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Abstract. Counting morphologically normal cells in human red blood cells (RBCs) is extremely beneficial in the
health care field. We propose a three-dimensional (3-D) classification method of automatically determining the
morphologically normal RBCs in the phase image of multiple human RBCs that are obtained by off-axis digital
holographic microscopy (DHM). The RBC holograms are first recorded by DHM, and then the phase images of
multiple RBCs are reconstructed by a computational numerical algorithm. To design the classifier, the three
typical RBC shapes, which are stomatocyte, discocyte, and echinocyte, are used for training and testing.
Nonmain or abnormal RBC shapes different from the three normal shapes are defined as the fourth category.
Ten features, including projected surface area, average phase value, mean corpuscular hemoglobin, perimeter,
mean corpuscular hemoglobin surface density, circularity, mean phase of center part, sphericity coefficient, elon-
gation, and pallor, are extracted from each RBC after segmenting the reconstructed phase images by using a
watershed transform algorithm. Moreover, four additional properties, such as projected surface area, perimeter,
average phase value, and elongation, are measured from the inner part of each cell, which can give significant
information beyond the previous 10 features for the separation of the RBC groups; these are verified in the
experiment by the statistical method of Hotelling’s T -square test. We also apply the principal component analysis
algorithm to reduce the dimension number of variables and establish the Gaussian mixture densities using the
projected data with the first eight principal components. Consequently, the Gaussian mixtures are used to design
the discriminant functions based on Bayesian decision theory. To improve the performance of the Bayes clas-
sifier and the accuracy of estimation of its error rate, the leaving-one-out technique is applied. Experimental
results show that the proposed method can yield good results for calculating the percentage of each typical
normal RBC shape in a reconstructed phase image of multiple RBCs that will be favorable to the analysis
of RBC-related diseases. In addition, we show that the discrimination performance for the counting of normal
shapes of RBCs can be improved by using 3-D features of an RBC. © 2015 Society of Photo-Optical Instrumentation Engineers

(SPIE) [DOI: 10.1117/1.JBO.20.1.016005]
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1 Introduction
The three-dimensional (3-D) holographic imaging system has
been studied for visualization, identification, and tracking of
biological micro/nano-organisms.1–6 In the areas of biomedical
imaging, defense, medical diagnosis, medical therapeutics,
and security, the 3-D holographic imaging system has a lot of
potential.1–9

Red blood cells (RBCs), which are the principal method of
delivering oxygen to body tissues via the blood flowing through
the circulatory system in vertebrate organisms, are the most
common type of blood cell. RBCs are also an imperative
part of human beings because they absorb oxygen in the
lungs and release it when squeezing through the body’s capil-
laries.10 Therefore, RBCs have been extensively studied for bio-
medical applications with the development of new technology
and equipment.11–16 Recent studies have demonstrated that
patients suffer from latent risk when RBCs stored for a substan-
tial amount of time or having abnormal shapes are transfused
into the patients’ bodies because the function and viability of

RBCs are disorderedly changed;17 such changes can affect
other body tissues indirectly.18,19 Therefore, it is extremely
important to have a classification algorithm that can categorize
different types of RBCs effectively and efficiently in order to
overcome the shortage of the traditional method that is time-
consuming and labor-intensive. In addition, counting cell
types in the blood is an important task for evaluating clinical
status. In this paper, three main types of RBC shapes, stomato-
cyte, discocyte, and echinocyte,20–23 are defined and used for the
quantitative determination of the percentage of morphologically
normal cell shapes in multiple human RBCs. Without a doubt,
the RBC with the discocyte shape accounts for the majority of
RBCs in a normal human, and the percentage of other RBC
types varies between healthy and nonhealthy individuals.
Scientists can also predict that, for a variety of RBC-related
diseases, the percentages of different types of RBCs will be
distinct.23 Furthermore, under the effects of specific drugs or
agents, the structure and function of RBCs can be modified.
Thus, it will be helpful to measure the percentage of typical nor-
mal shapes of RBCs in a reconstructed RBC phase image that
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consists of multiple RBCs for disease diagnosis and drug test-
ing. Admittedly, in addition to the three typical types of RBCs,
there are other types of RBCs. Therefore, nonmain or abnormal
RBC shapes that are different from the three normal shapes are
defined as the fourth category. If an RBC is classified into the
fourth class, it means that the confidence level of grouping the
RBC into the three typical types is low.

