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Abstract. Time-correlated single-photon counting lidar provides very high-resolution range measurements,
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1 Introduction
Time-of-flight (ToF) lidar is a powerful technique for collect-
ing accurate three-dimensional (3-D) information about the
surrounding area. After the emission of a laser pulse, the sig-
nal received at the detector is the aggregated contributions
from all reflecting surfaces within the instantaneous field
of view (IFOV) of the sensor. By performing time-resolved
measurements, the distance to the individual surfaces can be
measured and the data represented as a 3-D point cloud,
which can be used for higher level tasks, such as object rec-
ognition or mapping. The range information improves the
chance of separating and locating objects covering only part
of the IFOV. The smaller the spatial separation between sur-
faces, the higher range resolution is needed. Time-correlated
single-photon counting (TCSPC) is a lidar technology that
can provide very high-range resolution data and hence sep-
arate closely spaced objects.1 TCSPC lidar emits very weak
laser pulses and detects the time of arrival of the first photon
to be absorbed by the detector with very high temporal accu-
racy. By performing a large number of measurements,
a histogram of arrival times is assembled, which represents
the laser radar response of the scene within the IFOV. With
a large enough number of measurements, detections will
accumulate in the histogram bins corresponding to the range
of a reflecting surface, making single surfaces appear as clear
peaks above the shot noise of the background detections. The
shape of the peak is determined by the instrument response
function (IRF), which depends on factors such as the laser
pulse width, detector timing jitter, and trigger jitter. Signals
from closely spaced surfaces will overlap and may appear as
a single, broadened peak in the histogram. In this article, we
study signal processing approaches for detecting multiple
surfaces at different ranges within one IFOV, with special
emphasis on the performance for separating closely spaced

surfaces whose contributions to the histogram overlap. The
application in mind is detection and segmentation of partly
occluded objects, for example, objects behind vegetation.
For this application, the TCSPC system must be able to
detect and localize multiple surfaces at different ranges
within one IFOV. The number of surfaces is unknown
a priori and must be estimated in the signal processing.

Several techniques for surface detection in TCSPC lidar
data have been proposed in the literature. Most of them try to
minimize the number of detected photons, and hence the
integration time needed to determine the distance to a single
reflecting surface. Examples of algorithms to detect multiple
reflecting surfaces have also been published. There are vari-
ous approaches based on Markov chain Monte Carlo simu-
lations reported in the literature.2–4 These algorithms were
designed for low photon counts, i.e., short integration times
or targets with low reflectance. Shin et al.5 proposed another
peak detection algorithm (SPISTA) for low photon count but
based on linear optimization. It was claimed5 that it outper-
forms a mixture of Gaussian (MoG)-based estimator that is
using a greedy histogram-data-fitting strategy. There are also
approaches based on local maximum detection and cross cor-
relation,6 but these approaches are generally not intended for
resolving multiple surfaces close to each other in range as
the local maxima are distorted when surfaces are so close
together that the IRFs overlap.

In our work, we assume longer integration times than
what has been previously reported in the literature. The goal
of this paper is to make true object surfaces stand out from
the background noise. The increased signal-to-noise ratio
(SNR) of the histograms is used to detect multiple closely
spaced surfaces at different distances. The cost of the increased
capability of detecting objects obscured by, e.g., vegetation
is longer measurement time. The optimal balance between
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short integration times corresponding to high area coverage
and high SNR allowing detection of multiple surfaces
closely spaced in range is obviously application dependent.

In this work, we study a number of peak detection appro-
aches and assess their performance from different perspec-
tives; the possibility of detecting double surfaces within one
IFOV, geometrical accuracy of the detections, the number
of outliers, and how reduced signal quality affects the
performance.

The remainder of this article is organized as follows: in
the next section, a number of algorithms for preprocessing
and peak detection are described, along with the tested peak
detection approaches (mixes of the described algorithms).
In Sec. 3, the setup of the tests is described, including a short
description of the TCSPC system and the reference measure-
ments performed. Section 4 describes the procedure for
measuring range accuracy and in Sec. 5 results are presented.
A discussion of the results is included in Sec. 6 and conclu-
sions are given in Sec. 7.

