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Abstract. The model-based algorithm is an effective reconstruction method for photoacoustic imaging (PAI).
Compared with the analytical reconstruction algorithms, the model-based algorithm is able to provide a more accu-
rate and high-resolution reconstructed image. However, the relatively heavy computational complexity and huge
memory storage requirement often impose restrictions on its applications. We incorporate the discrete cosine trans-
form (DCT) in PAI reconstruction and establish a new photoacoustic model. With this new model, an efficient
algorithm is proposed for PAI reconstruction. Relatively significant DCT coefficients of the measured signals
are used to reconstruct the image. As a result, the calculation can be saved. The theoretical computation complexity
of the proposed algorithm is figured out and it is proved that the proposed method is efficient in calculation. The
proposed algorithm is also verified through the numerical simulations and in vitro experiments. Compared with
former developed model-based methods, the proposed algorithm is able to provide an equivalent reconstruction
with the cost of much less time. From the theoretical analysis and the experiment results, it would be concluded that
the model-based PAI reconstruction can be accelerated by using the proposed algorithm, so that the practical appli-
cability of PAI may be enhanced. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.6.066008]
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1 Introduction
Photoacoustic imaging (PAI) is a novel noninvasive biomedical
imaging technique.1–6 With its advantages of high contrast, high
resolution, and functional imaging ability,4 it has great potential
in many clinical applications such as structural and functional
imaging,7–9 tumor detection,10,11 ocular imaging,12 vascular im-
aging,13,14 and molecular imaging of biomarkers.15

The physical basis of PAI is the photoacoustic effect, and it
refers to the generation of an ultrasound wave by the electro-
magnetic energy absorption.2 Essentially, it is an energy trans-
formation from the electromagnetic to the acoustic. In the
process of PAI, the laser is used to irradiate the biomedical tissue
to excite the ultrasound wave, and then the ultrasound signals
will be received by the transducers. From the knowledge of mea-
sured signals, the photoacoustic image could be reconstructed,
and this issue is regarded as an inverse problem. This problem in
ultrasonic reflectivity imaging is first investigated for the spheri-
cal geometry,16 and then discussed in detail for plane, cylindri-
cal, and spherical geometries.17 The exact solution and inversion
formula are also obtained in these geometries.17 Actually, they
provided a base for the later research of the photoacoustic image
reconstruction. Not only that, more mathematics and formulas
for the photoacoustic image reconstruction are deduced.18,19

Based on these exact solutions and reconstruction mathematical
formulas, many reconstruction algorithms are developed as
follows. The exact reconstruction algorithms in the time and
frequency domains have been developed in various geom-
etries20–23; Xu et al. proposed a filtered back-projection
method24,25; Zhang et al. proposed a deconvolution algorithm

and adopted it into the fast PAI application.26,27 The inverse
spherical Radon transform is another classical reconstruction
for PAI, and its fast solution method is proposed in Refs. 28
and 29. These analytical reconstruction algorithms are conven-
ient to implement and have been widely used for PAI
reconstruction.3

Besides these analytical algorithms, the model-based algo-
rithm is another type of photoacoustic image reconstruction
method30 which has been quickly developed in recent years.
Compared with the analytical algorithms, the model-based
algorithms are able to provide a more accurate and high-quality
reconstruction image.30 Unlike solving the photoacoustic
mathematic equations analytically, a model is built up to
express the relationship between the measured ultrasound sig-
nals and the optical absorption map. The optimization methods
such as the iterative method are used to inversely calculate the
optical absorption image.31 Along with the model-based algo-
rithm, many methods in other aspects can be involved in PAI
reconstruction. The compressed sensing (CS)32 was adopted
into PAI reconstruction,33,34 and a nonlinear conjugate gradient
descent algorithm was used to implement the CS-based photo-
acoustic imaging.33 It is shown from the results that the image
can be reconstructed with fewer measurements and the data
acquisition can be accelerated. Additionally, the wavelet trans-
form is also applied into PAI reconstruction and a new
reconstruction strategy was proposed.35 By recovering the
image with a sparse representation in the wavelet domain,
the performance of the reconstruction can possibly be
improved. Some parameters in the aspect of image processing
are also employed to assist the image reconstruction. As the
total variation (TV) coefficient utilized in company with the
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gradient descent method in PAI reconstruction, the TV-GD
method36 is proposed and proved to be useful for PAI
reconstruction in the sparse-view sampling condition. From
the above discussions, the model-based algorithm is widely
accepted for PAI reconstruction for its high-quality perfor-
mance. However, the relatively heavy computational complex-
ity and huge memory storage requirement are difficulties in
implementing these algorithms. Though in some of the devel-
oped algorithms, the number of sampling points can be
reduced, the model-based reconstruction still faces the problem
of heavy computation.