In this paper, the RBC holograms are captured by off-axis
digital holographic microscopy (DHM) and the RBC phase
images are reconstructed through the computational numerical
algorithm.24,25 These phase images are proportional to the cel-
lular thickness; therefore, they can provide 3-D structural infor-
mation of the RBCs. Consequently, the RBC phase images can
compensate for the limitation received from intensity images
obtained by conventional two-dimensional (2-D) imaging sys-
tems. Although some advanced 2-D imaging systems, such as
quantitative phase contrast and differential interference contrast
microscopes, can quantitatively investigate biological micro-
organisms, they cannot provide important optical thickness
information regarding the cells.26 Moreover, off-axis digital
holographic imaging systems can achieve high contrast images
for semitransparent/transparent targets without destruction of
the specimen, which is different from conventional microscopy
such as electron microscopy.23 In our previous works, we have
shown that a single RBC can be extracted from a reconstructed
phase image with multiple RBCs27 in DHM system. Moreover,
we experimentally demonstrate that joint statistical distributions
of the characteristic parameters of RBCs can be obtained using
two kinds of RBCs (stomatocyte and discocyte shape RBCs).28

In Ref. 10, the authors also successfully demonstrated that it is
possible to classify and recognize RBCs based on their storage
duration using DHM. However, the method based on a cluster-
ing approach results in a high misclassification rate, particularly
for RBCs with a long storage period.

For classification of different types of RBCs in this paper,
the discriminant functions based on Bayesian decision theory,
which can realize minimum-error-rate classification, is
adopted.29 First, 10 features, including projected surface area,
average phase value, mean corpuscular hemoglobin (MCH),
perimeter, MCH surface density (MCHSD), circularity, mean
phase of center part, sphericity coefficient, elongation, and pal-
lor (phase value difference between cell edge and center), are
extracted from each RBC after segmenting the reconstructed
phase images through an edge-based segmentation method
(the watershed algorithm30 is used in our paper). In addition,
four more features, such as projected surface area, perimeter,
average phase value, and elongation, are measured from the
inner part of each segmented RBC and can provide significant
information in grouping the RBCs beyond the previous 10
features. This is verified through the statistical method of
Hotelling’s T-square test in our experiment. Next, the principal
component analysis (PCA) algorithm29,30 is applied to all 14 fea-
tures in order to reduce the dimension space. Thus, the original
data can be projected onto a low dimension space using 60% of
the primary components, and the mixture Gaussian densities can
be established with the projected data when we assume that they
follow the multivariate Gaussian distribution. Accordingly, the
Gaussian mixtures are used to design the discriminant functions
based on Bayesian decision theory.29,31 In this experiment, we
have extracted 87 samples of stomatocyte shape, 103 samples of
discocyte shape, and 106 samples of echinocyte shape and
analyzed them to design the classifier. Because the simple

separation of the samples into training and testing sets limits
the accuracy of both the training and the testing phases of the
pattern classifier design,29 we apply the leaving-one-out tech-
nique29,31 to our samples, which nearly doubles the effective
size of the sample data. Experimental results show that the clas-
sifier obtained by our method gives a good performance in
counting automatically the morphologically normal cells in
multiple human RBCs. In addition, we demonstrate that the dis-
crimination performance for the counting of normal shapes of
RBCs can be enhanced by using the 3-D features of an RBC.

This paper is organized as follows. Section 2 describes the
preparation of the RBCs that are analyzed in our experiment and
the principle of the off-axis DHM that is utilized to capture the
3-D RBC images. Section 3 presents the concept of Bayesian
decision theory and the leaving-one-out technique. Section 4
describes the classifier design procedures to automatically
count the morphologically normal cells in multiple RBCs. The
experimental results are provided in Sec. 5. Finally, the conclu-
sion is presented in Sec. 6.

2 RBC Preparation and Off-Axis DHM

2.1 RBC Preparation

The RBCs of healthy laboratory personnel were obtained
through the Laboratoire Suisse d’ Analyse Du Dopage—
CHUV and stored at 4°C during the storage period. The DHM
measurements were performed several days after the blood
was collected from the laboratory personnel. A total of 100
to 150 μl of RBC stock solution were suspended in a high-effi-
ciency particulate air (HEPA) buffer (15 mM 2-[4-(2-hydrox-
yethyl) piperazin-1-yl] ethanesulfonic acid, pH 7.4, 130 mM
NaCl, 5.4 mM KCl, 10 mM glucose, 1 mM CaCl2, 0.5 mM
MgCl2, and 1 mg∕ml bovine serum albumin) at 0.2% hemato-
crit for predominantly stomatocyte and discocyte shaped RBCs
while at a concentration of ∼0.15% for predominantly echino-
cyte shaped RBCs. A total of 4 μl of the erythrocyte suspension
were diluted to 150 μl of the HEPA buffer and introduced into
the experimental chamber, including two cover slips separated
by spacers 1.2-mm thick. The cells were incubated for 30 min at
a temperature of 37°C before mounting on the chamber on the
DHM stage. All experiments were performed at room temper-
ature (22°C).