2 Peak Detection Approaches
A fundamental requirement on a peak detection approach for
our intended application is that no a priori assumption of the
number of surfaces in the IFOV is made. It should also meet
the following quality criteria:

1. High probability of detecting surfaces so that objects
partially obscured by vegetation can be detected,

2. high-range precision so that geometrical properties of
objects can be derived from the data collected, and

3. low false alarm rate, to prevent adding significant
amounts of noise to already fragmented and spurious
data collected in cluttered environments.

In this work, we use the term “approach” for denoting an
algorithm for detecting and locating peaks in TCSPC histo-
grams, possibly preceded by an algorithm for preprocessing
such histograms.

Two types of preprocessing algorithms are considered:
matched filter (MF) and Lucy–Richardson deconvolution
(LR).7 Both algorithms use the impulse response function
(IRF) of the measurement system but for completely
different purposes. MF is used for suppressing noise and
improving range precision and is obtained by convolving the
TCSPC histogram with a time-reversed version of the IRF.
Another advantage of MF is that the peak generated by
a single surface after filtering is symmetric and hence more
easily described by a fitting function. The purpose of the LR
deconvolution of TCSPC data is to decompose histograms
into modes corresponding to the individual surfaces. LR
involves iterative convolutions with both the IRF and its
time-reversed version, but still it is computationally fast pro-
vided that the number of iterations is kept low. A side effect
of LR is that it amplifies noise rather than reducing it, which
can be mitigated through imposing constraints on the decon-
volved signal or removing spurious points in a postprocess-
ing step.

For the problem of detecting peaks in histograms, the
following algorithms are considered:

• Local maximum peak detection (LM),

• Mixture of Gaussian estimation using expectation
maximization (EMGM),8

• Mixture of IRF estimation using linear minimization
(SPISTA),5

• Mixture of IRF estimation using least squares minimi-
zation (IRF-LS),1 and

• Eigenvalue analysis parameter estimation in the
Fourier domain based on the theory of finite rate of
innovation (FRI).9

The local maximum detection (LM) is performed in two
steps. First, the range bins corresponding to LM values are
located, using thresholds for height and prominence to
reduce the number of false alarms. Then, the position of each
peak is estimated with subsample accuracy through quadratic
interpolation using the LM range bin and its immediate
neighbors.

In the EMGM algorithm, data are modeled as a mixture of
Gaussian basis functions. This is different compared with
the other fitting methods investigated in this paper, which
use representations of the IRF. The Gaussian basis functions
allow for using computationally efficient standard imple-
mentations. The algorithm is based on expectation-maxi-
mization, which is an iterative approach for finding the
maximum likelihood estimates of parameters in a statistical
model. It has a nonconvex cost function, which means that
only finding a local minimum can be guaranteed when used
for fitting of multimodal distributions. Thus, good initializa-
tion is needed.

The SPISTA algorithm is essentially a reformulation of
the multiple peak detection problems as an L1 norm problem
with a global optimum. It models the input signal and back-
ground noise as Poisson distributions. In SPISTA, the single-
photon detection statistics from multiple reflectors within
a pixel is described as a multidepth profile and expressed as
a sparse signal. The multidepth estimation problem from
single-photon observations is formulated as a convex optimi-
zation problem by combining the statistics of photon
detection data with sparsity of multidepth profiles. Linear
minimization is known to be less affected by noise and
outliers compared with least squares minimization and also
computationally faster. SPISTA has a convex cost function,
which is different from the EMGM and IRF-LS algorithms.

The IRF-LS algorithm minimizes the difference between
the measured data and a linear combination of IRFs in a least
square sense, recursively adding more surfaces until no
further improvement is found. The approach is good at accu-
rately detecting high-amplitude peaks with high resolution
but is relatively computationally demanding and prone to
adding low-amplitude surfaces from imperfections of the
IRF description. Since, in our implementation, it never
removes surfaces as some published MCMC-based methods
do,3 it is more prone to overfitting. Furthermore, it has a non-
convex cost function.

