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Abstract. Optical coherence tomography (OCT) images can provide quantitative measurements of the eye’s entire
anterior segment. A new technique founded on a newly proposed level set-based shape prior segmentation model
has been developed for automatic segmentation of the cornea’s anterior and posterior boundaries. This technique
comprises three major steps: removal of regions containing irrelevant structures and artifacts, estimation of the
cornea’s location using a thresholding technique, and application of the new level set-based shape prior segmen-
tation model to improve segmentation. The performance of our technique is compared to previously developed
methods for analysis of the cornea in 33 OCT images of normal eyes, whereby manual annotations are used as a
reference standard. The new technique achieves much improved concordance than previous methods, with a mean
Dice’s similarity coefficient of >0.92. This demonstrates the technique’s potential to provide accurate and reliable
measurements of the anterior segment geometry, which is important for many applications, including the construc-
tion of representative numerical simulations of the eye’s mechanical behavior. © 2013 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.18.5.056003]
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1 Introduction
Optical coherence tomography (OCT) is a noninvasive imaging
technique that has been used extensively on the posterior seg-
ment of the eye. The optically transparent nature of the human
eye makes OCT a well-suited imaging technique for retinal im-
aging.1 OCT is being increasingly used to measure the shape and
thickness of the human cornea in vivo.2

Currently, ultrasound pachymetry is the primary technique
used to measure the thickness of the cornea.3 Another system
that can be used is the Orbscan system.4 Orbscan uses two
slit lamps to illuminate the human eye to get information on
axial curvature, elevation of the anterior and posterior surface,
and corneal thickness throughout the cornea.5 Using OCT has
two major advantages. It is a noncontact technique, meaning it is
more comfortable for a patient, can be used on eyes that suffer
trauma, and carries no risk of pressure on the eye altering mea-
surements. The other major advantage is that OCT can produce
images at a higher resolution and higher speed than any of the
other techniques.6,7

Anterior segment OCT (AS-OCT) allows the resolution of
anterior and posterior surfaces of the entire cornea. This allows
accurate measurement of the thickness and volume of the entire
cornea, as well as the anterior chamber biometry, such as its
angle and depth. It has several important medical applications
from contact lens fitting, diagnosis and clinical evaluation,
and surgical planning and monitoring to monitoring patients
with eye pathologies.8–10 In particular, obtaining accurate

topography information of the anterior segment using this tech-
nique would also allow construction of patient-specific models
for biomechanical modelling of the human eye.11 There is cur-
rently a lack of automated measurement tools supplied with
commercial OCT devices, and manual measurement is time con-
suming, tedious, and subject to human errors. For this reason,
there is an increasing need for fully automated segmentation
techniques to identify and trace anterior and posterior bounda-
ries of the anterior segment accurately.

The segmentation of AS-OCT images has been explored in
several studies. Shen et al. used a simple threshold-based model
to measure the anterior surface of the cornea.12 That study did
not consider the location of the posterior boundary of the cornea.
Tian et al. used a similar method to calculate the anterior cham-
ber angle13 by locating the posterior boundary of the cornea near
the iris. Their study did not investigate the location of the entire
posterior boundary of the cornea. La Rocca et al. segmented
three boundaries in the cornea using a hybrid graph theory
and a dynamic programming framework.14 They were able to
detect three boundaries at the center of the cornea, but their
method did not segment boundaries over the entire cornea.
An intelligent scissors-based method has also been used to seg-
ment five layers of the central cornea,15 but the method has two
major disadvantages: It is not a fully automated method, so it
still needs manual selection of initial points, and it attempts
to segment only the central region of the cornea, which generally
has the highest signal-to-noise ratio. To the best of our knowl-
edge, there is no approach that can segment both the anterior and
posterior boundaries of the entire cornea and the front part of the
sclera in AS-OCT images.Address all correspondence to: Yalin Zheng, University of Liverpool, Institute of
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The key challenge in segmenting the AS-OCT images is that
there are regions with a low signal-to-noise ratio next to the
central cornea on all images. This phenomenon, an example
of which is shown in Fig. 1, is primarily due to the steepness
of the cornea reducing the fringe amplitude of the signal and
polarization effect, and also due to the telecentric scanning
method, which reduces detection of reflected light from these
regions. For this reason, the posterior surface in those areas
is difficult to perceive and segment. Our observations tell us
the cornea has an approximately elliptical shape. It is therefore
assumed that this shape prior information can be used to address
the above challenge. Previous studies have used prior shape
knowledge to achieve improved segmentation in other applica-
tions16,17 and have shown promising results on retinal OCT
images. These methods used circular shape estimation to re-
present the shape of interest. Another previously used method
for incorporating prior shape knowledge into a model is to use a
good set of training images to derive the shape.18