2.2 Off-Axis DHM

The off-axis DHM imaging system described in Ref. 32, which
is a modified Mach–Zehnder configuration with off-axis geom-
etry, is used in our implementation. A laser diode source with
λ ¼ 682 nm is used in the 3-D imaging system. Then the laser
beam is separated into a reference wave and an object wave.
When the object wave passes through the RBC samples, it is
diffracted and magnified by a 40 × ∕0.75 numerical aperture
microscope objective. The diffracted object wave interferes
with the reference wave in the off-axis geometry.
Consequently, the interference pattern is recorded via a
charge-coupled device camera. For the reconstruction and aber-
ration compensation of the RBC wave front, the computational
numerical algorithm described in Refs. 24 and 25 is used. The
resolution of the RBC phase images reconstructed from the
hologram is 704 × 704 in our experiment. Figure 1 shows
some reconstructed phase images of the sample RBCs with sto-
matocyte, discocyte, and echinocyte shapes, respectively. They
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are the three main RBC shapes that will be used in our classifier
design. In our definition, the stomatocyte RBC shape has a nar-
row central part, whereas the discocyte RBC shape has a rather
circular central area. For RBCs with an echinocyte shape, there
is no apparent central region and the phase value of the central
part is also high compared with other areas.

3 Bayesian Decision Algorithm and
Leaving-One-Out Technique

In this section, we describe the concept of Bayesian decision
algorithm and leaving-one-out technique. The Bayesian deci-
sion algorithm, which belongs to the statistical decision-making
technique, is used to design a pattern classifier using a training
set with known classes.32,33 The leaving-one-out method is a
type of cross-validation technique29 that can improve the perfor-
mance of the designed classifier and the accuracy of the estima-
tion of error rate.

3.1 Bayesian Decision Algorithms

The Bayesian decision algorithm is a type of statistical decision-
making approach for the problem of pattern classification. The
probability of a pattern belonging to a specific class is the com-
bination of a prior probability and a likelihood probability that
can be expressed as Eq. (1) with one feature and n classes29,33

PðCijxÞ ¼
pðxjCiÞpðCiÞ

pðxÞ ; (1)

where pðxÞ ¼ pðxjC1ÞpðC1Þ þ pðxjC2ÞpðC2Þ þ : : : þ
pðxjCnÞpðCnÞ is viewed as a scale factor such that the summa-
tion of the posterior probabilities pðCijxÞ is equal to one or
can be used as a constant, pðCiÞ is the a priori probability that
represents the probability that class i appears among all the pop-
ulations, whereas the conditional probability pðxjCiÞ is the

likelihood that denotes the probability of feature x occurring
in a given class Ci, and n is the number of classes.
Consequently, the posterior probabilities pðCijxÞ that represents
the probability of a given feature x to be classified into a specific
class i can be derived by the basic Bayes theorem in Eq. (1).
Most of the time, a single feature is not enough to discriminate
the classes. Multiple features are a better choice to distinguish
the classes in a high dimension. The Bayes theorem for multiple
features can be expressed as Eq. (2), which is similar to Eq. (1),
but replaces the single feature x with a feature vector x, includ-
ing multiple features, and the likelihood pðxjCiÞ is a joint condi-
tional probability (for discrete cases):

PðCijxÞ ¼
pðxjCiÞpðCiÞ

pðxÞ ¼ P
n
j¼1 pðxjCjÞpðCjÞ

: (2)

For the pattern classifiers based on the Bayesian decision theory,
the discriminant functions that are represented as giðxÞ, where
i ¼ 1; : : : ; n denotes the i’th class are widely used. For a sample
with multiple features x, when giðxÞ > gjðxÞ and i ≠ j, the sam-
ple is classified into class Ci that corresponds to the class with
the highest posterior probability in the Bayes theorem. Thus, the
discriminant functions can be achieved through Eq. (3):

giðxÞ ¼ PðCijxÞ ¼
pðxjCiÞpðCiÞ

pðxÞ ¼ P
n
j¼1 pðxjCjÞpðCjÞ

: (3)

Because pðxÞ does not affect the decision and can be viewed as a
constant, the denominator in Eq. (3) can be eliminated. In order
to simplify the discriminant function so that it is much easier to
understand, the discriminant function can be written in a simpler
form as shown in Eq. (4) by taking the natural logarithm of the
numerator in Eq. (3):

giðxÞ ¼ ln pðxjCiÞ þ ln pðCiÞ: (4)