The FRI algorithm reformulates the time-of-flight super-
resolution problem as a parameter estimation problem. Based
on the theory of finite rate of innovation (FRI) sampling,10

a bandlimited approximation of the sampling kernel function
is used, which allows for formulating the problem as a
linear least square problem in the frequency domain. The
surface positions are determined through solving an eigen-
value problem, with a threshold applied on the eigenvalues
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to determine the number of surfaces in the final result. The
method is noniterative and hence computationally attractive.
It has shown promising results for both superresolution and
resolving overlapping peaks and was reported to provide
better estimates than an MCMC-based method and at lower
execution time.9

The algorithms are combined into the following peak
detection approaches:

1. LM with LR preprocessing (LR-LM),
2. EMGM with MF preprocessing (EMGM-MF),
3. IRF-LS,
4. IRF-LS with MF preprocessing (IRF-LS-MF),
5. SPISTA, and
6. FRI with MF preprocessing (FRI-MF).

3 Tests

3.1 Lidar System

The TCSPC lidar data subject to peak detection was recorded
using the system described in detail by Henriksson et al.1 The
lidar system uses a 1.55-μm fiber laser source with 22 ps
pulse length and pulse repetition frequency of 8 MHz.
The optical transceiver is a 500-mm focal length Cassegrain
mirror telescope, where the laser light is emitted via a mirror
in front of the central obscuration to provide a monostatic
configuration. The collected photons are focused on a graded
index fiber and, after bandpass filtering, focused on an
InGaAs single-photon avalanche detector. The times of
detections, measured relative to the emissions of laser pulses,
were recorded with 32-ps precision using a Picoquant
Picoharp 300. The detector field of view was continuously
swept row by row at 0.04 deg ∕s during the measurement.
The signal is subsequently divided into pixels for small angu-
lar intervals during the postprocessing. Due to performing
the measurements while sweeping, there will be a spatial
broadening of objects, but, with small angular intervals
for each pixel, this decrease in spatial resolution can be
kept at an acceptable level.1 The measurements are aimed
at accurately finding targets in vegetation or behind camou-
flage and hence involve longer integration times than in
Refs. 2–6. The effective integration time per pixel was
126 ms∕pixel, which means that ∼106 measurements were
performed per pixel. The laser power, however, was low,
meaning that on average 1120 detections were recorded per
pixel. The background rate, caused by detector dark counts
and solar illumination, was estimated to be 0.22 detections∕
ðrange bin × pixelÞ or in total 870 detections∕pixel.
Approximately, 78% of the detections are thus uncorrelated
to the laser and only contribute noise to the histograms.

The measured IRF was 392-ps full width at half maxi-
mum (FWHM). The fitting function described in Ref. 1 con-
sisting of a Gaussian peak with exponential tails was used to
describe the IRF in the signal processing. As seen in Fig. 1,
the general shape is well described, but some high-frequency
features near the peak leave a residual error.

3.2 Target Setup and Measurements

Measurements were performed against a reference target
with holes behind which metal plates were placed at different

distances: 33, 53, 73, and 93 mm (see Fig. 2). In the further
analysis the front surface is designated as S1, and the back
plates are designated as S2, S3, S4, and S5, in order of increas-
ing distance from the front surface. The incidence angle devi-
ated from the normal of the target surfaces with about 7-deg
horizontally and 4-deg vertically, respectively.

Scanning across the target means that the histogram of
every pixel corresponds to an IFOV in a different position on
the target. We are, especially, interested in the cases where
the IFOV covers the edge of a hole in the front plate so that
the histogram is composed of photons reflected both from
the front surface and plate behind the hole. The four different
distances 33 mm (S1 to S2), 53 mm (S1 to S3), 73 mm (S1 to
S4), and 93 mm (S1 to S5) allow us to investigate what dis-
tance between reflecting surfaces within the IFOV can be
resolved. Figure 3 shows examples of collected histograms
for a point at the edge of each hole, in addition to a model
consisting of a linear combination of two IRFs fitted to the
measured data. The histograms shown in Fig. 3 are created
using a different dataset with higher SNR than the data used
for peak detection analysis and only serve to illustrate the
phenomenon. At different positions at the edges of the
holes varying portions of the IFOV will be on the front and
back plates, leading to varying proportions of the signal
belonging to the first and second peaks in the histogram.
The effects of different obscuration coverages or different
reflectivities on the obscuration and target will have a similar
effect. If the obscuration is caused by foliage or other

Fig. 1 The measured IRF and the fitting function used in the signal
processing. The FWHM of the IRF is 392 ps.