In this paper, we make use of the discrete cosine transform
(DCT) and establish a new model for PAI image
reconstruction. In this new model, the relationship between
the DCT coefficients of the measured signals and the optical
absorption image is presented. We calculate the DCT coeffi-
cients both from the measured signals and from an assumed
optical absorption image using the proposed model. The differ-
ence of these two DCT coefficients is minimized to accomplish
the image reconstruction. For efficiency, the relatively signifi-
cant DCT coefficients are used in the reconstruction. In this
way, the calculation can be remarkably diminished. Under
an appropriate threshold, the amount of the DCT coefficients
for reconstruction can be reduced. However, the remaining part
still carries the sufficient information for the image
reconstruction. Thus it is noted that this modification would
not affect the quality of the reconstruction, but the calculation
would be reduced. The theoretical calculation complexity is
figured out, and the essential advantage of the proposed algo-
rithm is revealed. Through numerical simulations and in vitro
experiments, this new algorithm is verified and compared with
other developed algorithms. It is demonstrated in the experi-
mental results that the reconstruction can be accelerated effec-
tively and the quality of the reconstruction can be kept at a high
level as well.

The paper is organized as follows. Section 2 introduces the
DCT-based photoacoustic model and the procedures of the DCT
model-based image reconstruction. Section 3 presents the cal-
culation of theoretical algorithm complexity. The numerical
simulations are demonstrated in Sec. 4, where the reconstruction
results are discussed. Section 5 introduces the experimental sys-
tem, and the in vitro experiments on this system are shown.
Finally, Sec. 6 is the conclusion.

2 Method
In this paper, two-dimensional (2-D) PAI is concerned in our
simulations and experiments. According to the physical princi-
ple of the photoacoustic effect, assuming the imaging tissue is
spatially uniformly illuminated by the laser, the relationship
between the photoacoustic signals and the laser energy deposi-
tion can be derived as4

∇2pðr; tÞ − 1

c2
∂2pðr; tÞ

∂t2
¼ −

β

Cp
AðrÞ ∂IðtÞ

∂t
; (1)

where pðr; tÞ is the acoustic pressure at the position r and at the
time t, c is the sound speed, Cp is the specific heat, β is the
isobaric expansion coefficient, IðtÞ is the temporal profile of
the laser pulse, and AðrÞ is the spatial distribution of the
laser absorption.

Equation (1) can be solved by using Green’s function, and
the photoacoustic signal is deduced as4

pðr0; tÞ ¼
β

4πCp

∂
∂t
∯ jr 0−r0j¼ct

Aðr 0Þ
t

d2r 0; (2)

where r0 is the position of the ultrasound transducer.
In PAI experiments, a scanning transducer is used to receive

the photoacoustic signals at different positions around the im-
aging sample, and the image reconstruction is regarded as an
inverse problem. In the model-based image reconstruction, a
model is typically established to connect the measured signals
with the optical deposition image. The signal can be calculated
based on the optical deposition in the model, and then the image
can be reconstructed by minimizing the difference between cal-
culated signals and the real measured signals. In this way, many
optimization methods can be used, and various model-based
reconstruction algorithms have been developed.

In is paper, involving the discrete cosine transform (DCT),
we build up a novel model for the image reconstruction.