As a result, the discriminant function based on the Bayesian
decision theory is determined by the conditional probabilities
(likelihood) pðxjCiÞ and a priori probabilities pðCiÞ. In particu-
lar, when the multiple features satisfy the multivariate normal
distribution, the conditional probabilities can be described by
the multivariate normal density shown in Eq. (5):29

pðxjCiÞ ¼
1

ð2πÞd∕2
���Pi

���1∕2 exp

�
−
1

2
ðx − μiÞt

X−1
i

ðx − μiÞ
�
;

(5)

where x is a d-dimensional feature column vector, μi is the d-
dimensional mean vector of the i’th class,

P
i is the d-by-d

dimensional covariance matrix of the i’th class, and jPi j
and

P−1 are the determinant and inverse of covariance matrix,
respectively. Consequently, the discriminant function in Eq. (4)
can be easily evaluated as Eq. (6) if the conditional probabilities
are a mixture Gaussian distribution [replace pðxjCiÞ in Eq. (4)
with Eq. (5)]:

giðxÞ ¼ −
1

2
ðx − μiÞt

X−1
i

ðx − μiÞ −
d
2

ln 2π

−
1

2
ln
���X

i

���þ ln pðCiÞ: (6)

Fig. 1 Reconstructed red blood cell (RBC) phase images: (a) stoma-
tocyte RBC shape, (b) discocyte RBC shape, and (c) echinocyte RBC
shape.
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Thus, the features are categorized into the class that can
achieve the largest discriminant value. The discriminant func-
tion derived from the Bayesian decision theory is proven to
be able to achieve the minimum-error-rate among all the
classifiers.29,33

3.2 Leaving-One-Out Technique

It is evident that a classifier designed with as many training and
testing sets as possible is much more robust in terms of improv-
ing the classifier performance and the accuracy for estimating its
error rate. However, because of the limited number of the avail-
able sample data, the accuracy of both the training and testing
classifier is restricted. The leaving-one-out method is a type of
technique that can avoid the previous limitation to a large extent
because this approach nearly doubles the effective size of the
sample data.29 The procedure of the leaving-one-out technique
is described as follows. Suppose that n samples are provided in
the data set; the classifier obtained by leaving-one-out is not
designed and is investigated simply by dividing the samples
into the training and testing sets not at one time, but at n
times. In this process, one sample from the data set is withdrawn
from the testing set and the other n − 1 samples are used to
design the classifier. Thus, the withheld sample can be tested
by the classifier designed with the n − 1 samples. This is logical
because the classifier is designed without this particular sample.
The previous step can be repeated n times and each time a differ-
ent testing sample is omitted; thus, all n samples are used as
the testing set. For each round, a new classifier is established
with n − 1 samples and tested by the one sample that is omitted
in the design of the classifier. Consequently, the expected prob-
ability of error can be deduced as k∕n on an average classifier
that is trained on the n − 1 samples; k is the number of errors in
the testing phase. Because the samples in this technique are pre-
vented from being in both the training and the testing of a given
classifier, the error rate estimate can be regarded as unbiased and
accurate because all the samples are used for testing.29 Finally,
the classifier is designed using the total n samples as training,
and its expected error rate is at least as low as k∕n because the
classifier is created with n samples, but not with the n − 1 sam-
ples used in the leaving-one-out step. This process is illustrated
in Fig. 2. Step 1 in Fig. 2 is conducted n times until no new
sample can be used as the test sample. The classifier giðxÞ is
designed based on Bayesian decision algorithm. After the
table shown in step 2 of Fig. 2 is achieved, the misclassification
rate can be measured. Finally, all of the samples are applied to

design the classifier, which will be used to predict the sample
with an unknown class.

4 Classifier Design Procedures
In this procedure, after the RBC phase images are reconstructed
using the computational numerical algorithm from the holo-
grams obtained through the off-axis DHM, each RBC is
extracted with the background removed by the watershed trans-
form segmentation approach.30 Then the 10 features listed in
Table 1 are calculated from each segmented whole RBC. In
addition, in order to increase the performance of separating
the RBC groups, four more features, including projected surface
area, perimeter, average phase value, and elongation are mea-
sured from the inner part of the segmented RBCs; these are also
presented in Table 1. The segmented whole and the inner part of
an RBC are illustrated in Fig. 3.