Fig. 2 The reference target.
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vegetation, it will probably be in the form of several small
surfaces with a distribution in range to the target.

3.3 Implementation Details

For the MF and LR algorithms, we use the IRF of the system
defined in Henriksson et al.1 Approaches 2, 4, and 6 (Sec. 2)
are computed on MF preprocessed data, mainly to remove
noise. The EGMG-MF is initialized using results from the
LM algorithm when possible. When the LM algorithm does
not detect any peaks, EMGM-MF is initialized with 1 to 5
randomly chosen peak locations. Also, approaches 3 and 4
are initialized using results from the LM algorithm.

To allow for a fair comparison of the approaches, detec-
tion thresholds were applied to filter out very weak points, as
some algorithms are prone to adding very low amplitude
false detections, whereas others have an internal thresholding
mechanism built into the processing.

To study the effects of varying SNRs, the original data
were also downsampled by randomly choosing 50% and
25% of detections. An example is shown in Fig. 4. Robust-
ness to varying SNRs is important in practical situations as
the dwell time on the target can change, or the signal strength
can vary because of surface reflectivity differences.

4 Measuring Relative Range Accuracy
To measure the range accuracy, the detected peaks were con-
verted into 3-D points in Euclidean space using the estimated
range values in combination with the angle obtained through
interpolation, assuming constant angular velocity between
the start and stop angle values. The algorithms may introduce
a slightly different bias to the absolute range estimates.
However, we are only interested in the relative accuracy
within the point cloud obtained by the respective approach.
As a consequence, the relative position of the reference target
in each of the respective datasets has to be determined first.
This is achieved through fitting of a plane to the extracted
3-D data points. First, the orientation of the front plane is
estimated using RANSAC11-based plane fitting. For this pur-
pose, a point cloud was selected after empiric testing with
different parameters and visual inspection of both data and
the resulting plane to ensure a good fit. The fitted plane was
then used as an input to the assessment of performance for
all other approaches, yet shifted in range to compensate for
the differences in range bias.

The position of the front plane implicitly gives the posi-
tion and orientation of the back plates, which are parallel to
the front plate and at known distances (33, 53, 73, and
93 mm). Using the equation of the plane, the normal distance
from each point to the front surface is then computed. Based
on that, the points are segmented into five clusters corre-
sponding to the front and the four back plates (Fig. 5).

A point is regarded as belonging to the nearest surface
provided that the distance is small enough. This is to avoid
having outliers far from the surfaces affecting the range accu-
racy estimation. We introduce a binary weight parameter
wp;Si

EQ-TARGET;temp:intralink-;e001;326;370wp;Si ¼
�
1 if ½rp − R̂Si � < dmax

0 otherwise
; (1)

where p is an extracted point, rp is the range associated with
p, Si, i ¼ 1; : : : ; 5, is the surface number, and R̂Si is the esti-
mated range to Si. After studying the typical distribution of
range estimation errors, we set dmax ¼ 0.03 m. The range
errors for the respective surfaces are quantified as a standard
root mean square error (RMSE)

EQ-TARGET;temp:intralink-;e002;326;260RMSEðSiÞ ¼
�
1

jSij
X
p∈S

wp;Siðrp − R̂SiÞ2
�
1∕2

; (2)

where jSij is the number of points associated with surface Si
(i.e., within range dmax). Outliers are defined as points further
away than dmax from the nearest surface.

5 Results
In this section, we present the results obtained from the tests,
studying the performance of the approaches regarding the
criteria listed in Sec. 2 such as detection of double surfaces,
range precision, and the number of outliers. Furthermore, we
study how the performance of the respective approaches
varies when reducing the signal strength.

Figure 6 shows the points along a line transect across
the reference target detected with the respective approach.

Fig. 3 Measurements at four different points at edges of each hole in
the characterization target. The black lines are measured data and
the red dotted lines are two fitted IRF peaks. Point number 1 includes
surfaces S1 and S2, point 2 S1 and S3, point 3 S1 and S4, and point 4
S1 and S5.

