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Abstract. The goal of this paper was to develop methods and protocols for water productivity 
mapping (WPM) using remote sensing data at multiple resolutions and scales in conjunction 
with field-plot data. The methods and protocols involved three broad categories: (a) Crop 
Productivity Mapping (CPM) (kg/m2); (b) Water Use (evapotranspiration) Mapping (WUM) 
(m3/m2); and (c) Water Productivity Mapping (WPM) (kg/m3). First, the CPMs were 
determined using remote sensing by: (i) Mapping crop types; (ii) modeling crop yield; and 
(iii) extrapolating models to larger areas. Second, WUM were derived using the Simplified 
Surface Energy Balance (SSEB) model. Finally, WPMs were produced by dividing CPMs and 
WUMs. The paper used data from Quickbird 2.44m, Indian Remote Sensing (IRS) 
Resoursesat-1 23.5m, Landsat-7 30m, and Moderate Resolution Imaging Spectroradiometer 
(MODIS) 250m and 500m, to demonstrate the methods for mapping water productivity (WP). 
In terms of physical water productivity (kilogram of yield produced per unit of water 
delivered), wheat crop had highest  water productivity of 0.60 kg/m3 (WP), followed by rice 
with 0.5 kg/m3, and cotton with 0.42 kg/m3. In terms of economic value (dollar per unit of 
water delivered), cotton ranked highest at $ 0.5/m3 followed by wheat with $ 0.33/m3 and 
rice at $ 0.10/m3. The study successfully delineated the areas of low and high WP. An 
overwhelming proportion (50+%) of the irrigated areas were under low WP for all crops with 
only about 10% area in high WP.  

Keywords: water productivity mapping, biophysical relationship, vegetation indices, 
evapotranspiration, remote sensing. 

1 INTRODUCTION  
Considerable increases in land and water productivity have resulted from agricultural 
intensification using “green revolution” technologies of short season varieties, artificial 
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nitrogen fertilizer, and irrigation water. The world’s population continues to grow rapidly, at a 
time when water resources are heavily utilized and there is a strong emerging likelihood that 
water resources will decrease and become more precarious under the impacts of global 
climate change. Consequently, a new challenge is to raise total agricultural production using 
no more water than at present, and preferably less.  Fresh water withdrawals for agriculture 
account for nearly 80% of the total water withdrawal from surface water and groundwater [1]. 
However, competition for water is now arising across sectors as well as within agriculture, 
including: (a) increased demands of urbanization, industries, (b) growing more food for 
increasing population (globally about 100 million additional population every year), (c) needs 
of environmental flows and recreation, (d) growing needs of biofuel crops, (e) increased 
calorie intake per capita in emerging economies, and (f) change in food habits of the people 
through increased luxury consumption of fruits and vegetables in more mature economies. 
The spatial distribution of water in the world is highly uneven, so that water scarcity is more 
acute in some regions than others, notably the arid and semi arid tropics. All these factors call 
for development of new technologies for better water productivity (more crop per drop). 
Increasing water productivity requires a different approach to agricultural management, to 
optimize the use of inputs and management whilst at the same time understanding that land 
resources are also limited, which means that a simple strategy of increasing land area with 
lower yield but higher water productivity is not a solution in most cases.  

The first step in improving performance is to understand the levels, distribution and 
patterns of water productivity. This will help us to pin-point areas of high and low WP and 
analyze the reasons for variability. This in turn, allows diagnosis of the reasons for low water 
productivity which can then be tackled through research and improved land and water 
management. Commonly water productivity is assessed at plot or field level, or determined 
from secondary crop statistics and water supply or water use data, but actual water use 
(evapotranspiration) may be unknown [2]. Remote sensing science offers the possibility of 
both greater coverage, and greater spatial detail in mapping water productivity, through the 
use of emerging techniques to map and model crop growth and water use, through synoptic 
coverage over large areas at regular time intervals.  Remote sensing data is now available in 
multiple spatial, radiometric and spatial resolutions. . 

The main goal of this research was to develop methods for WPM using remote sensing 
data at various spectral, spatial, and radiometric resolutions. The focus was on irrigated areas. 
Specific objectives include: (a) developing methods and protocols for WPMs using remote 
sensing data of various resolutions, (b) extrapolating (up-scaling) using the best models to 
understand WP variations over space and time; and (c) studying accuracies and errors 
involved in WP across scales (or resolutions), radiometry, and bandwidth. 
  
 
2 METHODS 
 
2.1 Definition of water productivity 
 
Water productivity (WP) is defined as the kilogram of yield produced/m3 of water depleted by 
the crop or, alternatively, as value in dollar of yield produced/m3 of water depleted [3].  
 