For a succinct expression, a new variable g is defined as

gðr0; tÞ ¼
4πCpt

β
·
Z

t

0

pðr0; tÞdt: (3)

Then Eq. (2) can be transformed to

gðr0; tÞ ¼ ∯ jr 0−r0j¼ctAðr 0Þdr 0: (4)

The reconstructed optical deposition image and the photo-
acoustic signals are processed discretely. The scanning trajec-
tory is discretized into M points so that the photoacoustic
signals in M points are used for the reconstruction. The
image A is discretized into a matrix in the size of Nx × Ny,
and then A is reshaped into a column vector A 0 in the size
of Nx × Ny × 1 for calculation. Assuming that the measured
vector g is in the size of T × 1, the relationship between the
g and the A 0 can be expressed in the form of matrix multipli-
cation as

gðiÞ ¼ WðiÞ · A 0; i ¼ 1; 2; 3; : : : ;M; (5)

whereM is the total number of the detection points and i means
the i’th detection point.

In Eq. (5), the size of the matrixW is T × NxNy, and it can be
calculated based on the scanning geometry in PAI. At the i’th
sampling point, the matrix WðiÞ can be calculated as

WjkðiÞ ¼
8<
: 1−

���� tj
Δt −

jrk−rij
cΔt

���� when

���� tj
Δt −

jrk−rij
cΔt

���� < 1

0 else

;

i ¼ 1; 2; 3; : : : ;M;

(6)

where c is the sound speed, Δt is the temporal discretization
interval, tj is the j’th temporal measurement at the i’th detection
point, rk is the location vector of the k’th point in A 0, and ri is
the location vector of the i’th detection point. In the matrix W,
the locations of the points in the image are recorded, and the
elements are valued between 0 and 1, which denotes the con-
tribution to the signal at a certain time. Note that no smoothness
will be involved in the reconstructed image because of this
discretization.
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In our model, the variable g is processed with the DCT and
the obtained DCT coefficients are used for reconstructing the
image. The arithmetic formula of the DCT is

Gk ¼ wk

XT
t¼1

gk cos
πð2t − 1Þðk − 1Þ

2T
; (7)

where

wk ¼
(

1∕
ffiffiffiffi
T

p
k ¼ 1ffiffiffiffiffiffiffiffi

2∕T
p

2 ≤ k ≤ T
: (8)

The DCT calculation can also be processed in the form of
matrix multiplication as

GðiÞ ¼ DgðiÞ; (9)

where D is the DCT matrix, and its size is T × T. According to
Eqs. (7) and (8), the matrix D can be calculated as

Dst ¼

8>>><
>>>:

1ffiffiffi
T

p cos

�
πð2t−1Þðs−1Þ

2T

�
s ¼ 1

ffiffiffi
2
T

q
cos

�
πð2t−1Þðs−1Þ

2T

�
2 ≤ s ≤ T

; (10)

where s and t are the row and column indexes in the DCT matrix
D, respectively.

In this way, the relationship between the DCT coefficients
and the photoacoustic image can be expressed as

GðiÞ ¼ DWðiÞ · A 0; i ¼ 1; 2; 3; : : : ;M: (11)

Here, a threshold is set and the significant DCT coefficients
with a relatively big value will be picked out. When an appro-
priate threshold is set, these selected coefficients contain nearly
most of the information in the measured signals, and they are
sufficient for the image reconstruction. After the selection of
the coefficient, the amount of the data is supposed to be reduced,
and this procedure is helpful to save the calculation.

Supposing the threshold is TH, whose value will be dis-
cussed in the following section, the selection index set can
be obtained by

fkjk ¼ 1; 2; 3; : : : ; TjGkj > THg: (12)

The DCT coefficient G is reduced to GTH after the selection,
and it can be expressed as

fGTHjk ¼ 1; 2; 3; : : : ; TjGkj > THg: (13)

Assuming FðiÞ ¼ DWðiÞ, the measurement matrix F is
modified correspondingly by removing the rows whose indices
are not in the set [Eq. (12)]. Then the reduced matrix relative to
the threshold, which is denoted by FTH, can be obtained.

