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Abstract

Significance: Oral cancer is a quite common global health issue. Early diagnosis of cancerous
and potentially malignant disorders in the oral cavity would significantly increase the survival
rate of oral cancer. Previously reported smartphone-based images detection methods for oral
cancer mainly focus on demonstrating the effectiveness of their methodology, yet it still lacks
systematic study on how to improve the diagnosis accuracy on oral disease using hand-held
smartphone photographic images.

Aim: We present an effective smartphone-based imaging diagnosis method, powered by a deep
learning algorithm, to address the challenges of automatic detection of oral diseases.

Approach:We conducted a retrospective study. First, a simple yet effective centered rule image-
capturing approach was proposed for collecting oral cavity images. Then, based on this method,
a medium-sized oral dataset with five categories of diseases was created, and a resampling
method was presented to alleviate the effect of image variability from hand-held smartphone
cameras. Finally, a recent deep learning network (HRNet) was introduced to evaluate the per-
formance of our method for oral cancer detection.

Results: The performance of the proposed method achieved a sensitivity of 83.0%, specificity of
96.6%, precision of 84.3%, and F1 of 83.6% on 455 test images. The proposed “center position-
ing” method was about 8% higher than that of a simulated “random positioning” method in
terms of F1 score, the resampling method had additional 6% of performance improvement,
and the introduced HRNet achieved slightly better performance than VGG16, ResNet50, and
DenseNet169, with respect to the metrics of sensitivity, specificity, precision, and F1.

Conclusions: Capturing oral images centered on the lesion, resampling the cases in training set,
and using the HRNet can effectively improve the performance of deep learning algorithm on oral
cancer detection. The smartphone-based imaging with deep learning method has good potential
for primary oral cancer diagnosis.
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1 Introduction

Oral cancer is one of the most common cancers worldwide, with high mortality rates. According
to the International Agency for Research on Cancer, there were an estimated 377,000 new cases
of lip and oral cavity cancers in 2020, with nearly 177,000 deaths worldwide.1 Despite advances
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in oncology therapy, mortality rates for oral cancer remain high over the past few decades. A
majority of oral cancer patients do not have access to timely, quality diagnosis, and treatment,
especially in rural areas, resulting in poor survival rates. The overall 5-year survival rate of diag-
nosed oral cancer patients is around 50% and has varied by race and area,2 whereas survival rates
as high as 65% have been reported in developed countries; in some rural areas, they can be as low
as 15% depending on the affected part of the oral cavity. The 2020 Cancer Statistics Report from
India estimated that 66.6% of patients suffering from head and neck cancer were diagnosed at the
locally advanced stage.3 In short, patient survival rates and prognosis are severely compromised
when oral cancer patients are diagnosed at more advanced stages4,5 so that enhancing early diag-
nosis could mean a significant rise in positive survival outcomes.6,7

As oral squamous cell carcinoma (OSCC) accounts for ∼90% of all oral cancer,8,9 these two
terms tend to be used interchangeably. OSCC, which originates as an epithelial dysplasia (from a
histopathologic perspective), generally develops from precursor lesions termed as oral potentially
malignant disorders (OPMDs).10,11 Nevertheless, it is not inevitable that all OPMDs, even the
most commonly encountered such as oral lichen planus, leukoplakia, and erythroplakia,11 result
in the subsequent development of malignancies.10,12 Diagnosing OPMDs as definable diseases is
also challenging due to the numerous varieties, various forms, and overlapping features. However,
studies10,13,14 have found that when an OPMD changes to a nonhomogeneous presentation, it is
more likely to be considered as an adverse progression, in other words, nonhomogeneous lesions
have a greater risk of malignant transformation as against homogeneous lesions. Hence, com-
pared with defined diagnosis, distinguishing the potential malignant characteristics of OPMD
is a greater concern. In summary, an ideal clinical prediction method should be employed to
diagnose OSCC early and in particular to assess malignancy at the OPMD stage.