/pixel)mor  /m(m ETor  useWater 
($)  valueeconomicor  kg/pixel)or  (kg/m Yield )(kg/m WP 323

actual

2
3 =

   (1) 
 Where, ETactual (m3) = ETfraction (dimensionless) * ETpotential (m3)  
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2.2 Study area 
The study area was selected after discussions with local experts in the Syr Darya river basin in 
Central Asia (Fig. 1). The area called Galaba was selected because it represents the irrigated 
areas of the entire Syr Darya river basin well, in terms of the following characteristics. 
Cotton, wheat and rice are the main crops grown in the basin. Cotton accounts for nearly 55 
percent of sown area and is the dominant crop. Wheat was the second-most favored crop, 
covering nearly 30 percent of the area, but it cannot be grown at the same time as cotton 
because cotton planting has to be completed before wheat can be harvested. As a result many 
units adopt a two-year rotation system, planting wheat after cotton and leaving the field 
fallow, planting maize or another short-growing crop after the wheat. Small patches of paddy 
rice and alfalfa are irregularly distributed across the basin and gardens form a an important 
part of every household. The rainfall in Galaba varies between 100 and 200 mm per year. The 
average temperature is 0-4° Celsius in January and 28-32° Celsius in July. 
 The irrigation system in this region is one of the most complex man-made water systems 
in the world [4]. Virtually all the available surface water has been diverted to irrigation and so 
there is little scope for further expansion of irrigated area to meet the increasing food demand 
in the region. Increased water productivity (WP) is the preferred option to meet future food 
demand in this region. The Galaba study area was covered by a Quickbird image with an area 
of 6575 hectares (ha).  
 
 
 

 
 
Fig. 1.  Location of study area: a representative site called Galaba in the Syr Darya river basin. 
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Table 1. Characteristics of remote sensing data sets used in this study. 
Resolution Sensor  

Spatial  
(m) 

Spectral 
(m) 

Radiometric 
(bit) 

Band range 
 
(µm) 

Irradiance 
(W m-2sr-1 
µm-1) 

Revisit  
 
(days) 

Acquisition dates 

1.Quickbird 0.61 
(Panchromatic); 
2.44 
(Multispectral) 

4 11 0.45-0.52 
0.52-0.60 
0.63-0.69 
0.76-0.8  

1381.79 
1924.59 
1843.08 
1574.77 

5 July 26, 2006,  August 3, 2006 

2. IRS-P6-
LISS3 

23.5 4 10 0.52-0.59 
0.62-0.68 
0.77-0.86 
1.55-1.7  

1857.7 
1082.4 
1556.4 
1082.4 

24 2006 (June 5, June 15, June 20, 
July 9, July 14, July 18, August 
26, September 24, October 27, 
November 6), 2007(April 13, 
May 26,June 19, July 18) 

3. Landsat 
ETM+ 

14.25 
(Panchromatic); 
28 
(Multispectral); 
and 60  
(Thermal) 

8 8 0.45-0.515 
0.525-0.605 
0.63-0.690 
0.75-0.90 
1.55-1.75 
10.40-12.5 
2.09-2.35 

0.483 
0.565 
0.660 
0.825 
1.650 
11.45 
2.220 

16 2006 (April 24, May 10, June 
11, July 29, August 14, October 
1) 

4. MODIS 
(MOD09Q1) 

250 2 12 0.62-0.67 
0.84-0.876 

1528.2 
974.3 

1 2006-2007, Every 8 days 
Maximum Value Composite 
(MVC) 

5. MODIS 
(MOD09A1) 

500 36/7* 12 0.62-0.67 
0.84-0.876 
0.459-0.479 
0.545-0.565 
1.23-1.25 
1.63-1.65 
2.11-2.16 

1528.2 
974.3 
2053 
1719.8 
447.4 
227.4 
86.7 

1 2006-2007, Every 8 days MVC 

* Modis 500m (Mod09A1) has 36 bands, but we considered only the first 7 
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2.3 Acquisition of images at various resolutions or scales 
Imagery was acquired at 4 distinct spectral, spatial, radiometric, and temporal resolutions 
(Table 1). The data consisted of very fine resolution 0.61-2.44 meter resolution Quickbird, 
23.5 m IRS Satellite, 250 m and 500 m MODIS imagery. 

2.4 Image normalization 
The data acquired from different sensors and even the data acquired from same sensor on 
different dates need to be normalized before they can be compared. Hence, digital numbers 
(DNs) were converted to absolute units of radiance (W m-2 sr-1 µm-1), then to apparent at-
satellite reflectance (%), and finally to surface reflectance (%) after atmospheric correction 
[5-6].  