The model is established to connect the reduced DCT coef-
ficients with the optical absorption image. Based on the knowl-
edge of the reduced DCT coefficient GTH and the corresponding
reduced matrix FTH, the photoacoustic image is reconstructed by
iterations. According to the gradient descent method, the itera-
tion can be processed as

ΔA 0 ¼ −
½FTHðiÞ�T

k½FTHðiÞ�Tk ½F
THðiÞ · A 0 − GTHðiÞ�

i ¼ 1; 2; 3; : : : ;M;

(14)

where ð�ÞT means the matrix transposition.
According to Eq. (14), the reconstruction vector A 0 is

updated at M different sampling points. Then the iteration is
repeated unless the exiting condition is met. Generally, the exit-
ing criterion is set so that the error is under a certain level or the
iteration number is more than a prespecified number.

Finally in this section, the proposed DCT model-based algo-
rithm is summarized in four steps as follows:

1. Initialization: Initialize the reconstructed image to be a
zero matrix and reshape it into a column vector. Note
that the initial matrix can be also set as the analytically
reconstructed image, and the remaining artifacts
should be taken under consideration. Then apply
Eqs. (3) and (9) to calculate G and apply Eqs. (6)
and (10) to calculate FðiÞ.

2. Reduction: Set the threshold TH, and calculate the
selection index set by Eq. (12). According to the selec-
tion index set, remove the relatively insignificant ele-
ments in the DCT coefficients vectors and the
corresponding rows in matrix FðiÞ.

3. Iteration: For i ¼ 1; 2; 3; : : : ;M, implement the itera-
tion at each sampling point as shown in Eq. (14).

4. Update or termination: Terminate the iteration when
the exiting criterion is met, or update the vector A 0

and return to step 3 to resume the iteration. Usually
the exiting criterion is set so that the error is under
a certain level or the iteration number is more than
a prespecified number.

3 Theoretical Calculation Complexity
The main motivation for involving the DCT into PAI
reconstruction is its effectiveness in saving the computation.
In this section, we focus on the calculation complexity in
this model-based reconstruction. The theoretical complexity
is calculated according to the amount of multiplication in the
matrix processing.

In calculating the measurement matrixes, the complexity is
determined by the Eqs. (6), (9), and (10). Assuming the recon-
structed image is in the size of Nx × Ny, the number of sampling
angles is M, and the length of the discretized signal is T. In cal-
culating W and the DCT matrix D, by implementing the
same procedures on every element in the matrix, the relative
complexities are OðNxNyMTÞ and OðT2Þ. In the multiplication
of W by D, it requires OðNxNyMT2Þ operations. From the
above discussions, in the model establishment, the calculation
of the matrixes leads to a calculation complexity of
O½ðNxNyMTÞ þ ðT2Þ þ ðNxNyMT2Þ�. Compared with the iter-
ative reconstruction (IR) algorithm,31 the second and the third
terms are extra. In other words, the extra calculation is necessary
to establish the DCT model for the reconstruction. However, this
extra calculation is much less than the saved calculation in the
reconstruction as per the following discussion.
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In the reconstruction, the naive length of the DCT coeffi-
cients is T. By setting a threshold TH, the length of DCT vector
can be reduced to αT. Consequently, the amount of the data
to process is reduced to αMT. In the first step, the calculation
of vector g and the DCT processing require 2OðT3Þ
operations. Then in one iteration step, the complexity is
O½NxNyðαTÞ2 þ ðNxNyÞ2αMT�. Supposing the iteration is
repeated Niter times, the resulting calculation complexity
is O½2T3 þ NiterNxNyMðαTÞ2 þ NiterðNxNyÞ2αMT�. In con-
trast, with the unreduced data, the calculation complexity of
the developed IR algorithm will be O½2T3 þ NiterNxNyMðTÞ2þ
NiterðNxNyÞ2MT�.

The first two terms are much smaller than the last one, so the
entire complexity is mainly determined by the last term. For in-
stance, if a proper threshold TH is set, the resulting α value will
be 0.15. Under a consistent reconstruction condition, when the
other parameters are the same, the calculation is determined by
the reduction ratio α. As the third term in the complexity shows,
the calculation in the reconstruction can be reduced to about
15% of the calculation of the IR algorithm.