In this paper, a new technique for the automated segmenta-
tion of the anterior and posterior surfaces of the entire cornea
and a small part of the sclera is presented. The technique is com-
pared with Shen’s thresholding method12 and Chan and Vese’s
active contour without shape19 using a data set of 33 images
against a reference standard built from the manual annotations
made by an expert ophthalmologist (FB). These comparisons
were made using three similarity measures: Dice’s coefficient,
mean unsigned difference, and Hausdorff distance.20

The remainder of the paper is organised as follows. Section 2
describes the dataset used in the study and the proposed segmen-
tation technique. Section 3 presents the experimental results,
and Sec. 4 discusses the results and concludes the paper.

2 Methods

2.1 Data Acquisition

Thirty-three AS-OCT B scan images through the center of the
cornea from healthy eyes (one per subject) acquired by the
Visante AS-OCT system (Carl Zeiss Meditec, Dublin, CA) at
Wenzhou Medical College, China, were used for the purpose
of evaluation in this study. The Visante system is a time domain
system that uses 1,300-nm infrared light to obtain cross-sec-
tional images of the anterior segment with a scanning rate of
2,000 axial scans per second. Each B scan image contains
256 A-scans in 16 mm with 1,024 points per A scan to a depth
of 8 mm. The images have a transverse resolution of 60 μm
and an axial resolution of 18 μm. The images were output as
816 × 636-pixel JPEG files. The images had been corrected
for refractive index using the built-in software of the system;

this correction is unlikely to affect our results. The anterior
and posterior boundaries of all images were later segmented
manually by an expert ophthalmologist (FB).

Two further images, acquired using the same system, from
eyes with keratoconus were used to demonstrate the perfor-
mance of the program.

2.2 Segmentation Framework

A three-step algorithm was developed. The first step was to pre-
process the image in order to remove the central noise artefact
and the iris. The next step was to obtain a coarse segmentation
of the front eye using a thresholding technique. The final step
used the new level set-based shape prior segmentation model to
evolve the contour initialized from the coarse segmentation and
achieve the final segmentation.

2.2.1 Preprocessing step

All the AS-OCT images contain a common central noise
artefact. This is intrinsic to the OCT scanning system and is
caused by much higher reflection when the detector is located
perpendicular to the corneal surface. This region was detected
by calculating the mean intensity of each A scan of the image
under consideration. The column with the highest mean inten-
sity, and those next to it, will be considered the central noise
artefact and removed by setting the intensity value of all the pix-
els within them to zero. The iris can complicate the shape rep-
resentation essential for the final step; as such, it was detected
and removed in a similar manner using the projection along the
horizontal direction. The original image is shown in Fig. 2(a),
while Fig. 2(b) shows the resulting image after preprocessing.

Fig. 1 An example anterior segment OCT image acquired using the
Visante AS-OCT system.

Fig. 2 Illustration of preprocessing and coarse segmentation steps.
(a) Original image. (b) Preprocessed image after removing the iris
and central noise artefact. (c) Coarse segmentation result.
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2.2.2 Coarse segmentation

The aim of this step is to produce an initial estimate of the cor-
neal location (or coarse segmentation). This estimate is impor-
tant because it will be used as the initial location of the curve to
be evolved by the level set function in the following step, and its
anterior boundary will be used to construct the shape constraint
in the later stage. The technique described by Shen et al.12 was
adopted for this purpose. More specifically, an entropy filter was
applied to the preprocessed image, as shown in Fig. 2(b), to pro-
duce an entropy map. The coarse segmentation is achieved by
segmenting the entropy map using the Otsu’s thresholding
method.21 Figure 2(c) shows the initial segmentation; a rela-
tively good detection of the anterior surface can be achieved,
but the posterior boundary is difficult to detect.