2.4.1 Quickbird DN to Reflectance 
The Radiometric resolution of Quickbird digital number (DN) data is recorded in 11-bit and 
stored either in 16-bits or down scaled to 8-bits. There were two steps to calculate radiance 
from DN values. First is to calculate band integrated radiance expressed as: 
 

jiBandPixel DNorabsCalFactL ∗= λ,
 

 
Where: LPixel, Band is band integrated radiance, absCalFactor is absolute calibration factor as is 
0.064 for Pan band, 0.016 for blue, 0.014 for green, 0.013 for red and 0.015 for NIR. DNij is 
digital number of pixel in row i and column j. 

The band average radiance can be calculated based on band integrated radiance using 
equation: 

Band

BandPixelL
L

BandPixel λλ ∆
= ,

,
       (2) 

Where:  

BandPixel
L

,λ is band averaged radiance, Bandλ∆ is effective bandwidth as shown in Table 2. 

Table 2. Quickbird effective bandwidths and band-averaged solar spectral irradiance. 

Spectral Bands Effective bandwidth 
(∆λBand) 

 Spectral Irradiance 
(ESUNλ)  

  [µm] [W-m-2-µm-1] 
Panchromatic 0.398 1381.79 
Blue 0.068 1924.59 
Green 0.099 1843.08 
Red 0.071 1574.77 
NIR 0.114 1113.71 

2.4.2 IRS P6 (Resourcesat-1) DN data to Reflectance 
IRS P6 (Resoursesat-1) Linear Imaging Self Scanning (LISS-3) sensor spectral radiance was 
computed using the following equation: 
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255
GainDN

L ij ×=λ  

      (3)
 

Where, Gain is radiance gain given in Table 3. The specific Gain setting was given in 
individual image header file. 

Table 3. Radiance gain values for IRS-P6 image data. 

Gain  Band2 Band3  Band4  Band5  
Setting     T<24º C T>24º C  
G1  26.609 27.32  31.018  6.903  6.944  
G2  18.471 18.179  20.695  3.397  3.406  
G3  12.064 15.131  15.757  1.644  1.636  
G4  8.988 10.304  10.876  0.767  0.752  

2.4.3 Landsat-7 ETM+ DN values to radiance and temperature 
The ETM+ 8-bit DNs were converted to radiances using the equation [7]: 

Lλ = gain * DN + offset 
This can also be expressed as: 

 

( ) minmin
minmax

minmax LQCalDN
QCalQCal
LLL +−×

−
−

=λ

   (4) 
Where, QCalmin = 1, QCalmax = 225, Lmin and Lmax are the spectral radiances for each band at 
DN 1 and 255 (i.e. QCalmin, QCalmax), respectively. The Lmin and Lmax values (W/m2 Sr µm) 
are found in image header file. 

ETM+ Band 6 imagery can also be converted from spectral radiance (as described above) 
to a more physically useful variable. This is the effective at-satellite temperatures of the 
viewed Earth-atmosphere system under an assumption of unity emissivity and using pre-
launch calibration constants. The conversion formula is: 

1+)Ln(K1/L
2
λ

KT =
     (5)

 

Where, T is effective at-sensor temperature in degree Kelvin, K1 and K2 are calibration 
constants, K1=666.09 Wm-2sr-1µm-1; K2=1282.71 degree Kelvin. 

A reduction in between-scene variability can be achieved through normalization for solar 
irradiance by converting spectral radiance, as calculated above, to planetary reflectance or 
albedo. This combined surface and atmospheric reflectance of the Earth is computed with the 
following formula [7]: 

s
p CosESUN

dL
θ

πρ
λ

λ

×
=

2

    (6)
 

Where ρp is the at-satellite exo-atmospheric reflectance (or top of the atmosphere (TOA) 
reflectance or apparent reflectance in %, Lλ is the radiance (W m-2 sr-1 µm-1), d is the earth sun 
distance in astronomic units (dimensionless) at the acquisition date [7], ESUNλ is the mean 
solar exo-atmospheric irradiance (W m-2 sr-1 µm-1) or solar flux, and θs is solar zenith angle in 
degrees (i.e., 90 degrees minus the sun elevation or sun angle when the scene is recorded as 
given in the image header file). 