In this section, the theoretical complexity of calculation is
figured out. From the above theoretical analysis, it may be
proved that the proposed DCT model-based algorithm is theo-
retically advantagious in saving calculations.

4 Simulation
Numerical simulations are used to verify the proposed DCT
model-based PAI reconstruction. It is necessary to point out
that the simulation and image reconstruction are all performed
in 2-D. The image reconstructed by the proposed DCT-based
algorithm and the former developed ones are respectively pre-
sented in this section. Additionally, the qualitative and quanti-
tative analyses are presented to demonstrate the advantages of
the proposed algorithm.

The simulation experiments are performed using Matlab
(version 7.8.0.0347) on a PC with 2.0 GHz Quad-CPU and
4.0 GB memory.

In this simulation, the given optical absorption distribution
image is shown in Fig. 1. The size of the reconstruction area
is 60 × 60 mm2, and the radius of the scanning circle is
60 mm. The sound speed is consistently 1500 m∕s in the
simulation.

Concerning the proposed algorithm, the quality of the recon-
structed image, the selection of the threshold, the few-view sam-
pling condition, and the robustness will be discussed in the
following sections.

4.1 Selection of the Threshold

As mentioned before, a threshold is utilized to establish the
model in the proposed method. This threshold is expected to
be assigned an appropriate value, which is useful to make an
effective compression to the data and preserve the necessary
information for the reconstruction.

In this simulation, Eq. (2) is employed to calculate the photo-
acoustic signals based on the optical absorption map. We cal-
culate the signals at 45 different positions, which are
uniformly distributed around the imaging sample. By assigning
the thresholds 0.001, 0.01, 0.02, 0.05, different models are built
up and the images are reconstructed respectively. For a consis-
tent reconstruction condition, the numbers of the iterations
are all set to 20. The size of the reconstructed image is
150 × 150 pixels. The simulated results are shown in Fig. 2.

In Fig. 2, it is clearly shown that the reconstructed images
with a threshold of 0.001 and 0.01 are highly consistent with
the original optical deposition image. In the proposed model,
a smaller threshold means that more DCT coefficients will be
preserved for the reconstruction, and it leads to a better
reconstruction. As the threshold increases, the quality of the
reconstruction declines. When the threshold increases to 0.05,
the reconstructed image is severely blurred, and the optical
absorption lines are much thicker than those in the original
image. Note that the reconstructed image with a high threshold
is not refined with more iteration. The constraint of the algo-
rithm is the threshold rather than the iteration numbers. The
high-quality image cannot be reconstructed from the over-
reduced sampling data because too much information for the
reconstruction is removed.

Besides the quality of reconstruction, we also take the effi-
ciency into consideration to determine the value of the threshold.
With different thresholds, we recorded the amounts of the data
after the reduction and the times cost in the reconstructions.
Additionally, with Fig. 1 as a standard, we calculate the peak
signal-to-noise ratios (PSNRs) of four reconstructed images.
All of these contents are listed in Table 1.

Fig. 1 The given optical absorption distribution image.

Fig. 2 The simulation results of the DCT model-based reconstruction
algorithm with different thresholds: (a) 0.001, (b) 0.01, (c) 0.02, and
(d) 0.05.
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In Table 1, the threshold is absolute and determined manually
and it is not the factor α. As shown in Table 1, with a smaller-
valued threshold, the quality of the reconstructed image is
higher, however, the relative amount of the data in
reconstruction is larger and more time is needed as a result.
It is a compromise of the reconstruction quality and the calcu-
lation saving. Considering the visual effect in Fig. 2(a) and 2(b),
the reconstructed images are quite similar, and the image details
are both refined. In Fig. 2(c), the cross point is slightly coarse
with a threshold of 0.02, and the reduction of the amount of data
and the time cost in reconstruction are no longer remarkable.
Hence, 0.01 seems to be an appropriate threshold in this method.
As the threshold is determined, we compare the proposed
algorithm with the other developed algorithms, the FBP and
the TV-GD methods. The comparison is shown in Fig. 3.