Currently, conventional oral examination (COE) consisting of visual and tactile assessment
(followed by tissue biopsy if there are any suspicious findings) is the most routine procedure in
the management of oral cancer and precursor disease. However, one limitation for COE is that
several features of oral cancer may appear benign and even mimic aphthous ulcers, and they are
too clinically heterogeneous and subtle for general dentists to distinguish. Second, because of its
invasive nature and sampling bias that can lead to underdiagnosis or misdiagnosis, biopsy is
often not ideal as a screening tool.15 Furthermore, although specialists can recognize most
of the characteristics that differentiate benign and cancerous lesions, the number of specialists
and health resources are limited and concentrated across regions, causing a large part of the oral
cancer burden to fall on low-resource communities. Therefore, the idea of establishing a cost-
effective screening strategy as an adjunctive aid to the current procedures is gaining widespread
popularity.16

Recently, deep learning techniques have exhibited a comparative advantage over feature-
based methods in medical image analysis. A variety of studies17,18 showed that deep learning
algorithms are able to surpass the performance of human experts in many disease recognition
scenarios. In oral cancer diagnosis, deep learning methods also showed promising results for
automatic analysis of pathology, confocal laser endomicroscopy (CLE) images, and fluorescence
images. For example, Kumar et al.19 proposed a two-stage method that used a segmentation
network and a random forest tree classifier to identify different stages of oral cancer in histo-
logical images. Aubreville et al.20 tested the deep convolutional neural network for OSCC
diagnosis on CLE images, and the results showed that it outperformed the feature-based
classification methods. Song et al.21,22 developed mobile connected devices to acquire fluo-
rescence oral images and used them to identify oral disease. However, these methods all
require expensive devices or a specifically designed screening platform, which are not accessible
to everyone. In other words, patients are still required to go a professional clinic to receive
disease diagnosis.

With the rapid development of both imaging and sensing technologies in camera systems, the
ubiquity of smartphones is equipped with higher quality, low-noise, and faster camera modules.
Smartphone-based white light inspection methods23–25 are good solutions for acquiring oral
images. Camalan et al.23 used a CNN-based network for classifying white light images as normal
or suspicious; however, the patient sample is very limited: with only 54 cases. To build a reliable
system, Welikala et al.24 collected more clinically labeled data for network training and evalu-
ation, achieving a sensitivity of 52.13% and a specificity of 49.11% on multiclass classification
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task. However, we found that the clinical imaging capturing from hand-held smartphone cameras
may exhibit a large variability, leading to poor diagnostic performance of the detection algo-
rithm. For example, from a computer vision point of view, the shape and size of imaging lesions
depend on the fields-of-view and focal distance, respectively. Unfortunately, a limited amount of
research focuses on this problem. To address these challenges, we aim to explore reliable and
robust smartphone-based white light image approaches, including an image-capturing method,
resampling method, and high performance of CNNmodel, for oral disease recognition. Our main
contributions are summarized as follows.

1. We propose a simple yet effective image-capturing method for consistent lesion position
and focal distance over different images. The method allows direct focus on discriminative
parts for disease recognition, without utilizing any region proposal methods,24,25 or relying
on bounding box annotation24 by oral specialists.

2. We present a resampling method to alleviate the effect of image variability that introduced
by the hand-held smartphone camera; at the same time, it can remedy the class imbalance
problem.

3. We use one of the latest proposed convolutional neural networks (HRNet) for oral disease
classification and achieve better results than common classification models. Analysis of
the model’s performance on our collected images shows that common imaging pattern on
a smartphone is a valuable approach for the early diagnosis.

2 Materials and Methods

2.1 Image-Capturing Method

The focal length of the main camera in a smartphone is commonly short, for example, the iPhone
12 has a wide-angle (only 26 mm) camera. The focal length number tells us how much of the
scene is captured in the picture, and the lower the number is, the wider the view is. Since most
lesions are relatively small, we cannot capture the photograph where the lesion occupies most
areas of the image. This means that the captured image may have many irrelevant backgrounds.
In addition, even with the same lesion, the size of the imaging lesion may vary with different
distances between the camera and lesion or using different cameras with different focal lengths.
Thus these would introduce the large variability to the system’s performance going forward, and
we need to find a method to reduce this considerable variability.

