DCS-NET Defined in Sec. 2.3

ηS Intrinsic sensitivity using the semi-infinite fitting method Defined in Sec. 2.3

ηT Intrinsic sensitivity using the three-layer fitting method Defined in Sec. 2.3

Eμa The percentage error of the assumed μa Defined in Sec. 3.5

μ 0
s Reduced scattering coefficient

Eμ 0
s

The percentage error of the assumed μ 0
s Defined in Sec. 3.5

ρ Source–detector distance
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Table 6 (Continued).

Variable Variable full names

Db Brownian diffusion coefficient

Dp Photon diffusion coefficient

q Radial spatial frequency

BFi Blood flow index estimated in DCS (i.e., αDb)

BFi0 Baseline BFi

BFim Estimated BFi when assumed μa, μ 0
s, Δ1, Δ2 are constant at 0% Defined in Sec. 3.5

BFiGT Ground-truth blood flow Defined in Sec. 3.5

BFiD Blood flow index estimated by DCS-NET Defined in Sec. 3.1

BFiS Blood flow index estimated by the semi-infinite fitting method Defined in Sec. 3.1

BFiT Blood flow index estimated by the three-layer fitting method Defined in Sec. 3.1

EBFi (%) The BFi error (in %) between BFim and BFiGT Defined in Sec. 3.5

εBFi;D Error percentage of BFi using DCS-NET Defined in Sec. 3.1

εBFi;S Error percentage of BFi using the semi-infinite fitting method Defined in Sec. 3.1

εBFi;T Error percentage of BFi using the three-layer fitting method Defined in Sec. 3.1

rBFi Relative blood flow index Defined in Sec. 3.3

rBFiGT Relative blood flow index for ground truth Defined in Sec. 3.3

rBFiD rBFi estimated by DCS-NET Defined in Sec. 3.3

rBF iS rBFi estimated by the semi-infinite fitting method Defined in Sec. 3.3

rBFiT rBFi estimated by the three-layer fitting method Defined in Sec. 3.3

εrBFi;D Error percentage of rBFi using DCS-NET Defined in Sec. 3.3

εrBFi;S Error percentage of rBFi using the semi-infinite fitting method Defined in Sec. 3.3

εrBFi;T Error percentage of rBFi using the three-layer fitting method Defined in Sec. 3.3

CBF Cerebral blood flow Defined in Sec. 3.4

CBF0 Baseline cerebral blood flow Defined in Sec. 3.4

CBFperturb αDb during perturbed conditions Defined in Sec. 3.4

ζ Perturbation level Defined in Sec. 3.4

Δ1 Scalp thickness

Δ2 Skull thickness

T int Integration time

Tb The bin width of the correlator

m Bin index

τ Lag time

g1 Normalized electric auto-correlation function

g2 Normalized intensity auto-correlation function

Γ Decay rate of g2

w Integer, w ¼ 1;2;3

δ Residual from fitting procedures Defined in Eq. (18)

ϵ Resnorm (the square 2-norm of the residual) Defined in Eq. (18)
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