As in Ref. 24, when the number of sampling views is not
sufficient, the FBP method suffers from the problem of artifacts
and would not be able to yield an accurate image reconstruction.
It is also clearly shown in Fig. 3(a) that the FBP reconstructed
image is severely ruined by the remaining artifacts, and the opti-
cal absorbers are ambiguous. It could be deduced that the FBP
method is not applicative in this sparse-sampling view condi-
tion. In contrast, much better reconstructions are obtained by
using these two model-based algorithms. Three lines are clearly

shown and the contrasts are much higher. The superiority of the
model-based PAI reconstruction is revealed.

In order to show the details of reconstructed images clearly,
we draw a column of pixels (the 90th column) from each image
reconstructed by the FBP method, the TV-GD method, and the
DCT model-based algorithm, respectively. The comparisons of
pixel profiles are displayed in Fig. 4.

In Fig. 4, the solid, the dashed, the dotted, and the star lines
represent the pixel profiles of the original, the FBP, the TV-GD,
and the DCT model-based images, respectively.

It is shown in Fig. 4 that the profile of the FBP image sig-
nificantly differs from the original profile. Because of the severe
artifacts in the FBP image, there exist huge vibrations in the
pixel profile. The profiles of the TV-GD and the DCT
model-based images match with the original one much more
precisely. Though the differences still exist, these two iterative
methods are proved to possess equivalent reconstruction
qualities.

The main advantage of this proposed algorithm is the effi-
ciency. To reconstruct Fig. 3(c), it takes up to 682.4 s to accom-
plish the reconstruction with the TV-GD algorithm. It is much
more than the 189.5 s cost in reconstructing Fig. 3(d) with the
DCT-based algorithm. The involved DCT is effective in reduc-
ing the data amount.

As reported in Ref. 33, it takes 10 to15 h to reconstruct an
image in size of 256 × 256 pixels with the Matlab platform on a
PC. For a consistent simulation condition, the proposed algo-
rithm is utilized to reconstruct an image in the same size
with the equivalent platform. As a result, it takes only 294 s
to accomplish the image reconstruction. It is rational that the
proposed DCT model-based algorithm may be more efficient
in the computation.

Compared with the wavelet-based algorithm, the DCT-based
algorithm is implemented by the iteration instead of the pseudo-
inverse matrix processing. The procedures are simpler structures
and the storage can be saved. Besides, the algorithm is conven-
ient to adjust according to the scanning geometry. Based on the
signals’ sparseness in the wavelet and the DCT domains, the
employment of sparseness property can assist the algorithms
to obtain high-quality reconstructions.

From the above discussions, it could be concluded that the
proposed DCT model-based algorithm is an efficient and prac-
tical reconstruction algorithm.

Table 1 Comparison between the DCT model-based reconstructions
with different thresholds.

Threshold
Amount of data in
reconstruction

Time
cost (s)

PSNR
(dB)

0.001 2713 480.6 26.5

0.01 981 189.5 24.0

0.02 636 130.1 23.0

0.05 356 82.0 20.0

Fig. 3 (a) The original optical absorption image and the reconstructed
images with (b) the FBPmethod, (c) the TV-GDmethod, and (d) the DCT
model-based algorithm.

Fig. 4 The grayscale profiles of the original image and the reconstructed
images by the FBP method, the TV-GD method, and the DCT model-
based algorithm, respectively.
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4.2 Few-View Sampling Condition

In this part, we focus on the obliged number of sampling points
for the DCT model-based image reconstruction. It is noted that
reducing the sampling points is meaningful in reducing PAI sys-
tem cost and accelerating the data acquisition. Setting an appro-
priate sampling number is practically useful in PAI applications.
In order to compare the performance of the proposed algorithm
with different amounts of sampling views, five different situa-
tions are simulated. In these five cases, the sampling angles all
cover 360 deg around the imaging object, the angular step size is
uniform and set to 4 deg, 6 deg, 8 deg, 12 deg, and 18 deg,
respectively. To avoid the noise infection, the simulated signal
is noise free. The images are reconstructed based on these simu-
lated data with different numbers of sampling points, and the
results are shown in Fig. 5.