Although identifying oral disease is very difficult for the nonmedical expert, locating the
position of oral lesions is relatively easy because the visual appearance of normal and diseased
tissue is significantly different. We use the camera grid to assist in locating the lesion in the
center of image and to keep each area of lesion in the images neither too small nor too big.
Thus it is possible to use the fixed region of interest (ROI) method to crop the discriminative
parts and filter the irrelevant backgrounds, without utilizing any region proposal methods or
relying on any manually cropped methods. This particular positioning of the main object in
an image is helpful to improve the performance of CNN for image recognition.

We use the native phone’s camera app to capture the oral cavity image. As shown in Fig. 1,
the camera grid helps us to see if the lesion is properly placed at the center for optimal balance in
the shot. The operation can be easily done by a person using a hand-held smartphone camera.
The basic steps are as follows.

1. Turn on the camera grid within the settings. This will display a faint grid over the capture
frame, split into nine rectangles of equal size.

2. Take the image from the patient, who has given informed and approved consent. Hold the
phone camera near the lesion, keeping the lesion in the center of the square, and then
control the distance between the camera and lesion to keep the covered lesion area (show-
ing in the camera screen) that is slightly smaller than the center camera grid region. Then
press the shutter to capture the lesion image.

3. Upload the captured image to a computer with diagnostic software, via a direct line con-
nection or WiFi.
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2.2 The Oral Dataset

This study is approved by the Medical Research Ethics Committee of the First Affiliated
Hospital, College of Medicine, Zhejiang University, China. Image collection is carried out in
the daily outpatient clinics and on inpatients of the hospital. We use four different smartphones,
including iPhone 11, iPhone 12, IQOO U1, and 360 N7Pro, to retrospectively collect oral images
from subjects over 18 years of age, including healthy people and those who are clinically
diagnosed with aphthous ulcers, OPMD, or oral cancer. Because loss of homogeneity is a key
visual feature indicating potential carcinogenesis, a binary system is employed for OPMD,
which divides lesions into “low risk” (homogeneous) and “high risk” (nonhomogeneous) on the
basis of clinical manifestations. Therefore, all the oral images fall into one of five categories
based on initial clinical impression, namely, normal, aphthous ulcer, low-risk OPMD, high-risk
OPMD, or oral cancer, as shown in Fig. 2.

Different clinical features of examples in the five categories, shown in Fig. 3, are described
below. The healthy mucosa presents as homogeneous, pink, and shiny, with neither white nor red
patches. Aphthous ulcer lesions clinically describe shallow, round, or ovoid ulcers covered with
a yellow pseudomembrane and surrounded by an erythematous halo. They may appear on any
site of the oral cavity. OPMD refers to a wide range of definable diseases but has confusing
clinical appearances. Low-risk (homogeneous) OPMD often presents as white patches, which

Fig. 2 Overview of the five categories based on initial clinical impression.

Fig. 1 Illustration of data acquisition. The aspect ratio is set 4:3; the image shows a lesion at
the center of the region.
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are uniformly flat and thin and have a smooth or fissured surface without any atrophic or erosive
lesions. For high-risk OPMD, the most important difference from homogeneous OPMD is the
existing red components mixed into white patches, making the lesion either atrophy or erode
with irregular surface texture (nonhomogeneous). Oral cancer is often shown as a nodular lesion
protruding from the mucosal surface or a deep ulcer with a rough surface, both with unclear
boundaries.

One image is taken for each lesion instance, in another words, if one patient contains multiple
oral disease instances, we will take multiple images. Otherwise, we only collect one oral cavity
image from each patient. The statistics of the number of images, the number of patients, images
per patient, and images per smartphone type can be seen in Table 1. The normal cases can be
taken several images from the different anatomic sites of oral cavity, including tongue (dorsal
or ventral), palate, labial mucosa (upper or lower), buccal mucosa (left or right), and the floor of
the mouth, in a healthy person. In addition, the patients with low-risk or high-risk OPMD are
more likely to have multifocal lesions compared to those in the aphthous ulcer group or
cancer group.