The projected surface area, average phase value, MCH, and
MCHSD are calculated from each segmented whole RBC as
shown in Eq. (7):

S ¼ N
p2

M2
; φ̄ ¼ 1

N

XN
i¼1

φi;

MCH ¼ 10λ

2πα
Sφ̄; MCHSD ¼ MCH

S
; (7)

where N is the number of pixels within a single RBC, p is the
pixel size, M is the magnification of the DHM, φi is the phase
value at the i’th pixel within a single RBC, λ is the wavelength
of the light source, and α, known as the specific refraction incre-
ment, is a constant. When the boundary of each cell is marked
by an eight-directional Freeman chain code,30,34 the perimeter,
circularity, and elongation features can be achieved as shown in
Eq. (8):34

perimeter ¼ Ne × 1þ No ×
ffiffiffi
2

p
;

circularity ¼ perimeter2∕area;

elongation ¼ maxðjN0;4 − N2;6j; jN1;5 − N3;7jÞ;

Nj;k ¼
Xn
i¼1

ai¼j or ai¼k

1; (8)

where Ne is the number of even-valued elements, whereas No is
the number of odd elements in the boundary chain code of a

gi

gi

Fig. 2 Flowchart of leaving-one-out technique.
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single RBC, and n (¼ Ne þ No) is the total number of elements
in the Freeman chain code for each RBC. In addition, the phase
value of the center pixel is defined as the average phase value of
the central 5 × 5 pixels, the sphericity coefficient is the division
between the phase value of the center pixel and the maximum
phase value within each segmented whole RBC, and theD-value
is the difference between the phase value in the center pixel and
the maximum phase value. To measure the four features in the

inner part of an RBC, the previous equations can be used repeat-
edly when only these features of the inner part need to be deter-
mined instead of the segmented whole cell.

Here, we apply the statistical method of Hotelling’s T-square
test35 to show that the features calculated from the inner part of
the cell can, indeed, provide additional separation between RBC
groups beyond the separation already achieved by the 10 fea-
tures obtained from the segmented whole cell. Let y denote
the p × 1 vector where p ¼ 10 includes the 10 variables used
to measure the features in the segmented cell; furthermore,
let x denote the q × 1 vector where q ¼ 4 expresses the four
variables used to calculate the properties in the segmented
inner part of the cell. We assume that each pair of samples is
from the multivariate normal population and that x1 and x2
are two q × 1 vectors, whereas y1 and y2 are two p × 1 vectors
from two different groups. Then the null hypothesis [H0: x1 and
x2 are redundant for separating the two classes beyond y1 and
y2] can be represented as shown in Eq. (9):35

T2ðxjyÞ ¼ ðv − pÞ T
2
pþq − T2

p

vþ T2
p

; (9)

which is distributed as T2
q;v−p where v ¼ n1 þ n2 − 2, whereas

n1 and n2 are the number of samples in the two groups, respec-
tively. When T2ðxjyÞ ≥ T2

α;q;v−p, the null hypothesisH0 that x is
redundant is rejected at a significance level of α where the criti-
cal value of T2

α;q;v−p can be achieved from the T2-table with q
and v − p degrees of freedom. For Eq. (9), T2

pþq and T2
p are

expressed, respectively, as Eqs. (10) and (11):35

T2
pþq¼

n1n2
n1þn2

��
ȳ1
x̄1

�
−
�
ȳ2
x̄2

��0�Syy Syx
Sxy Sxx

�
−1
��

ȳ1
x̄1

�
−
�
ȳ2
x̄2

��
;

(10)

T2
p ¼ n1n2

n1 þ n2
ðȳ1 − ȳ2Þ 0S−1yy ðȳ1 − ȳ22Þ; (11)

where ȳ1 and ȳ2 are the sample mean vectors, and Syy, Syx, and
Sxx are the covariance matrices. In the experimental section, we
present the T2 statistic test results among each pair of RBC
groups.

In order to demonstrate that 3-D features of an RBC
extracted from DHM imaging technique are beneficial to distin-
guish different kinds of RBCs, we divide the RBC’s features
into two categories that are given in Table 2. One is defined
as 2-D features, which can be acquired from the 2-D imaging
system and the other is defined as 3-D features, which are
obtained from the DHM technique. Then, the Hotelling’s T-
square test, as per the previous description for inner part feature
analysis, is conducted to check whether the 3-D features can
provide additional separation among RBCs classes beyond
the partition already achieved by the 2-D features. In this
case, x in Eq. (9) denotes the seven features from the 2-D

Table 1 Description of 14 features.