Journal of Applied Remote Sensing, Vol. 2, 023544 (2008)                                                                                                                                    Page 6



2.4.4 MODIS surface reflectance  
MODIS is a key sensor on the Terra (EOS AM-1) satellite. The MODIS Land Science Team 
provides a suite of standard MODIS data products to users, including the 8-day composite 
surface reflectance product (MOD09A1). There are forty-six 8-day composites in a year, 
starting with Julian date of January 1 each year. The MOD09A1 data are organized in tile 
fashion and freely available to the public from the United States Geological Survey EROS 
Data Center (http://edc.usgs.gov). The MODIS data has gone through a rigorous atmospheric 
correction scheme based on the 6S radiative transfer code for normalizing molecular 
scattering, gaseous absorption, and aerosols that affect the top of the atmosphere (TOA) 
signal [8]. Aerosol effects are known to remain uncorrected even after long compositing 
periods (e.g., a month) [8], so such effects in 8-day time intervals are significant. MODIS 
scans the entire Earth's surface every day, acquiring data in 36 spectral bands. Out of the 36 
spectral bands, the first 7 bands are used to study vegetation and land surfaces (Table 1). 

2.5 Field-plot data 
Field-plot data was acquired to correspond with the satellite sensor overpass dates (Table 1 
and section 3.3). In all, 911 field-plot data points were gathered and the data consisted of 
parameters such as wet and dry biomass (kg/m2), crop yield (kg/m2), hyperspectral data from 
field-based Spectroradiometer, irrigation water applied (m3), and climate data (Table 4). The 
number of samples and the distribution of the field-plot data points for various crops are also 
shown in Table 4. The spatial distribution of some of the field-plot data points are illustrated 
in Fig. 2. 

2.5.1 Field experimental sites 
Data from the test sites (fields) at different farms (Water User Association-WUA) were 
gathered for approximately every 15-days interval for the five crops: cotton, wheat, rice, and 
maize. A total of 911 sample points were chosen for four crops: cotton (580), wheat (175), 
maize (113), and rice paddy (43). Enough care was taken while selecting the locations of the 
field trials (replications) to represent field-field variability. Distribution of these points over a 
cropping season was illustrated for one farm at three distinct resolutions in Fig. 2. 

Biophysical parameters were collected throughout the crop growing season and includes 
Leaf Area Index (LAI) (Fig. 3a), biomass (Fig. 3b), spectral measurements (Fig. 4), and yield 
(Fig. 6a). The meteorological data includes temperature, relative humidity, vapor pressure, 
sunshine hours, wind speed, rainfall, and evapotranspiration (ET) from an ET gauge. The 
meteorological data were collected from the digital weather station installed in the field, as 
well from two government managed weather stations. Table 4 gives an overview of the data 
collected.   

The time-series average Normalized Difference Vegetation Index (NDVI), dry biomass, 
and LAI for all the fields and points are plotted together indicates a closer comparable 
seasonal pattern (Fig. 3). The initial emergence of the plant after 45 days (i.e. till the day 173) 
indicates a slow growth and low canopy cover. The NDVI and LAI curves steepen from day 
173 and reach a peak by day 214, representing the maximum vegetative growth. LAI tends to 
fall earlier than NDVI (Fig. 3a) and NDVI continues to increase at the peak when LAI 
saturates and /or leaf senescence begins while NDVI also starts falling soon after the 
senescence and leaf falling starts at lower canopy.   The study shows strong relationship 
between NDVI and LAI which is supported by previous studies [9-12). Dry biomass peaks 
about 40 days after LAI (Fig. 3b). The seasonal spectrums of the crops were also observed 
using Spectroradiometer. Initial observations indicate a strong relationship between the crop 
growth stage (moisture, biomass and vigor) and absorption around 970 nm (Fig. 4). 
 

Journal of Applied Remote Sensing, Vol. 2, 023544 (2008)                                                                                                                                    Page 7

http://edc.usgs.gov


Table 4. Field-plot data collected from field sites. The total sample points collected are 911, of which 
the crop wise distributions consist of cotton (580), wheat (175), Maize (113) and rice (43).  

Variable 
 

Temporal 
basis 
(days) 

Spatial 
scale 

Mean 
Sample 
size  

Method 

Wet biomass (kg/m2) 15 days  1 m2 224 Crop cutting  
Dry biomass (kg/m2) 15 days 1 m2 224 Crop cutting  
Plant Height (mm) 15 days 1 m2 224 Ruler 
Yield (kg/m2) One time 1 m2 30 Crop cutting  
Field NDVI (ratio) 15 days 1 m2 220 NDVI Camera 
LAI (m2/m2) 15 days 1 m2 224 LAI Meter  
Canopy reflectance 
(%) 

15 days Point 224 ASD Spectroradiometer 

Irrigation Each 
application 

Field 4 Weirs /V-notches 

Climate data (Temp., 
RH., Wind, Rain, 
Radiation) 

30 min km2 1 Meteorological station and 
digital weather stations 

 
 

 
 
Fig. 2. Spatial distribution of the field-plot data points in the study area. The spatial 
distribution of the field-plot data points were shown for: (a) Quickbird, (b) IRS, and (c) 
MODIS 250-m. 
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Fig. 3. Seasonal relationship between LAI and NDVI (a) and LAI and Dry biomass (b) plotted for the 
average values derived from all field points collected during 11 visits roughly at 15 days interval.  
 