For ensuring a high quality of annotation, we invite three oral medicine specialists, who are
committed to the preventive treatment of oral cancerous and potentially malignant disorders,

Fig. 3 Clinical features of sample images in the five categories. (a) Normal mucosa image from
lower labial mucosa and upper lip of a healthy subject. (b) Aphthous ulcer on the attached gingiva.
(c) A homogeneous white patch on the left buccal mucosa. (d) An extensive white lesion with a red
component affecting the whole left buccal mucosa. (e) A malignant lesion on the lateral border of
the tongue.

Table 1 Statistics of patient and smartphone characteristics in our oral disease dataset.

Statistic Normal Aphthous ulcer Low-risk OPMD High-risk OPMD Oral cancer

Number of images 760 251 231 141 65

Number of patients 232 218 165 107 65

Image per patient (mean) 3.28 1.15 1.40 1.32 1.00

Smartphone type:

iPhone 11 87 21 0 5 27

iPhone 12 114 27 16 4 12

IQOO U1 212 58 63 45 15

360 N7Pro 347 145 152 87 11
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to manually annotate images. Figure 4 illustrates the schematic flow of data annotations. First,
we collect the lesion images from the patients and access their clinical records (including health
records and medical history) as well as histopathologic reports if a subsequent biopsy is per-
formed. All patients initially diagnosed with oral cancer have undergone histopathologic exami-
nation. The cases with histopathologic reports can be seen as the gold standard. Other mild
symptomatic lesions, such as aphthous ulcer and low-risk OPMD, may not have a histopatho-
logic report. Next, each image receives annotations from two separate individual senior experts
(an average of 30 years of clinical practice), with reference to the appearance of symptoms and
clinical records or histopathologic reports. Finally, another expert who specializes in mucosal
diseases with 9 years of clinical experience, reviews each case label to confirm the initial assess-
ment, and the cases labeled as containing multiple oral disease conditions or as controversial by
the experts are excluded from the dataset.

The final oral data contains 688 oral lesion images and 760 normal mucosa images. Overall,
the images are derived from a wide range of people between 18 and 82 years of age and appeared
in a variety of anatomic sites. Table 2 summarizes the number of images acquired for different
anatomic sites in the dataset. The 688 lesion images included images of aphthous ulcer (251),
low-risk OPMD (231), high-risk OPMD (141), and cancer (65). The dataset is divided randomly
into two subsets based upon the different patients and restricted the proportion of the number
of each class. Considering that our study mainly focuses on early diagnosis of oral cancer,
and the high-risk OPMDs and cancers are harmful types of disease than that of others in the
dataset, we set higher split ratios of these two classes in the test set to make the experimental
results more convincing. The test set (455 cases) consists of 228 normals (30% of normal),
76 aphthous ulcers (30%), 69 low-risk OPMDs (30%), 52 high-risk OPMDs (37%), and
30 cancers (46%).

Fig. 4 Schematic flow of data annotations from multiple experts. *Not all cases have a histopa-
thologic report.

Table 2 Overview of image numbers for different anatomic sites in our oral disease dataset.

Site Normal Aphthous ulcer Low-risk OPMD High-risk OPMD Oral cancer

Lip and labial mucosa 75 114 4 7 7

Buccal mucosa 314 35 147 93 13

Gingive and alveolus 36 17 22 9 11

Tongue 136 56 41 28 23

Palate 119 13 16 3 11

Floor of the mouth 80 16 1 1 0

Total 760 251 231 141 65
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2.3 Data Processing

For each case, our CNN-based system takes one oral image as input and outputs a set of the
probability of each disease. The final prediction is made based on the class with the highest
confidence score. To make the research easier for end user, we developed custom diagnostic
software written in Python and implemented using open-source PyQT and PyTorch libraries.
Our CNN-based system involves three steps as shown in Fig. 5. The first step is to capture the
patient’s lesion with a smartphone, creating a digital image following the previously described
method (see Sec. 2.1). This can also easily be done by the patient with the help of other people,
using a hand-held smartphone camera. The images could contain irrelevant objects, so it is
necessary to extract the useful information in the next step.