Segmented whole RBC

Feature Description

F1: projected surface area Number of pixels within single
RBC × 1 pixel area

F2: perimeter Cell boundary length

F3: circularity ðPerimeter × perimeterÞ∕area

F4: average phase value Average phase value for pixels
within single RBC

F5: MCH Mean corpuscular hemoglobin

F6: MCHSD MCH surface density

F7: phase of center pixel Center pixel phase value
(average 5 × 5 pixels)

F8: sphericity coefficient Center part phase value/maximal
phase value

F9: elongation Chain code orientation in cell boundary

F10: D-value Center pixel phase value minus
maximum pixel phase value

Inner part of segmented RBC

F11: projected surface area Number of pixels within inner part of
RBC × 1 pixel area

F12: perimeter Boundary length in inner part of cell

F13: average phase value Average phase value for pixels within
inner part of RBC

F14: elongation Chain code orientation in boundary of
inner part of cell

Fig. 3 Illustration of segmented whole cell and inner part of cell.

Table 2 Division of RBC features.

2-D features F1, F2, F3, F9, F11, F12, F14

3-D features F4, F5, F6, F7, F8, F10, F13
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features category and y represents the other seven features from
the 3-D features group.

In our experiment, we use 87 RBCs labeled as stomatocyte
shape, 103 RBCs labeled as discocyte shape, and 106 RBCs
labeled as echinocyte shape. In addition, the total 14 features
denoted by the feature vector as ½X1X2 · · · X14� t in each
RBC are calculated. It should be noted that when there are
no inner parts for certain RBCs, a random value from the

standard normal distribution is assigned to the features from
F11 to F14 in Table 1. The samples with the known class
that is used to design the classifier are listed in Fig. 4.

After all the 14 properties are determined from the samples,
the PCA algorithm is applied to these features to reduce the var-
iable dimension; we retained 60% of the principal components,
that is, eight components, for the classifier design in the next
step. Consequently, the original data can be projected onto

Fig. 4 Samples used to train classifier.

Fig. 5 Flowchart of RBC classification.
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an eight-dimensional space using the eight principal compo-
nents. Here, we assume that all of the data obtained satisfy
the multivariate normal distribution. Accordingly, the joint
density [conditional probability in Eq. (2)] of the multiple fea-
tures for each type of RBC can be represented by a mixture
of Gaussian density as expressed in Eq. (5) with features
after being projected from the eight principal components.
Furthermore, we can assume that the a priori probabilities
[pðCiÞ in Eq. (6)] for each class are equal so that this term

can be removed from the discriminant function as well as the
constant term 0.5d ln 2π because they do not affect the pattern
classification in this case. Therefore, the discriminant function
in Eq. (6) based on Bayesian decision theory can be further sim-
plified as shown in Eq. (12):

giðxÞ ¼ −
1

2
ðx − μiÞt

X−1
i

ðx − μiÞ −
1

2
ln

����
X
i

���� 1 ≤ i ≤ 3;

(12)

where μi and
P

i are estimated from their respective sample data
using an unbiased estimator.29 Consequently, one type of RBC
corresponds to one discriminant function and three discriminant
functions are required for the classification of three classes of
RBCs (class 1: stomatocyte shape RBCs, class 2: discocyte
shape RBCs, and class 3: echinocyte shape RBCs). The testing
pattern is categorized into the class that can achieve the largest
value for the corresponding discriminant function. Considering
the situation where there are other types of RBC in addition to
the three typical types of RBCs, the fourth class, which includes
all types of RBCs excluding these three typical classes, is

Fig. 6 Pseudocode for the leaving-one-out test.

Fig. 7 Reconstructed RBC phase images and their segmented phase images. (a), (b), and (c) are the
reconstructed phase images for predominantly stomatocyte, discocyte, and echinocyte shape RBCs,
respectively. (d), (e), and (f) are the corresponding segmented phase images from (a), (b), and (c).
(g), (h), and (i) are the segmented inner part of the RBCs in (a), (b), and (c).

Journal of Biomedical Optics 016005-7 January 2015 • Vol. 20(1)

Yi, Moon, and Lee: Three-dimensional counting of morphologically normal human red blood cells. . .



defined. When the probability of one sample belonging to any
one of the three typical types of RBCs is low, it is grouped into
the fourth class. This can be achieved by Eq. (5) because the
discriminant function in Eq. (3) is proportional to the value
of the likelihood [Eq. (5)] that the a priori probability is
assumed to be the same for all types of RBCs. In this paper,
when the density in the likelihood [Eq. (5)] of the extracted fea-
tures from an RBC is <0.001 among all the three typical types of
RBCs, we classify the corresponding RBC into the fourth class.
The flowchart for our classifier design and RBC classification is
presented in Fig. 5.