 

 
Fig. 4. Seasonal vegetation spectra of a cotton field measured roughly at 15 day intervals and some 
photographs of the corresponding biomass growth.  

 

3 WATER PRODUCTIVITY MAPPING  
The three major steps involved in the mapping process were in producing:  
 

a) Crop productivity maps (CPMs; kg/m2 or kg/pixel), which involves; 
i. Crop type mapping; 

ii. Spectro-biophysical/yield modeling; and 
iii. Extrapolating the best spectro-biophysical/yield modeling to larger areas 

using remotely sensed data.  
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b) Water use (actual ET) maps (WUMs; m3/m2 or m3/pixel) 
iv. Deriving water use maps (or actual ET) through simplified surface energy 

balance (SSEB) model; and  
c) Water productivity maps (WPMs; kg/m3) 

v. Producing water productivity maps by dividing CPMs with WUMs. 

3.1 Crop productivity mapping (kg/m2 or kg/pixel) 
The crop productivity maps (CPMs) were produced in three steps: 

3.1.1 Mapping crop types using remote sensing 
It is important to produce water productivity maps (WPMs) that are crop specific. As every 
crop type has different water needs to produce a kilogram of marketable produce, it is 
important to delineate and map crop types first. This allows the development of crop specific 
spectro-biophysical models (section 4.2), which in turn allow assessment of inter- and intra-
field variability in land and water productivity. 

Crop types were mapped using time-series IRS-P6 data and the single date Quickbird 
data. Unsupervised classification of the IRS data, and class identification and labeling process 
[13,14], were used to delineate and map crop types. IRS-P6 and Quickbird offers detailed 
within-field variability and clearly demarcates the field boundaries of a crop. In order to 
define clear field boundaries at other resolutions, the crop and field boundaries were digitized 
manually from the Quickbird imagery. Due to their distinct cropping calendars, all four crops 
were easily distinguishable.  

3.1.2 Spectro-biophysical/yield models 
The crop biophysical and yield variables were related to spectral measurements from space.  
The most commonly used crop variables establishing such relations were the leaf area index 
(LAI), Wet Biomass (WBM), Dry Biomass (DBM), and grain Yield (YLD). Variation in the 
reflectance was normally associated with chlorophyll and water contents of the plants [15-
16]. Satellite-based radiative indices were good indicator of LAI, which is one of the 
important parameters in the models. Some were also correlated with photosynthetically active 
radiation (PAR), which is correlated to the CO2 assimilation [17]. LAI, biomass, and, to some 
extent, plant height were excellent indicators of the plant growth, condition, and yield [18]. 
The spectral vegetation indices derived using field-plot data and space-borne sensors were 
effectively used for rapid assessment and characterization of crop biophysical variables such 
as biomass, LAI, plant height, and yield [11,19-22]. A Production Efficiency Model (PEM) 
that estimates crop growth from intercepted photosynthetically active radiation (IPAR) and 
light use efficiency (ε) was introduced [23,24]. Subsequent studies further improved the 
model by making ‘ε’ a function of temperature, water, and nutrient stress, such as the 
Carnegie-Ames-Stanford-Approach (CASA) [25-26]. The methodology has been widely used 
to estimate terrestrial ecosystem net primary production (NPP), global carbon cycle [25-27), 
and crop production at regional scale [28-30].  

During this research, extensive measurements of LAI, biomass and yield were collected 
during routine field visit at every ~15 days interval (Table 4). These measurements were 
related to wavebands and indices derived from the satellite sensor data (Table 1). In the past, 
remote sensing has proved very useful in estimating area and production of cereals and other 
food crops [6,12,31] and the relationships have improved with the use of modern high-
spectral and high-spatial sensors [5,12]. For example, the NDVI was found to correlate with 
net primary production, biomass, vegetation fraction, and yield [32-37]. Although the results 
of correlation analysis are purely empirical, they are in agreement with numerous theoretical, 
experimental, and statistical studies [39].  In this research, spectro-biophysical models were 
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run using statistical analysis system (SAS) software package. Biophysical and yield data 
(Table 2) gathered during routine field visits were related to spectral data obtained from 
various sensors (Table 1). The type of models included: (a) linear, (b) multiple linear, (c) non-
linear power, and (d) non-linear exponential.   