The following step is preprocessing. The center-area cropping is used to obtain ROI image.
The identification of an ROI generally requires looking at areas of the image near the lesion for
additional information, and this holds true for both human experts and deep learning algorithms.
Thus we set the ROI to be larger than the center grid region. Also data normalization that modi-
fied the pixel intensity and contrast of the image is used in preprocessing. Specifically, for each
pixel in the input image, we first convert it from the range [0, 255] to a range [0, 1.0]. Then for
each channel of the input, one subtracts the corresponding channel mean and then divides
by corresponding channel std. To reduce the computational cost, we resize the ROI images to
512 × 512 pixels for the following process.

The last step is image classification based on CNN technology. The recently introduced high-
resolution representation learning network (HRNet), which is pretrained on the ImageNet26 and
then fine-tuned all the weights on our oral dataset (transfer learning), is used to analyze the
images and output the relative likelihood of the five categories.

In the training stage, we use the proposed resampling method to expand the training set.
The details can be found in the next section.

2.4 Resampling

To alleviate the effect of variability in images that were collected from our image-capturing
method, we propose the resampling method. The resampling process is only performed on the
training set.

Although the above image-capturing method is roughly centered on each lesion, the oral
images may be captured from slightly different angles. We use image rotation to compensate for
this. Specifically, two-direction rotations with one of a step size of θ deg and another a step of
−θ deg are performed on each oral image, as shown in Fig. 6(a). Then we crop images to a fixed
size that included only the lesion and sufficient discriminative information. We set θ ¼ 15 in the
experiments. Accordingly, three patches of sizeH ×W centered at the image centers are extracted
as training samples, and the number of samples in each class is 1596, 525, 486, 267, and 105.

Fig. 5 Overview of the proposed method for classifying oral disease images.
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Another problem is that the captured lesion center may be inaccurate in practice, we move
each lesion centroid Nt times to obtain Nt points as the approximate nucleus, as shown in
Fig. 6(b). Then we use the above method to extract the local neighboring regions again, and
thus further increase our number of image samples. Considering the imbalance of sample sizes
in datasets (for example, we collected about 5 times the number of ulcer samples compared to
cancer samples), training deep networks with this data can induce a positive bias in the large rate
class. To compensate class imbalance, there are many solutions, such as using cost-modifying
methods27,28 to balance the learning and introducing GANs29 to generate data scarcity samples.
Here we set different values of Nt to handle unbalanced data and center location bias at the
same time. It should be mentioned that we only perform rotation on the normal samples and
skipped the offset resampling operation. For the ulcer, low-risk OPMD, high-risk OPMD,
and cancer samples, we set Nt as 3, 3, 5, and 15, respectively. The final training set consists
of 1596 normals, 1575 aphthous ulcers, 1458 low-risk OPMDs, 1335 high-risk OPMDs, and
1575 cancers.

The proposed resampling method has two main differences from the common data augmen-
tation that increases the number of samples during the training process. First, the standard rotat-
ing augment approach, feasible at training, will result in zero-padding or image size change,
whereas our method does not suffer this problem. Second, in our resampling method, the
expanded number of each class of samples is controllable by setting a propertied rate of Nt and
offset angle θ.

2.5 Network Architecture and Classification

In this study, we treat the problem of oral disease diagnosis as a multiclass classification. Let
xi ∈ RH×W×3 be an input image containing a lesion to be classified. The predicted class ci for
input image xi with corresponding output FðxiÞ from HRNet-W18 is given as

EQ-TARGET;temp:intralink-;e001;116;148ci ¼ argmaxpjðFðxiÞÞ; (1)

where pðFðxiÞÞ is a softmax function defined by

EQ-TARGET;temp:intralink-;e002;116;104pðFðxiÞÞ ¼
expðFðxiÞÞP
k expðFðxiÞÞ

: (2)