It is shown in Fig. 5(d)–5(f) that the reconstructed images
have no essential differences when the number of sampling
angles is more than 45. To reconstruct an imaging sample
with an uncomplicated structure as shown in Fig. 1, the time
cost in processing the extra sampled signal is not necessary,
and the extra calculation time does not lead to a better
reconstruction. However, when the sampling angles are
fewer, not enough information will be provided for the image

reconstruction. In Fig. 5(b), the reconstructed lines are severely
curved, and the reconstructed image is distorted. The quality of
the reconstruction is downgraded as a result. In Fig. 5(c), the
image is still slightly affeced by the noise, and the noise sup-
pression is not as effective as those shown in Fig. 5(d) and 5(e).

The photoacoustic data with less than 45 sampling points
may not be able to provide sufficient information for the
reconstruction. The reconstructed image is easily affected and
degraded as a result. The data with more sampling points are
not necessary, and the reconstruction may not be apparently
improved by involving more signals.

In the simulation above presented, the imaging sample is
simply structured. To demonstrate the availability of the pro-
posed algorithm in reconstructing a complex structured imaging
object, we employ a real MRI image as the optical absorption
image and implement the numerical simulation. The TV-GD
method and the proposed DCT model-based method are both
used for the image reconstruction. Note that the number of sam-
pling points is also set as 45 and the reconstruction results are
shown in Fig. 6.

It is shown that the DCT model-based reconstructed image
highly agrees with the original image. The three dark areas are
reconstructed with consistent boundaries, and the high-valued
skull is also accurately reconstructed. Besides, the proposed

Fig. 5 (a) The original optical absorption image and the DCT model-based reconstructed images with simulated data in (b) 20, (c) 30, (d) 45, (e) 60, and
(f) 90 sampling points.

Fig. 6 (a) The original optical absorption image and the reconstructed images from 45-view simulated data by (b) the TV-GD method, and (c) the DCT
model-based method.
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algorithm has an equivalent reconstruction quality with the TV-
GD method, while the computation is nearly one third of that.

From the above discussions, the appropriate number of sam-
pling points can be set as 45 in the simulation. The image recon-
structed with 45 sampled data remains at quite a high-quality
level, and the DCT model-based algorithm may be proved to
be practical.

4.3 Robustness

In the progress of the signal acquisition, the detected photo-
acoustic signals are usually affected by the thermal noises
from the ultrasound transducer and the system electronics.
The reconstruction algorithm is unavoidably interrupted by
these noises, and an algorithm with great robustness is expected
to maintain stability in the noisy circumstance. In real applica-
tions, the robustness is also an important consideration
factor besides the reconstruction quality and the calculation
complexity.

To investigate the robustness of the proposed algorithm,
white Gaussian noises of different powers are added to the simu-
lated signals. The signal-to-noise ratio (SNR) of the noisy signal
is 10, 5, 3, and 0 dB, respectively. With these noisy signals, the
DCT model-based algorithm is used to reconstruct the images,
and the results are shown in Fig. 7.

It is shown in Figs. 7(b)–7(d) that the images reconstructed
from signals with the SNR greater than 3 dB have hardly any
difference with the image reconstructed from noise-free signals
as shown in Fig. 3(d). The noise suppression is effective, and the
details in the reconstructed images are well preserved.

When the noise gets stronger, for example the SNR deteri-
orates to 0 dB as shown in Fig. 7(a), the image is ruined by the
noise, and much impulse noise appears in the background of the
reconstructed image. Even the line is segmented by the noises
and the reconstructed image is not consistent with the original
optical deposition image.

In this section, we implement the reconstructions from sig-
nals with different powers of the noise. In this way, the robust-
ness of the proposed algorithm is investigated. As a result, the

algorithm is applicative unless the SNR of the signal is worse
than 3 dB. Based on the signal with the SNR better than 3 dB,
the algorithm is stable and it can avoid the noise influence.

5 In Vitro Experiments
To validate the proposed DCT model-based PAI reconstruction
algorithm, the in vitro experiments are conducted based on PAI
system illustrated in Fig. 8.