Fig. 4 Range histograms from a pixel within a double surface
region computed with 100%, 50%, and 25% of the collected data,
respectively.
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Ideally, all points should lie on the solid lines representing
the position of the planar plates of the reference target rel-
ative to the data. The color of the dots shows the estimated
amplitude of the peak. All approaches except EMGM-MF
produce the same overall, expected pattern with stronger
peaks for single surfaces and weaker peaks in the double sur-
face regions. Though, the LR-LM approach shows somewhat
larger intensity variations between surfaces and is not as reli-
able in terms of drawing conclusions about the reflectivity of
the surfaces. This is an expected effect of the LR preprocess-
ing step as it amplifies noise.

The plot shows that none of the approaches accurately
resolve the step to the left-most surface (S2) situated 33 mm

behind the front plate but instead they all produce spurious
points in between. We can also see that LR-LM and SPISTA
cannot resolve the step to the second closest surface S3 (at
53-mm distance) and that EMGM-MF still has difficulties
at 73 mm. We also note that the range noise is higher for
EMGM-MF and FRI-MF than for the other methods.

5.1 Detection of Multiple Surfaces

To measure how well the different approaches can resolve
multiple surfaces within the IFOV, a set of regions around
range discontinuities were selected manually by visual
inspection of the histograms and identifying regions where
signals coming from both surfaces could be discerned. Let
nDS;max denote the expected maximal number of 3-D points
in the selected double surface regions. After visual inspec-
tion of the data we set nDS;max ¼ 224, implicitly assuming
that there is enough signal from both surfaces for the peak
detection algorithm to be able to detect them. An in-depth
analysis to assess that there really were strong enough signals
for each of the histograms to allow for detection of the peaks
was not performed, as it is not needed to make comparisons
between the performances of the approaches.

Fig. 5 Extracted points segmented according to their distance to the
surfaces. S1: large front surface (dark blue), S2: surface nearest back-
ground (light blue), S5: surface farthest in back (yellow). Axes in
meters.

Fig. 6 The figure shows 2-D plots of points along a line transect across the reference target. The line
segments show the position of the surfaces of the reference target relative to the data. Each dot cor-
responds to one detected peak, with dots on the same lateral position belonging to the same histogram.
The color of the dots corresponds to the estimated peak amplitude, with the color scale going from blue
(weak) via green to yellow (strong).
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The results obtained using histogram created with 100%
of the collected data are shown in Tables 1 and 2. As our
primary interest is detecting and correctly locating the
correct number of surfaces, only pixels with two detected
surfaces within a distance dmax from the closest surface
are considered in these tables. Table 1 shows the number
of 3-D points detected for each surface in double surface
regions and Table 2 shows the corresponding RMSE. Among
the approaches considered, only EMGM-MF produces a sig-
nificant number of detections at the 33 mm step of the S1 to
S2 interface. However, from Fig. 6 it is evident that the step is
not resolved with EMGM. Instead, the method has produced
two detections at intermediate distances, which are so small
that the detections are not considered to be outliers. In the
later analysis (Sec. 5.3), it will become evident that a single
surface is also commonly described as two detections with
EMGM, and hence the two detections are not a robust indi-
cation of two surfaces.

A significant number of points on S3 (53-mm distance)
are detected with all approaches except SPISTA. The
EMGM method detections are still spurious, which becomes
evident when comparing the results with Fig. 6. The practical
range resolution limit of the system is thus better than
53 mm, somewhat less than the 59 mm indicated by the
392 ps FWHM IRF. The minimum resolvable distance can-
not be determined as the target had no steps between 33 and
53 mm and will also depend on the SNR.

The performance of the IRF-LS and the FRI-MF
approaches are comparable in terms of double surface
detection rates and slightly exceeds that of the other appro-
aches. As expected, IRF-LS-MF with its MF detects some-
what fewer double surfaces but, on the other hand, has
a lower RMSE.

Ideally, the sum of points detected for S2 to S5 should be
equal to that of S1, as all double surface regions include S1
and there should be one detected point per surface. However,
sometimes the two detected peaks lie closer to the same
surface. This phenomenon is especially common for the
EMGM-MF approach and also noticeable for the LR-LM
at lower data rates (Tables 3 and 5).