3.1.3 Extrapolation of models to spatial domain 
One of the biggest strengths of remote sensing lies in the observation of the entire landscape 
rather than just few points [40]. With good understanding of the relationships between crop 
variables and spectral reflectivity and/or indices it is possible to extrapolate the understanding 
gained through models to larger areas by utilizing the best models of specific crops and 
specific variables (developed in section 4.1.2) to specific crops (delineated in section 4.1.1).  

Extrapolation, for example, will involve taking the best cotton yield predictor model 
developed in section 4.1.2 based on point data and applying the same to all cotton growing 
areas that has been delineated using the remotely sensed data. 

3.2 Mapping Evapotranspiration  
Water used by crops was determined by computing actual evapotranspiration (ETactual) from 
remote sensing and non-remote sensing approaches. The ET derived from different surfaces 
varies with different methods [41,42,43], which leads to inconsistency and uncertainty in ET 
estimation. The Food and Agriculture Organization (FAO) Penman–Monteith equation—with 
the parameterization as elaborated by Allen et al. (44) has become the de facto standard 
method to estimate reference ET (45) for point-level ET estimation using climate data 
collected at field scale. The point based ET measurements from the field and weather stations 
data have been integrated with remote sensing images to spatially extrapolate from pixel level 
to basin scale [46;47].  

However, the water used by crops is best determined using surface energy balance 
algorithms that are primarily dependant on remotely sensed data. The potential of remote 
sensing in estimating the ET [48-51] is well established using Surface Energy Balance 
Algorithm (SEBAL) [52-53], the modified SEBAL, and mapping ET with high resolution and 
internalized calibration (METRIC) [54]. Gabriel and Verdin [55-56] and Gabriel et al [57] 
recommended a Simplified Surface Energy Balance (SSEB) model using remote sensing. The 
SSEB approach was adopted in this study to facilitate rapid computation of water use over 
large areas in a rapid time-frame. The SSEB model is defined as follows: 
 

ETactual (m3/m2 or m3/pixel) = ETfraction* ETreference     (7) 

 
Water used by crops, the ET (expressed in m3/ha or mm/m2) was determined from remote 

sensing by calculating the ETactual based on the following steps: 
ETfraction from Landsat7 ETM+ thermal data. The principal assumption in SSEB model 

that the latent heat flux (ETactual) varies linearly between the “hot” and “cold” pixels. The 
fraction of ET was estimated from the land surface temperature (LST) of “hot” and “cold” 
pixels using following formula: 

 
ETfraction = (Thot - T) / (Thot - Tcold) 
 

Where:  ETfraction was the fraction of ET; T is the LST of any pixel; Thot and Tcold are 
the LST of “hot” and “cold” pixels respectively, selected inside the study area. The ETreference 
was calculated from weather station data using Penman-Monteith equation [44]. The final ET 
value for each pixel was determined by multiplying ETfraction with ETreference, which 
finally gives ETactual. 
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3.3 Water productivity mapping  

3.3.1 Producing water productivity maps (WPMs) 
The WPMs were produced by dividing the crop productivity map (CPMs; section 4.1) with 
water use map (WUMs; section 4.2). The WPMs were defined as: 
 

/pixel)mor  /m(m useWater 
($)  valueeconomicor  kg/pixel)or  (kg/m Yield )(kg/m Mapsty ProductiviWater 323

2
3 =

 (8) 

4 RESULTS AND DISCUSSIONS 

4.1 Crop productivity mapping  

4.1.1 Crop type maps at various resolutions 
The results of the attempts to map the crop type maps using remotely sensed data at 4 spatial 
resolutions, Quickbird (2.4m), IRS P6 (23.5m), and MODIS 250m\500m MOD09Q1, are 
shown in Fig. 5. It was possible to delineate crop types using the Quickbird (Fig. 5a) and IRS 
(Fig. 5b) data. At 250m resolution (MODIS) it is only possible to establish the dominant crop 
in the mix (Fig. 5c). Using the MODIS 500m data, only irrigated areas were mapped, without 
separating any crop types or crop dominance (Fig. 5d). The ability of satellite sensor data to 
map crop types and/or their dominance at 4 spatial resolutions is summarized in Table 5.  

Table 5. The ability to map irrigated crop types and their dominance using satellite sensor data at 4 
spatial resolutions.  