2.2.3 Segmentation with level set and shape prior

In this step, the coarse segmentation will be further refined by
the newly proposed level set segmentation model with shape
prior. Level set techniques are widely used in image segmenta-
tion. They represent the contour of interest as the zero level set
of a function valued everywhere on the image.22 This function
is evolved by minimizing an energy function to achieve the
segmentation.

How the energy function is constructed is important in deter-
mining the segmentation performance. In the new level set with
shape prior segmentation model, the energy functional consists
of a sum of three terms: the region’s fidelity term, the curve
length penalty term, and the shape prior term. More specifically,
the energy function is

EðϕÞ ¼ λ1E1ðϕÞ þ λ2E2ðϕÞ þ λ3E3ðϕÞ; (1)

where E1ðϕÞ represents the region fidelity term, E2ðϕÞ is the
curve length penalty term, E3ðϕÞ is the shape prior, and λi
are coefficients that determine the relative strength of each com-
ponent. In particular, when λ3 is 0, the equation reduces to the
conventional Chan-Vese (CV) model,19 whose performance is
evaluated in the next section.

For the region fidelity term E1ðϕÞ in Eq. (1), an intensity-
based model proposed by Chan and Vese19 has been used.
The goal of the function is to split the image into two approx-
imately homogenous regions. The region term has the form

E1ðϕÞ ¼
Z
Ω
½Iðx; zÞ − u�2HðϕÞ

þ ½Iðx; zÞ − v�2½1 −HðϕÞ�dxdz; (2)

where Iðx; zÞ is the image intensity at the pixel ðx; zÞ, u is the
mean intensity inside the curve, v is the mean intensity outside
of the curve, Ω is the space representing the image, and HðϕÞ is
the Heaviside function. The mean intensities are updated in
every iteration of the model.

The curve length term, which ensures the boundary curves
are smooth, favors shorter curves. A commonly used form
was adopted and has the form

E2ðϕÞ ¼
Z
Ω
δðϕÞj∇ϕjdxdz; (3)

where δðϕÞ is the regularized delta function corresponding to
the gradient of Heaviside function. The shape prior term is
responsible for ensuring the contour found is as close as possible
to the shape prior of the cornea to be segmented. In this new
model, the shape term that was incorporated into the energy
function can be expressed as

E3ðϕÞ ¼
Z
Ω
ðϕ − ϕ0Þ2dxdz; (4)

where ϕ is the level set function of the image, and ϕ0 is the
signed distance function representing the shape prior, which
will be discussed below.

The location of the anterior boundary detected during the
initial estimate is used to calculate the shape of the front eye.
This is done by assuming the posterior boundary has a fixed
relationship to the anterior boundary. First, an ellipse is fitted
to the anterior boundary using a least squares fitting method,23

and a signed distance function of the ellipse is calculated. Next,
the central corneal thickness is calculated by classifying peaks in
image intensity; better image quality at the center of the image
means the first large peak can be assumed to be the anterior
boundary, and the last peak can be assumed to be the posterior
boundary. This method has been used elsewhere for central cor-
neal thickness measurements.24 Once the thickness is known, an
estimate of the position of the posterior boundary can be made.
The signed distance function is altered using a quadratic expres-
sion that shifts the zero point down:

ϕlowerðx; zÞ ¼ ϕupperðx; zÞ − ϕupperðxt; ztÞ − c1ðx − xtÞ2
− c2ðx − xtÞ; (5)

where ϕ0 is the altered function, ϕupper is the initial function
based on the top surface only, ðxt; ztÞ is the point on the
lower boundary calculated as discussed above, and ci are con-
stants governing the strength of quadratic terms. The quadratic
terms are added to account for the fact that the two surfaces of
the cornea are not parallel; the posterior boundary has a greater
curvature than the anterior boundary.