First, the classifier is designed based on the Bayesian design
theory by the leaving-one-out technique with the samples from
the known class (step 1 in Fig. 5). Then the obtained classifier is
used to categorize the RBCs in a reconstructed phase image with
multiple RBCs (step 2 in Fig. 5). In this step, the original RBC
phase images and the inner part of the RBCs have to be seg-
mented to extract all the RBCs and calculate the corresponding
features.

Subsequently, all the RBCs in the reconstructed RBC phase
images are grouped into the four types of RBCs as described in
Fig. 5. Finally, the percentage of the different types of RBCs in
the RBC phase images can be calculated and analyzed (step 4 in
Fig. 5). In particular, when the occupation ratio of the fourth
class reaches the highest value in a reconstructed RBC phase
image, this image should be further examined carefully because
this situation is not normal for a healthy person. The leaving-
one-out technique for improving the design of the classifier
and for estimating the error rate is implemented by the pseudo-
code shown in Fig. 6 (based on MATLAB). For the final design
of the classifiers [class 1 denoted as g1ðxÞ, class 2 denoted as
g2ðxÞ, and class 3 denoted as g3ðxÞ], all the sample data are used
as a training set.

5 Experimental Results
The simulation and measurement in this paper are all executed
on a 32-bit Windows 7 computer with a 3.30 GHz Intel Core i5-
2500 CPU, 4 GB RAM, and 4 cores. The RBC phase images are
reconstructed using the computational numerical algorithm from
the holograms obtained by the off-axis DHM; then, the phase
images are segmented by the watershed transform algorithm.
The reconstructed phase images, segmented RBCs, and the seg-
mented inner part of the RBCs are shown in Fig. 7 with the three
typical types of RBCs. After segmentation, all the 14 features
are measured. Table 3 lists the quantitative validation for the
extracted 14 features.

In our experiment, we have demonstrated that the features
from the inner part of the RBCs are not redundant, but can
contribute information to the separation of the RBC groups
by Hotelling’s T-square test. The calculated T2ðxjyÞ value and
critical value of T2

α;q;v−p (see Sec. 4 for details) searched from
the T2-table are shown in Fig. 8. It is noted that all the T2ðxjyÞ
values among each pair of RBC groups are larger than their
corresponding critical value. Consequently, we reject the null
hypothesis H0 when the features from the inner part of the
RBCs are not significant in separating the RBC groups at the
0.05 level of significance. In other words, the features from
the inner part of the RBCs can be helpful in classifying the
RBCs. Similarly, statistical analysis results shown in Fig. 9
reveal that 3-D features of an RBC extracted from the DHM
imaging system can contribute to separating the RBCs classes.
Therefore, the discrimination performance for counting normal

shapes of RBCs can be improved by adding to the 3-D features
of an RBC to the 2-D ones.

Next, the PCA algorithm is applied to the 14 features, and
60% of the principal components (that is eight principal com-
ponents) are retained to design the Bayesian-based classifier.
Because we assume that the multiple variables satisfy the multi-
variate Gaussian distribution, the mixture Gaussian density of
each group can be established by the features obtained from
the multiplication of the original sample features with the
extracted eight principal components. Therefore, the corre-
sponding discriminant function can be realized with the created
mixture Gaussian density for each RBC population as Eq. (12).
As the design presented in Fig. 6, the leave-one-out experiment
results show that the misclassification rate for the RBCs with

Table 3 Quantitative validation of calculated 14 features from
samples.

Features

RBCs with
stomatocyte

shape
(87 samples)

RBCs with
discocyte
shape (103
samples)

RBCs with
echinocyte
shape (106
samples)

Mean Std Mean Std Mean Std

F1 34.31 3.83 47.28 5.40 25.76 3.96

F2 21.96 1.30 25.36 1.58 18.83 1.73

F3 14.13 0.44 13.67 0.37 13.84 0.93

F4 97.75 12.58 67.55 10.13 136.86 16.77

F5 31.60 4.12 30.10 5.01 33.04 4.29

F6 0.92 0.11 0.65 0.08 1.29 0.15

F7 84.35 28.21 26.84 14.41 207.70 37.73

F8 0.50 0.11 0.24 0.12 0.91 0.10

F9 7.73 5.32 8.38 5.73 6.12 4.75

F10 81.88 24.07 88.70 25.60 23.21 20.41

F11 9.83 3.36 20.50 4.43 0.01 0.93

F12 12.61 2.43 17.03 1.94 0.08 0.83

F13 81.50 11.65 56.72 7.72 0.10 0.97

F14 12.13 6.25 7.30 5.69 0.06 1.03

Fig. 8 Redundance analysis results for inner part features of RBCs
with Hotelling’s T -square test.