Aggregated LULC 
types  

Quickbird 
(2.4m)  

IRS-P6 
(23.5m)  

MODIS 
(250m) 

MODIS 
(500m)  

Cotton Yes Yes zero zero 
Wheat Yes Yes zero zero 
Rice paddy Yes Yes zero zero 
Cotton dominant Yes Yes Yes zero 
Rice dominant Yes Yes Yes zero 

 

4.1.2 Modeling crop growth and yield (Spectro-biophysical\yield models) 
The spectro-biophysical/yield models were developed using Quickbird and IRS-P6 data for 
cotton, wheat, and maize (Table 6). The crop variables modeled were wet and dry biomass 
(kg/m2), LAI (m2/m2), and grain yield (ton/ha). The best models to determine variables such 
as biomass, LAI, and yield were highly significant and explained around 80 percent 
variability for IRS-P6 and 70 percent variability for Quickbird data. Due to the non 
availability of time-series images, Quickbird models were only used for biomass. Most of the 
variables were modeled with IRS-P6 data due to good temporal coverage for entire growing 
season. The best IRS-based models for cotton were the wet biomass, dry biomass, LAI, and 
yield with 72-83 percent variability (Table 6). The best fit models for the wheat and maize are 
the LAI, wet biomass, and yield (Table 6). Spectro-biophysical/yield models could not be 
developed from MODIS data due to its inability to separate crop types. 
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Fig. 5. Crop types mapped at various resolutions. Crop types mapped using: (a) Quickbird 2.4m, (b) IRS 
P6 (Resoursesat1, Liss3) 23.5m, (c) MODIS 250m, and (d) MODIS 500m. The classification schemes 
clearly indicate that the number of classes reduced with increasing pixel size due to aggregation. 

Table 6. The best spectro-biophysical/yield models using Quickbird 2.44m and IRS 23.5m data. 

Sensor Crop Variable  Equation r2 
IRS Cotton Wet biomass 

Dry biomass 
LAI  
Yield 

y=71.18*(x)3.96 
y=51.59*(x)4.86 

y=10.37*(x)1.916 

y=5.156*x-0.964 

0.83 
0.82 
0.73 
0.75 

IRS Wheat LAI  
Yield 

y=0.005*(x)2-0.509*(x)+7.175 
y=6.192*x-0.47 

0.80 
0.66 

IRS Maize Wet biomass y=34.664*(x)4.196 0.87 
Note; x = NDVI 

4.1.3 Extrapolation of models to spatial domain and deriving crop productivity maps 
(CPMs) 
The best models (Table 6) were used on the relevant images (see image list in Table 1) to 
extrapolate and derive crop characteristics such as grain yield, wet biomass, dry biomass, and 
LAI.  The result of extrapolation was shown for cotton yield (ton/ha) using IRS data (Fig. 7).  
The extrapolation was possible as a result of the good understanding we had through model 
development (Table 4) and delineation of crop types (section 4.1.1 and 5.1.1). The 
extrapolated areas (Fig. 7) show spatial variability within a crop derived for various crop 
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variables. These CPMs were one of the key parameter in understanding within and between-
field variability leading to finding appropriate site specific solutions. 
 

 
Fig. 6. The relationship between spectral and biophysical variables for the spaceborne satellite sensors 
data and field-plot data illustrated taking: (a) cotton yield versus IRS P6 NDVI and (b) cotton wet 
biomass versus Quickbird NDVI. 
 

 
Fig. 7. Crop productivity map (CPM).  CPM illustrated using a IRS P6 image by extrapolation of the 
best crop specific spectro-biophysical/yield models and by using crop type maps (Fig.5).  

4.2 Water use (actual ET) mapping (m3/m2 or m3/pixel) 
The water use by crops was determined by ETactual computations. The simplified surface 
energy balance (SSEB) model algorithm was used to determine ETactual. First, it required 
computation of evaporative fraction, which was then multiplied by ETreference to obtain the 
ETactual. 
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The evaporative fraction (ETfraction) was determined using the Landsat-7 ETM+ thermal 
imagery. ETreference was computed using FAO Penman-Monteith formula. The ETactual was then 
computed by multiplying ETfraction * ETreference  and was computed for every month. Monthly 
ETactual, were then cumulated, taking the cropping calendar into consideration. This lead to an 
accumulated ETactual, for the entire crop growing season (see an example for cotton crop in 
Fig. 8).   

4.2.1 Relationship between ETactual versus NDVI 
The NDVI showed strong relationship with ETactual

 derived from Landsat-7 ETM+ and 
climate data using SSEB model (Fig. 9). We have presented this relationship to show 
potential of vegetation indices in mapping ET. The approach requires more research for 
individual crops and by using larger sample size of data. 