When down-sampling data to emulate shorter integrations
times, the performance of the approaches are affected differ-
ently (Tables 3–6). We note that the performance of IRF–LS
is quite stable even when data quality is reduced down to
25%. Also, the SPISTA approach copes relatively well with
this lower data rate. The performance of the LR-LM appro-
ach degrades significantly with decreasing signal quality.
The EMGM-MF approach continues to indicate multiple sur-
faces at intermediate distances. In the tables, those show up
as detections with large RMSE.

5.2 Range Accuracy for Single Surfaces

To measure the range accuracy for single surfaces, the RMSE
was computed for a subset of points corresponding to parts
of the front surface S1 with no interference of signals from

Table 1 Number of detected 3-D points for the respective surfaces in
double surface regions. Only pixels with two detected surfaces that
are not considered outliers are included. 100% of the data is used.

Approach S1 S2 S3 S4 S5 Perc. total

LR-LM 27 0 14 3 10 24.1

EMGM-MF 43 17 23 15 12 49.1

IRF-LS 63 1 21 19 22 56.3

IRF-LS-MF 47 0 17 17 11 41.1

SPISTA 27 0 1 14 12 24.1

FRI-MF 64 0 26 21 23 59.8

Table 2 RMSE for points in double surface regions (mm) using 100%
of the data. Only pixels with two detected surfaces that are not con-
sidered outliers are included. Cases where no points are found are
marked with dash.

Approach S1 S2 S3 S4 S5

LR-LM 11.9 — 15.3 6.4 16.8

EMGM-MF 12.8 6.1 10.7 15.1 11.5

IRF-LS 5.0 1.3 7.2 10.6 15.5

IRF-LS-MF 3.4 — 3.8 9.9 10.4

SPISTA 5.6 — 9.3 6.4 14.7

FRI-MF 5.6 — 7.5 11.8 15.4

Table 3 Number of detected double surface points using 50% of the
data.

Approach S1 S2 S3 S4 S5 Perc. total

LR-LM 7 2 6 3 0 8.0

EMGM-MF 51 12 27 19 11 53.6

IRF-LS 72 2 24 21 25 64.3

IRF-LS-MF 33 1 10 9 13 29.5

SPISTA 29 0 2 15 12 25.9

FRI-MF 65 2 19 19 25 58.0

Table 4 RMSE for points in double surface regions (mm) using 50%
of the data. Cases where no points were found are marked with a
dash.

Approach S1 S2 S3 S4 S5

LR-LM 14.5 6.2 13.3 6.1 —

EMGM-MF 15.5 8.0 11.8 19.8 5.8

IRF-LS 6.2 2.0 6.8 12.5 14.8

IRF-LS-MF 4.2 4.6 4.3 7.0 14.5

SPISTA 5.1 — 6.6 7.3 14.5

FRI-MF 7.6 0.8 6.7 13.4 15.6
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the back plates. The results are shown in Table 7. The sample
distance in the histograms corresponds to 4.8 mm, meaning
that several of the approaches consistently give subsample
accuracy.

From Table 7, we notice only minor differences between
most of the approaches with LR-LM and EMGM-
MF falling slightly behind. None of the approaches show
a significant degradation in range precision as the signal
is downsampled. The reason for the FRI-MF approach show-
ing an improvement for decreasing data rate is that detected
low-amplitude points with large error disappeared as the data
were downsampled and the signal level fell beneath the
threshold.

5.3 Detection Statistics

In Table 8, we show overall statistics for the approaches in
terms of the distribution of the number of points detected on
the surfaces and the number of outliers. The number of
histograms resulting in one surface being detected with
the respective approach (N1) should be compared with the
total number of histograms that correspond to a single sur-
face, which is ∼1400. Analogously, the number of histo-
grams for which two surfaces are detected is denoted by N2.
The number of pixels in the edge regions, where two surfaces
should be detectable in the histogram, is somewhere between
320 and 350. The number of histograms yielding more
detected points (N3 to N5) should be zero.

The uncertainty regarding the ground truth statistics is
due to the spatial sampling pattern across the reference target

being not perfectly aligned with the geometrical features of
the target (e.g., edges between surfaces), which together with
the extent of the laser footprint makes the signal level vary in
double surface regions, so that some histograms may not be
able to yield detections of two surfaces with any approach.
N0 denotes the number of histograms for which no points
were found andNPoutliers is the number of points lying farther
than 3 cm from the nearest surfaces. The total number of
detected 3-D points (NPtot) should lie somewhere between
2040 and 2100 points; the exact number is not needed
to identify qualitative differences in performance between
approaches.