Journal of Biomedical Optics 016005-8 January 2015 • Vol. 20(1)

Yi, Moon, and Lee: Three-dimensional counting of morphologically normal human red blood cells. . .



stomatocyte shape is 3∕87 ¼ 3.45%, the misclassification rate
for the RBCs with discocyte shape is 4∕103 ¼ 3.88%, and the
misclassification rate for the RBCs with echinocyte shape is
3∕106 ¼ 2.83%. On the contrary, the misclassification rates
for RBCs with stomatocyte, discocyte, and echinocyte shapes
only using 2-D features (see Table 2) are measured to be
11∕87 ¼ 12.64%, 13∕103 ¼ 12.62%, and 6∕106 ¼ 5.66%,
respectively. It is noted that the classifier based on the
Bayesian decision algorithm with both 2-D and 3-D features
achieved a very good result for the classification of RBCs
with three different shapes. This demonstrates that the dis-
crimination performance for classification of different types
of RBCs can be enhanced by using the 3-D features of an
RBC. Moreover, the throughput, which is defined as the proc-
essed data per second in our method, is measured to be
27.64 Mb∕s and the total computational time for the training
and testing process is calculated to be 0.0024 s by averaging
the simulation results of 20 times.

The results of analyzing the percentage of morphologically
normal RBCs in the reconstructed phase images with multiple
RBCs are also shown in Fig. 10. Figures 10(a), 10(b), and 10(c)
are the measured percentages of the typical normal shapes of
RBCs in the reconstructed RBC phase images. It is visually
found that the majority of RBCs in each RBC’s phase image
are consistent with the highest percentage rate for the corre-
sponding image in Fig. 10. These percentages are automatically
derived from the classifier that is obtained by our classifier

algorithm whose misclassification rates are demonstrated to
be low. We believe that the proposed classifier can be adopted
to automatically count the morphologically normal cells in
multiple human RBCs. In addition, the classifier can be helpful
for the analysis of RBC-related diseases because the occupation
ratio of the different types of RBCs is associated with certain
types of diseases.

6 Conclusion
In this paper, we designed a classifier using DHM and Bayesian
decision theory for the automatic counting of the morphologi-
cally normal RBCs of stomatocyte, discocyte, and echinocyte
shapes, which allows us to quantitatively determine the percent-
age of normal cell shapes in multiple human RBCs. The holo-
gram patterns of the RBCs were first captured by the off-axis
DHM, and the RBC phase images were reconstructed through
the computational numerical algorithm. Ten patterns were cal-
culated from each RBC that was extracted from the RBC phase
images through the watershed transform segmentation method,
and four more features were collected from the inner part of the
RBC. Hotelling’s T-square test showed that the features from
the inner part of the RBC can significantly improve the separa-
tion of different RBC groups. In order to reduce the dimension
space of the variables, the PCA algorithm was adopted, and the
first eight principal components were retained to retrieve new
projected features to establish the mixture Gaussian densities
for each type of RBC. Subsequently, the discriminant function
based on Bayesian decision theory was used to design the clas-
sifiers. Finally, in order to improve the accuracy for estimating
the error rate of the classifier, the leaving-one-out technique was
used and tested. Experimental results demonstrated that our
classifier can give a good performance for the classification
of RBCs with stomatocyte, discocyte, and echinocyte shapes.
Their misclassification rates were at least as low as 3.45%,
3.88%, and 2.83%, respectively. In addition, we demonstrate
that the discrimination performance for RBCs classification
can be improved by using both 2-D and 3-D features of an
RBC. Furthermore, the designed classifier was able to group
an RBC into a fourth class when the 2-D and 3-D features of
the RBC were extremely different from the three typical types
of RBCs. This automatic RBC classification method can be

Fig. 9 Redundance analysis results for three-dimensional (3-D) fea-
tures (see Table 2) of RBCs with Hotelling’s T -square test.

Fig. 10 Analysis of reconstructed phase image with multiple RBCs. (a), (b), and (c) are the segmented
images with percentages of each type of RBC labeled by our designed classifier method. (Class 1: RBCs
with stomatocyte shape, class 2: RBCs with discocyte shape, class 3: RBCs with echinocyte shape, and
class 4: other types of RBC).
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extremely helpful for drug testing and for analyzing certain
RBC-related diseases because the percentage of normal cell
shapes in multiple human RBCs varies from disease to disease.
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