Fig. 6 The captured image is expanded by an optional offset center of rotation. The green squares
mark the cropped areas that will be used to create patches for training. Rotate the image around
(a) its center and (b) its offset center.
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Recently, high-resolution representation learning has shown great potential in various vision
applications, and related high-resolution networks (HRNet V1, HRNet V2, etc.)31,32 have been
proposed. HRNet utilizes high-resolution representation learning to maintain semantic richness
and spatial precision. The results reported by authors are slightly better than existing networks
such as ResNet50,33 VGG16,34 or DenseNet16935 for ImageNet classification. Therefore, we use
the HRNet-W18 as the CNN for disease diagnosis; W18 represents the widths of the high-
resolution subnetworks in the last three stages, respectively. The HRNet-W18 takes images
of the oral cavity as input and outputs probability of disease positivity. To simplify the structure
of the network and reduce the computational cost, we follow the network in network strategy36

to modify the representation head of the HRNet-W18. Specifically, we decrease output of the
channel of the 1 × 1 convolution layer from 2048 to 5. Then we use a global avg-pooling layer
that directly outputs log probability (instead of the design that uses an average-pooling layer
followed by a fully connected layer as the last layer) as shown in Fig. 7.

3 Results

3.1 Network Training

The computing hardware was a desktop computer with i5-8400 CPU, 24G RAM, and a single
Nvidia GeForce GTX3090 GPU. The HRNet-W18 was written in Python, built on the
PyTorch,37 and run on the Ubuntu18.04 operating system. HRNet was trained under the super-
vised learning method that minimizes the error between predicted probability and the true class
labels. A common cross-entropy loss function was used for the supervised learning. To speed up
the training and improve training performance, we used the preinitialization from ImageNet data-
set. We did not freeze any parts of the layers and retrained the whole network. The initial learning
rate was set to 0.001 and was reduced by 30% at epoch 15, 30, and 45. We utilized SGD38 with
a weight decay of 0.0001 and a Nesterov momentum of 0.9. HRNet-W18 training was applied
with a fivefold cross-validation strategy on the training set and stopped after a fixed number of
epochs (100) with a mini-batch size of 24. We selected the single best-performing network on the
hold-out validation set as the final model for testing.

Although the collected cases were used to generate more training data by the resampling
method (described in Sec. 2.4), the training samples were still limited, making the deep learning
algorithm more prone to overfitting and not well generalized to new examples. Data augmen-
tation has been demonstrated to be an effective method for improving the performance of CNN
with a limited training sample.39,40 We also applied common data augmentation, including left–
right flipping, random resize cropping with ratio 0.7 to 1.0, arbitrary brightness, and contrast

Fig. 7 Illustration of modified representation head in HRNet-W18. The number in each layer is the
number of channels. BN is the abbreviation of “batch normalization,”30 FN is the abbreviation for
“fully connected.”
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with ratio 0.9 to 1.1, and, for the model training. In testing, we did not use any data augment
methods as they do not have a significant effect on prediction. Only a single forward pass on
each image was performed to obtain the final score, which makes the approach potentially more
efficient than the ensemble approaches.

3.2 Evaluation Metrics

For the multilabel classification problem, we used the macroaverages of sensitivity, specificity,
precision, and F1 metrics to evaluate the performance of the models. We first measured the
prediction errors for each separate class and then reported the final scores by averaging these
results weighted equally. Let C be the number of classes, those metrics are defined as

(i) SEmro ¼ 1
C

P
C
i¼1 sensitivityi, sensitivityi ¼ TPi

TPiþFNi
,

(ii) SPmacro ¼ 1
C

P
C
i¼1 specificityi, Specificityi ¼ TNi

TNiþFPi
,

(iii) Prmacro ¼ 1
C

P
C
i¼1 precisioni, precisioni ¼ TPi

TPiþFPi
,

(iv) F1 ¼ 2×SEmacro×Prmacro

SEmacroþPrmacro
,

where sensitivityi is the correct detection ratio of true positives in class i, specificityi is the
correct detection ratio of true negatives in class i, and precisioni is the proportion between the
true positives and all prediction positives in class i.