In this system, an Nd∶YAG laser generator (Continum,
Surelite I) is employed. The wavelength of the emitting laser
is 532 nm, the temporal duration of the laser pulse is 5 to
7 ns, the repetition rate is 10 Hz, and the laser energy density
in the illumination area is about 6.47 mJ · cm−2, which is lower
than the laser radiation safety standard of 20 mJ · cm−2 (Ref. 2).
An unfocused water-immersion ultrasound transducer
(Panametric, V383-SU) is controlled by the stepping motor
(GCD-0301M), and it is used to receive the photoacoustic sig-
nals. The diameter of the active element is 9.525 mm, the central
frequency is 3.5 MHz, and the bandwidth is 1.12 MHz. The ana-
log signals are received by the pulse receiver (Panametric,
5900PR) and sampled into digital signals by the oscilloscope
(Agilent, 54622D). The sampling frequency is set to
16.67 MHz. Then the sampled data is transported to the PC
through the general purpose interface bus (GPIB).

In this experiment, the imaging sample is a cylinder made of
gelatin in which two black rubber ropes are embedded as the
optical absorbers. The radius of the gelatin cylinder is
25 mm and the length of the embedded rubber ropes are 20
and 12 mm. The photograph of the gelatin sample is shown
in Fig. 9.

In the experiment, the scanning radius is 38 mm. The angular
step of sampling is set as 8 deg, and the signals at 45 positions
can be received. The transducer is placed in the same plane as
the optical absorbers, and it tends to receive in-plane only. As
the cross-sectional image is mainly determined by the measured
data in the certain plane, a set of circular measurement data
in the same plane is sufficient for the image reconstruction.24

Then the images are respectively reconstructed by the FBP,
the IR, the TV-GD, and the DCT model-based algorithms.
The reconstruction results are shown in Fig. 10.

Fig. 7 The DCT model-based reconstruction results from noisy data
with the SNR of (a) 0 dB, (b) 3 dB, (c) 5 dB, and (d) 10 dB. Fig. 8 The scheme of PAI system.
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It is shown in Fig. 10 that the reconstructions of iterative
algorithms are much better than the FBP reconstruction. In
the FBP image, the optical absorbers are seriously deteriorated
because of the severe artifacts and the noises. By contrast, in the
image reconstructed by the proposed DCT model-based algo-
rithm, the optical absorbers are clearly shown. The edges of
the objects are distinct, and they are quite easy to recognize.
In the aspect of noise suppression in the background, the pro-
posed algorithm is still compared to the other methods. Fewer
artifacts and noises may contribute to better application in clini-
cal analysis. The high performance of the DCT model-based
reconstruction algorithm is revealed in the in vitro experiments.

Similar to the simulation discussions, we recorded the times
cost in the reconstructions with three iterative algorithms as
well. The times are 119.98, 120.07, and 42.34 s, respectively,
by using the IR, the TV-GD, and the DCT model-based algo-
rithms. The reconstruction quality is highly acceptable, while

the time cost is less than the IR and the TV-GD methods.
From the in vitro experimental results, it is proved that the pro-
posed algorithm is practical in application and efficient in
computation.

6 Conclusion
In this paper, we have adopted the DCT and established a new
model for PAI. In this new model, an appropriate threshold is
determined, and an acceleration strategy is formulated. After
implementing the DCT to the measured signals, the minor coef-
ficients whose absolute value is less than the threshold are
removed. The measurement matrixes calculated according to
the scanning geometry can also be reduced correspondingly.
As the relationship between the reduced DCT coefficients
and the optical deposition image deduced, the model is built
up. Based on the proposed model, the iterative method can
be used to accomplish the image reconstruction. The simula-
tions and the in vitro experiments are carried out and the results
are presented. It is revealed that the quality of the reconstructed
images is equivalent to the former developed model-based algo-
rithms. Additionally, the calculation complexity is figured
out, and the advantage of the efficiency is demonstrated.
From the times cost comparison among the DCT model-
based algorithm and the former developed algorithms, it is
proved that the proposed algorithm is more efficient in calcula-
tion. In conclusion, by employing the DCT model-based algo-
rithm, PAI reconstruction can be effectively accelerated, and it
may be useful to enhance the practical applicability of PAI
reconstruction.
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