The EMGM-MF approach is prone to overfitting and
hence often detects more peaks than that are actual surfaces.
The low number of detected single peaks (the N1 column)
shows that a vast majority of the pixels that should result
in single peaks, given the shape of the reference target,
instead end up being split up in multiple peaks lying
close to each other. The main cause of this is that the
EMGM-MF approach tries to describe the non-Gaussian
IRF (after MF) with a Gaussian function, often leading to
a better fit using the sum of several Gaussians corresponding
to several closely spaced peaks even if there is actually only
one surface. Such detected point pairs or triplets could be
merged into single detections in a postprocessing step but
also that would be very likely to affect the double peaks
stemming from actual multiple surfaces. The FRI-MF
approach shows similar tendencies albeit to a lower extent,

Table 5 Number of detected double surface points using 25% of
the data.

Approach S1 S2 S3 S4 S5 Perc. total

LR-LM 1 0 0 1 0 0.9

EMGM-MF 71 15 37 22 11 69.6

IRF-LS 64 3 25 18 22 58.3

IRF-LS-MF 8 0 2 8 0 8.0

SPISTA 34 0 6 16 12 30.3

FRI-MF 12 1 0 4 7 10.7

Table 6 RMSE for points in double surface regions (mm) using 25%
of the data. Cases where no points were found are marked with dash.

Approach S1 S2 S3 S4 S5

LR-LM 5.6 — — 15.6 —

EMGM-MF 14.3 8.9 11.4 14.9 13.6

IRF-LS 8.0 7.2 11.0 13.7 15.1

IRF-LS-MF 5.9 — 11.5 7.5 —

SPISTA 6.1 — 5.1 10.0 15.8

FRI-MF 8.1 4.6 — 7.1 14.9

Table 7 RMSE for single surface points on front plate (S1) (mm) for
different percentages of data used (100%, 50%, and 25%)

Approach 100 % 50 % 25 %

LR-LM 5.3 5.6 6.9

EMGM-MF 5.8 7.3 10.2

IRF-LS 1.5 2.0 3.6

IRF-LS-MF 1.6 2.0 2.6

SPISTA 2.3 2.5 3.4

FRI-MF 4.5 3.1 2.8

Table 8 The number of histograms resulting in 0 to 6 detected peaks
(N0 to N6), the total number of detected 3-D points (NPtot), and the
number of outliers (NPoutliers), using 100% of the data.

Approach N0 N1 N2 N3 N4 N5 NPtot NPoutliers

LR-LM 24 1541 154 6 0 0 1869 220

EMGM-MF 238 260 798 435 0 0 3161 79

IRF-LS 0 1518 234 3 0 0 1995 7

IRF-LS-MF 20 1542 163 4 3 1 1897 6

SPISTA 0 1642 94 0 0 0 1830 0

FRI-MF 20 1232 526 3 0 0 2293 19
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again because the IRF is not exactly described by the trun-
cated Fourier series.

The performance of the LR-LM stands out with its large
number of outliers. As can be seen in Fig. 6, it is partly
because it produces ghost points in between two surfaces
but also a significant number of points around the surface
but farther away than 3 cm, which we chose as threshold
for attributing a point to a surface.

The SPISTA approach misses no detections but does not
perform as well as IRF-LS and IRF-LS-MF approaches in
terms of resolving double surfaces. From the results, we con-
clude that IRF-LS produces the best overall detection result,
in that it detects the most double surfaces, has no missed
detections, and only a few outliers.