3.3 The Effectiveness of the Image-Capturing Method and Resampling
Method

To demonstrate the effectiveness of our image-capturing method, we compared the performance
of the same two networks, in which one trained on images with centered lesions (our collected
oral dataset), and the other trained on the images without prerequired lesion centering (random
positioning). The latter images are from another dataset, which we created from the original
dataset by a simulated image-capturing method that did not require lesion centering. Specifically,
we cropped each original image at a random location to create a single smaller image, resulting in
a wider range of lesion positions in the images; then we resized the cropped images to the size of
512 × 512 for network training and testing. We trained and tested the HRNet-W18 on the two
datasets and the results are reported in the first two rows of Table 3. The model trained on the
centered rule dataset achieved about 8% higher F1 score than that trained on the random posi-
tioning dataset. The reason behind this is that our image-capturing method can localize the ROI
(the lesion region), and using the center cropping method, the CNN can focus on the discrimi-
native regions rather than the whole cavity image that may have irrelevant objects, leading to
better performance. This demonstrates that the proposed image-capturing method is effective for
this oral disease detection task.

To qualitatively evaluate the effectiveness of the resampling method, we first used the random
over-sampling method41 to produce more small class samples to keep the training class balance.
On the other hand, we used the proposed resampling method to expand the training set. We
retrained the HRNet-W18 on these two training sets and the test results were shown in the third
to fourth rows of Table 3. We observed that the over-sampling method decreases the model’s
performance since it is susceptible to over-fitting of the minority classes42,43 while our resampling

Table 3 Comparison of classification performance with different methods.

Method SEmacro SPmacro Prmacro F1

Random positioning 0.717 0.938 0.753 0.730

Center positioning 0.786 0.954 0.790 0.787

Center positioning + over-sampling 0.776 0.954 0.791 0.778

Center positioning + resampling 0.830 0.966 0.843 0.836

Note: The values shown in bold represent the highest performance.
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method has an improvement of about 6% in F1 score. The results demonstrate the effectiveness of
resampling method to boost the performance of the network on oral disease diagnosis.

3.4 Comparison with Other Networks

We evaluated and compared a number of neural network architectures, including VGG16,
ResNet50, DenseNet169, and HRNet-W18 on our collected dataset. The results are reported in
Table 4. In terms of the number of model parameters, HRNet-W18 has fewer parameters than
VGG16 or ResNet50 but more than DenseNet169. Although the annotated training data was lim-
ited, all network architectures showed good performance on this dataset. We observed that HRNet-
W18 achieved a sensitivity of 83.0%, specificity of 96.6%, precision of 84.3%, and F1 score of
83.6%. It outperformed other models in all metrics except specificity, which were the nearly same
as for the DenseNet169. This comparison reflects that the effectiveness of high-resolution repre-
sentations learned by the modified HRNet-W18 network in oral disease classification.

The confusion matrix in Fig. 8 was generated by applying the HRNet-W18 model to the test
set. It reported the number of correctly classified cases and misclassified cases over the five
classes. The performance of each class is listed in Table 5. The results showed F1 of 95.0%
on the normal class, compared with the lower F1 scores for other classes, highlighting the
fact that classes with scarce samples are generally more problematic to classify. In addition,
we noticed that the proposed method has relatively higher error rates for low-risk and high-risk
lesions than on the other classes. The results are understandable since the appearances of these
two diseases are very similar, and it is also difficult to distinguish by less experienced dentists.46

Table 4 Comparison of classification performance with different methods on
the oral disease dataset.

Method Params SEmacro SPmacro Prmacro F1

VGG16 568M 0.728 0.950 0.767 0.745

ResNet50 24M 0.770 0.954 0.788 0.771

DenseNet169 12M 0.810 0.965 0.835 0.817

HRNet-W18 17M 0.830 0.966 0.843 0.836

Note: The values shown in bold represent the highest performance.

Fig. 8 Confusion matrix for multiclass performance for the proposed method. The numbers of
correct classifications are shown in the diagonal. The numbers of wrong classifications due to
overdiagnosis and underdiagnosis are found in the top-right triangle and bottom-left triangle,
respectively.
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3.5 Visualization

To better understand the CNN diagnosis, we introduced the class activation mapping47 technique
to our HRNet-W18 for prediction visualization. We first removed the last layer (average-pooling
layer) of HRNet-W18 and then upsampled the output’s class activation maps (by a 16-fold linear
interpolation) to the original image size. The highlighted regions of the images showed that the
regions were “important” for predictions from the model. As shown in Fig. 9, most of the lesion
regions were correctly localized, illustrating that the final diagnoses are based on identifying the
extent of objects.