The product of the distance functions for the lower and
upper boundaries is used to give ϕ0ðx; zÞ the shape prior;
that is,

ϕ0ðx; zÞ ¼ ϕlowerðx; zÞϕupperðx; zÞ; (6)

where ϕ0ðx; zÞ is the shape prior, while ϕlowerðx; zÞ
and ϕupperðx; zÞ are the signed distance functions corresponding
to the anterior and posterior boundaries, respectively. The
motivation of using ϕ0ðx; zÞ is that it is a level set function
representing a shape similar to the cornea. Taking the product
of two signed distance functions ensures that ϕ0ðx; zÞ has neg-
ative values between the boundaries and positive values every-
where else. On the boundaries, it has a value of 0. This
formulation used in Eq. (3) attempts to force the level set to
be sought as close as possible to the shape prior during the
iterations.

2.2.4 Minimizing the energy function

The contour is evolved toward the optimal location by minimiz-
ing the energy function described above. The Euler-Lagrange

Journal of Biomedical Optics 056003-3 May 2013 • Vol. 18(5)

Williams et al.: Automatic segmentation of anterior segment optical coherence tomography images



equation corresponding to the Eq. (1) was calculated. A gradient
descent method was then used to solve this iteratively using the
equation

∂ϕ
∂t

¼ −λ1δðϕÞ½ðI − uÞ2 − ðI − vÞ2�

þ λ2∇:
�

∇ϕ
j∇ϕj

�
δðϕÞ − 2λ3ðϕ − ϕ0Þ; (7)

where t is an artificial time to represent the change to the level
set function for each iteration. In order to speed up the analysis
program, the shape constraint was updated every 20 iterations.
The initial estimate described in the previous subsection was
used to initialize ϕ.

The weighting of the different terms was determined empir-
ically. The values used were λ1 ¼ 1, λ2 ¼ 0.2, and λ3 ¼ 0.8.
The weighting of the terms is important, since it determines
how much each particular term contributes to the overall
energy function. Previous studies using level set functions
have reported that changing the strength of the terms relative
to the iterations produced better results.16,17 However, the best
results using this model were achieved when keeping the val-
ues fixed.

2.2.5 Shape term with gradient (CVWSe)

In the above model, shape information is used to improve
segmentation in areas where the image information alone is
not enough. In an area with good image intensity, reducing the
dependence on the shape may lead to improved results. To
achieve this, we added to the shape term the gradient term

E 0
3ðϕÞ ¼

Z
Ω
gðϕ − ϕ0Þ2dxdz; (8)

where g is related to the image gradient and defined as

g ¼ 1

1þ κj∇ðG ⊗ IÞj ; (9)

where κ is a constant, ðG ⊗ IÞ is the convolution of the image
with a Gaussian kernel to smooth the edges, and ∇ is the stan-
dard Del operator that calculates the gradient of the image.
When the gradient of the image is large, this decreases g and
results in the shape function having less effect on segmentation.

2.3 Evaluation

For the purpose of evaluation, the performance of four methods
was compared. These were two variations of the newly proposed
technique—level set with shape prior (CVWS) and level set
with shape and gradient (CVWSe)—and two existing methods:
the Chan Vese (CV) model19 and a threshold-based method
described by Shen et al.12

Three similarity measures were used to evaluate the results
through comparison with expert manual segmentation: Dice’s
similarity coefficient (DSC), mean unsigned surface positioning
error, and the Hausdorff distance (HD).

DSC is an area similarity method defined by

DSC ¼ 2jX ∩ Yj
jXj þ jYj ; (10)

where X and Y are the two segmentations to be compared—in
this case, the manual and automated segmentation results. DSC
has a range between 0 and 1. The higher the DSC value, the
more similar the two segmented regions are.