The IRS P6 derived NDVI values of the cotton crop were correlated with ETfraction 
from ETM+ images. Platonov et al. [59] have reported similar agreement when compared 
Landsat-7 ETM+ NDVI values with Landsat-7 ETM+ derived ETfraction.  The daily water 
consumption by field crops were calculated by multiplying ETreference with ETfraction with 
an assumption that ETfraction derived for the day for which the image was acquired remains 
constant throughout the month for a given crop. Second, crop wise water use per pixel was 
determined on monthly basis leads to entire growing season. The results are finally presented 
in thousands m3/ha of water used for the entire study area. 
 

 
Fig. 8. Water use maps (WUMs). WUMs or ETactual of cotton crop for the entire crop growing season. 

4.3 Water productivity maps (WPMs) 
Finally, water productivity maps were produced for every crop by dividing the crop 
productivity maps (CPMs; section 5.1) with water use maps (WUMs; section 5.2).  The 
WPMs produced separately for each crop were put together and presented in Fig. 11. 

The water productivity (WP; kilogram of yield per m3 of water delivered or kg/m3 or 
economic value, $/m3) computed using remote sensing for three crops were presented in 
Table 7. From the results, wheat has the best physical WP, followed by rice, and cotton. 
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However, this pattern is reversed when considered in terms of economic value rather than 
yield by weight as numerator. Cotton then ranks first with an average market value of $ 
0.5/m3, followed by wheat, and rice of $ 0.3/m3, and 0.1/m3 respectively. The water 
productivity map for the cotton crop was produced with varying field variability (Fig. 10). An 
overwhelming proportion cotton fields were under low WP with only about 12% area in high 
WP. 

 
 
Fig. 9.  NDVI relationship with ETactual. IRS P6 derived cotton NDVI for the month of July, 2006 
compared with ETactual derived using SSEB model from the Landsat7 ETM+ for the July, 2006.  
 

 
Fig. 10. Water productivity map (WPMs) for 3 crops using IRS P6 data. Overwhelming proportion 
(50%+) of all 3 crops were under low WP, with only about 10% area in high WP. 

Journal of Applied Remote Sensing, Vol. 2, 023544 (2008)                                                                                                                                    Page 16



Table 7. Water productivity of the three selected crops determined using IRS P6 and field-plot data.  

Crop type Area 
(ha) 

Seasonal 
Crop 

ETactual 
(m3/ha) 

Grain 
Yield 

(kg/ha) 

Water 
Productivity 

based on 
ETactual (kg/m3) 

Water Productivity 
based on average 

market value in Asia 
($/m3) 

Cotton 3783 3050 1275 0.42 0.50 
Wheat 1571 3100 1850 0.60 0.33 
Rice paddy 313 6650 3320 0.50 0.10 

5 CONCLUSIONS 
This paper demonstrated methods and protocols required for producing water productivity 
maps using remote sensing data at various resolutions (or scale): (a) Quickbird 2.44 m, (b) 
IRS 23.5 m, (c) Landsat7 ETM+ thermal data, (d) MODIS 250m data, and (e) MODIS 500m 
data.  

First, crop productivity maps (CPMs; kg/m2 or kg/pixel) were computed and involved: (i) 
crop type mapping using remote sensing, (ii) spectro-biophysical\yield modeling involving 
parameters measured in the field and relating them to spectral wavebands and indices, and 
(iii) extrapolation of models to larger spatial domains using remote sensing. Crop types were 
successfully separated by Quickbird and IRS data, but not by MODIS 250m or 500m data. 
But it was possible, at times, to map crop dominance using MODIS250m and irrigated crops 
using MODIS 500m data.  

Second, water use maps (WUMs; m3/m2) were determined through thermal data of 
Landsat-7 ETM+ using simplified surface energy balance (SSEB) model and summing up 
water use determined from time-series imagery. Results showed that, water use of cotton crop 
was 3050 m3/ha whereas wheat used 3100 m3/ha, and rice 6650 m3/ha.  

Third, water productivity maps (WPMs) were produced by dividing crop productivity 
maps with water use maps. Wheat with 0.60 kg/m3 had the best water productivity (WP), 
followed by rice with 0.5 kg/m3, and cotton with 0.42 kg/m3. In terms of economic value of 
WP, cotton crop earned about the $ 0.5/m3 followed by wheat with $ 0.33/m3, and rice with $ 
0.10/m3.  The study has successfully delineated the areas of low and high WP for 3 crops 
(Figure 10). An overwhelming proportion (50%+) of the irrigated areas were under low WP 
with only about 10% area in high WP. These results imply that there is significant scope for 
increasing WP for growing more food to feed the ballooning populations in the coming 
decades without having to increase allocations of croplands and\or water. 
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