4 Discussion

We show some failure cases in Fig. 10. The high-risk OPMD case [Fig. 10(a)] is wrongly iden-
tified as an ulcer. Although the percentage of this misclassification by the model is low (only
1.9%), such missed cases should be avoided as incorrect recognition could lead to misdiagnosis,
missing the optimal treatment window, or even to fatality. Figure 10(b) provides an example of

Table 5 Diagnostic multiclass performance of the proposed method. The corresponding AUCs
were computed in each case using one versus other strategy.44 The confidence intervals (CIs) of
AUC at 95% were computed by the DeLong method.45

Class AUC (95% CI) F1

Normal 0.949 (0.929 to 0.970) 0.951

Ulcer 0.930 (0.907 to 0.953) 0.887

Low-risk 0.811 (0.766 to 0.857) 0.697

High-risk 0.851 (0.808 to 0.893) 0.745

Cancer 0.946 (0.923 to 0.970) 0.900

Fig. 9 Examples of oral images with visualization. The heatmaps highlight the class-discriminative
regions used for oral classification.

Fig. 10 Representative examples of failure cases: (a) high-risk OPMD misclassified as an ulcer
lesion; (b) ulcer lesion misclassified as high-risk OPMD; (c) high-risk OPMDmisclassified as being
cancerous; and (d) low-risk OPMD misclassified as normal.
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an ulcer lesion misclassified as high-risk OPMD. The large area of ulcer misclassified by the
algorithms was also easily misdiagnosed by the dentists due to the similar size of the lesion.
Another high-risk OPMD case [Fig. 10(c)] is wrongly identified as cancer. In fact, there is
an intrinsic difficulty in distinguishing high-risk OPMD from cancer in some cases, which
is why a biopsy is often needed for further confirmation. This can be considered less critical
than the first example, as the misclassified lesion was either cancerous or precancerous in nature.
The reticular oral lichen planus image [shown in Fig. 10(d)], which suffered with reflective light,
shows similar characteristics to normal tissue, and it is underdiagnosed as normal by the deep
learning algorithm. In addition, the reason for all these misclassifications could be that the train-
ing data does not include many of these kinds of images. Training with more of these challenging
samples is likely to boost classification performance.

Our study does have some limitations. One major limitation is a retrospective study, with all
of the inherent limitations. Another limitation is that the proposed method is validated on finite
oral images. (1) The images of oral diseases were only obtained from one hospital, with the
patients coming from surrounding cities. More data from additional hospitals and provinces are
required to test the generalizability of our approach to other patient populations. (2) The images
in the experiments were mainly collected from four different smartphone cameras. Although the
results are promising, the proposed method is not fully validated on other smartphone cameras.
(3) There are only five categories for evaluation in our study and there are many other oral
disease types not included. However, we believe the generalization performance of the model
can be guaranteed after using other kinds of oral cavity images from multiple users or phones for
network training, as the appearance of disease variants can be learned by the network. In addition,
further validation on other oral disease types (such as oral thrush) and on various smartphone
cameras is still required to fully establish the performance characteristics of our AI diagnosis
system. In summary, our algorithm may be helpful in places where the doctor has less experience
or for patient self-prediagnosis, but is unlikely to become a tool for clinical specialists.

We will continue to collect more oral cavity images for future studies. We believe that more
data will improve results significantly, as large datasets are key to deep learning algorithms.
Meanwhile, our focus will be on how to combine the appearance characteristics of lesions and
the powerful learning ability of convolutional neural networks to classify captured images more
robustly, effectively, and accurately.

5 Conclusions

In this study, we address the challenge of automatically identifying oral disease in smartphone-
based white light images and present a simple yet effective image-collection approach and
resampling method that leverages the advantages of deep learning algorithms. We evaluate the
performance of the recent HRNet, which is pretrained on the ImageNet, on our collected images
with five categories of disease. The results demonstrate that our methods can effectively improve
the prediction performance on early cancer diagnosis using smartphone photographic image.
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