The mean unsigned surface positioning errors (MSPE) for
anterior and posterior boundaries between the manual and
automatic segmentation were also calculated as the mean
value of the unsigned difference at each location between two
curves. This was done separately for the anterior and posterior
surfaces.

The mean 95% Hausdorff distance25 is a more stringent mea-
sure that compares the difference between the two boundaries.
The Hausdorff distance from set A to set B is defined as

HDðA; BÞ ¼ max
a∈A

½min
b∈B

ðja − bjÞ�; (11)

where A and B are sets of boundary points from the two images
to be compared. The 5% largest distances were removed, and
then the maximum of HDðA; BÞ and HDðB;AÞ was taken for
each image.26 Perfect alignment is represented by a Hausdorff
distance of 0.

3 Results
The four algorithms were applied to all 33 images. These
were all carried out using a PC with Intel Core i5-2320
CPU @3.00 GHz and 4.00 GB RAM. The mean�
standard deviation (std) time for the new algorithm was
102� 8 s. Figure 3 shows the results from different methods
overlaid on an example image, and Fig. 4 shows the segmented
images achieved from different methods side by side. The
mean� std of the DSC values is presented in Table 1. In par-
ticular, the mean DSC values for both of our methods are more
than 0.9; this demonstrates an excellent agreement with the
manual annotation. The mean value for both the CVWS and
CVWSE is higher than 0.9, implying excellent agreement
with the reference standard. An analysis of variance (ANOVA)
test showed there is no statistically significant difference
between our new models (CVWS and CVWSE; t-test, p ¼
0.849). However, CVWS and CVWSE provide significantly
higher DSC measures than the other two methods (CV and
thresholding; all p < 0.001).

The MSPEs between the manual and automatic segmentation
boundaries are shown in Table 1. There is no statistically sig-
nificant difference in anterior boundary (ANOVA, p ¼ 0.058).
For the posterior boundary, there is a statistically significant
difference among the four methods (ANOVA, p < 0.001).
Also, there is no significant difference between CVWS and
CVWSE (p ¼ 0.212); both methods perform significantly

Fig. 3 Illustration of agreement between the segmentations using the
two new methods (CVWS and CVWSe) and the manual annotation.
The red line is CVWS, the green line is CVWSe, and the blue line is
manual annotation. Colors are altered where lines overlap. Good agree-
ment among the different methods can be seen, especially on anterior
surface.
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better than the other two methods (p < 0.001). There is no
significant difference between the CVand threshold approaches
(p ¼ 0.136). In general, the difference is smaller for the anterior
boundary, which also confirms the observation that it is much
easier to detect than the posterior boundary, due to the relatively
poorer image quality at the posterior cornea. For the 95%
Hausdorff distance, there are statistically significant differences
among the four methods (p < 0.001). CVWSe has a larger
Hausdorff distance than CVWS, but the difference is not sig-
nificant (p ¼ 0.578); both CVWSe and CVWS have a signifi-
cantly smaller Hausdorff distance than the other two methods
(p < 0.001). There are no significant differences between the
CV and threshold approaches (p ¼ 0.201).

Our technique can be extended to segment the entire anterior
chamber; the iris and remaining sclera can be easily segmented
by the standard Chan and Vese model from the image where the
cornea has been removed. By combining the two segmentation

results together, the entire anterior chamber can be segmented.
This is essential for anterior chamber biometry. Figure 5 shows
an example of full segmentation, including the iris. From this
figure, it appears that the anterior surface of the iris is easier
to detect than the posterior surface, due to the nature of the
OCT image.

The ultimate goal of this work is to produce an automated
technique that can detect the cornea in normal and diseased
eyes. Figure 6 shows two segmentations from OCT images
of an eye with keratoconus. These preliminary results show
that this new segmentation technique can be used to segment
the cornea in diseased eyes. It is expected that further evaluation
will be performed when data from more diseased eyes are
available.

Fig. 4 Illustration of segmentation results using different techniques: (a) CVWS, (b) CVWSe, (c) CV, (d) threshold, (e) expert, and (f) original image.

Table 1 Comparison with manual segmentation using Dice’s similarity coefficient (DSC), mean unsigned surface positioning errors (MSPE), and 95%
Hausdorff distance. DSC is a coefficient; the other values are in pixels.

CVWS CVWSe CV Threshold

DSC 0.930� 0.022 0.918� 0.029 0.654� 0.049 0.767� 0.10

MSPE anterior boundary 1.56� 0.53 1.80� 1.17 3.21� 1.59 2.82� 5.33

MSPE posterior boundary 2.90� 1.31 4.06� 1.72 12.46� 2.37 11.05� 3.66

95% Hausdorff distance 6.06� 2.26 9.50� 4.33 20.07� 19.34 25.39� 8.89

Fig. 5 Example segmentation of full anterior segment, including the iris. Fig. 6 Two segmented images of an eye with keratoconus.
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4 Discussion and Conclusion
A fully automatic technique has been developed that can detect
both the anterior and posterior surfaces of the anterior segment
in AS-OCT images. The algorithm used a shape prior to allow
difficult-to-segment regions to be segmented. The technique has
been demonstrated to be capable of segmenting images, includ-
ing regions with a low signal-to-noise ratio.

The newly developed method performed significantly better
than previously described methods, and the results showed a
high level of agreement with expert manual segmentation.
This is the first method that has demonstrated segmentation
of both anterior and posterior surfaces over the entire length
of the cornea.

One of the current limitations of the algorithm is that it has
not been optimized for speed. This can be done in the future by
implementation in C++ or using splines to represent the level
set. The work has also focused on time domain (TD)-OCT
images. Although the new spectral domain (SD) OCT systems
provide much faster acquisition and better resolution than TD-
OCT,27 there is currently no commercially available SD-OCT
system that can image the entire anterior segment, including
the limbus and anterior sclera. Given the advantages of SD-
OCT, it is believed that the technique developed in this paper
as a generic segmentation tool will be easily transferable to
SD-OCT images when SD-OCT becomes mature in imaging
the entire anterior segment.

One important factor that can affect segmentation perfor-
mance is the image quality, including the signal-to-noise ratio
(SNR). In general, the higher SNR an image has, the easier seg-
mentation will be. For this particular problem, images contain
speckle noise inherent in the OCT system and poor SNR in
some of the cornea structures. This means simple thresholding
and region-based models will not work; this was demonstrated
in the comparative study. This study uses shape to overcome this
problem. It is important to note that technical advances such as
SD-OCT will lead to better-quality images. This could make
segmentation easier, but this algorithm will still work easily.
For SD-OCT image analysis, computational time for 3D pro-
cessing will become important.

Accurate detection of the anterior and posterior surfaces is
essential in research and clinical practice. For example, this
information could be used as an input when creating patient-
specific models of the human eye. Incorrect information or
inaccurate segmentation would produce errors in the model.
Patient-specific models would allow for improved diagnosis
of corneal pathologies such as keratoconus and improved mon-
itoring of the cornea after surgery. Other measurements of the
cornea, such as corneal power measurements, require very pre-
cise segmentation. This could be another important application
of the method developed here.

Some preliminary work presented here has shown that seg-
mentation of patients with keratoconus is possible in principle
using this technique. Future evaluation work will include inves-
tigating how well the algorithm can cope with examination of
images of eyes with a variety of conditions. We also wish to
extend this technique to the formation of 3D maps. This should
be relatively straightforward, since the level set formulation we
used extends easily to higher dimensions. In the current formu-
lation, an intensity-based region term is used, and we plan to
investigate the usefulness of texture models.28,29

In conclusion, this work has shown that using a shape prior
term can significantly improve segmentation results for the fully

automatic segmentation of the cornea in AS-OCT images, a
challenging and previously unsolved problem. The algorithm
developed here is the first fully automatic method to detect
two boundaries across the entire anterior segment with superior
performance over the previous methods and excellent agreement
with expert manual annotation. It may become a valuable tool
for providing accurate and reliable measurements of the anterior
segment geometry for clinical and nonclinical applications.
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