6 Discussion
Parameter values and thresholds in the peak detection
approaches affect the number of correctly detected points,
the number of outliers, and RMSE values. In this work, the
values were chosen empirically rather than with an exhaus-
tive analysis of the relation between parameter settings, sys-
tem parameters, detection probability, false alarm rate, and
accuracy. For some approaches, the number of outliers can
easily be decreased by increasing the minimum signal
strength threshold but that would impair the ability to
find weak surfaces. Analogously, the thresholds could be
adjusted to find more multiple surfaces at the expense of add-
ing noise points. The FRI-MF approach may suffer in reso-
lution performance because of too hard truncation of the
Fourier series describing the IRF. Including more compo-
nents has the cost of more false alarms and longer execution
time. Finding the optimal parameters to maximize perfor-
mance under different circumstances and with different
requirements will be part of the next phase of our work.
Nevertheless, we notice that for the IRF-LS, IRF-LS-MF,
and SPISTA approaches, it was possible to find parameters
that give a good trade-off between detection, false alarm rate,
accuracy, and signal quality, which we consider a strength in
itself. In cases with a high contrast between the highest peak
and the threshold for the lowest peak, which is counted as a
surface, the IRF-LS algorithm has been found to add extra
peaks to compensate for imperfections in the description of
the IRF. Because the threshold was set higher compared with
the peak value than the error in the IRF description (∼3%)
this did not generate any false alarms here.

The low performance for the EMGM-MF approach is due
to the fact that an MoG is not a good model for the wide
peaks resulting after the MF preprocessing step. Shin5 stated
that SPISTA would have better performance than an MoG
approach, which is the case also in our study.

We are ultimately aiming for peak detection that runs in
real time to allow for human-in-the-loop experiments in
realistic scenarios. The current implementations of the algo-
rithms are made in Matlab with varying degrees of optimi-
zation, and it is not relevant to report execution time at this
stage. However, we notice that the approaches involving
least square optimization with recursive addition of compo-
nents (IRF-LS and IRF-LS-MF) are noticeably slower than
the other approaches.

In this work, we have focused on the range accuracy of
the detected points. When creating a point cloud, the 3-D
coordinates of the detected points are defined by the viewing

angle of the sensor and not the actual lateral position of the
surfaces within the IFOV. A surface may be detected as soon
as it is within the footprint of the laser beam and as a con-
sequence, objects typically appear wider than they really are.
This effect cannot be mitigated by analyzing each range
histogram individually. Instead, it requires taking the data
in the vicinity of the point into account, either through post-
processing of the extracted 3-D point cloud or by including
neighboring histograms in the peak detection process. Future
work will include efforts to address this problem. Similar
effects would appear from cross talk between pixels in an
array detector.

The experiments used for this investigation were per-
formed with a maximum of two discrete surfaces within the
IFOV corresponding to one pixel, to have control over the
true distances between peaks. One interesting application is
targets behind foliage, where the obscuration consists of sev-
eral small objects at varying distances to the target surface.
The results shown here should still be valid for the minimum
distance between different surfaces, which is resolvable,
regardless of whether there are two or more surfaces. The
important factors to accurately measure the distance to the
target surface are thus the number of photons detected
reflected off the target surface and the distance from the
last obscuring object to the target surface. The distance
between different obscuring objects will impact whether
they can be resolved or not, but this is often of little or no
importance.

In this work, we assumed a static scene and a stationary
sensor, which allows us to create and analyze range data as
one-dimensional (1-D) histograms. Adding platform motion
requires a different approach to handle the collected data.
Future work will address efficient data structures for accu-
mulation and analysis of TCSPC data as well as advanced
positioning techniques for accurate 3-D registration of
TCSPC data acquired with a moving sensor. This will prob-
ably need significantly higher data collection rate than the
results shown here. Higher laser power that gives a detection
probability of up to 50% for every laser pulse, which has
been shown to be the optimum power to detect an obscured
surface,12 could be one solution, which may also require
a faster scanning mechanism. Array detectors perform
multiple measurements for every laser pulse may be another
solution. Higher data collection rate will also allow for small
field of regard 3-D imaging of moving objects.

7 Conclusions
Of the approaches discussed herein, IRF-LS is our top can-
didate for peak detection in TCSPC data. It has the best
performance regarding detection of multiple surfaces, which
gives good range of accuracy and a low false alarm rate.
However, it is computationally demanding in its current
implementation and depending on what degree of optimiza-
tion is achievable, other approaches may be considered in
practical applications. Among the faster approaches, SPISTA
gives the best results. Hence, a combination of several
approaches is worthwhile investigating, where an advanced
approach may be applied when multiple surfaces are present
or when high accuracy is needed, and a less computationally
demanding technique may be used to process the signal
received from single surfaces. The width of a peak in a histo-
gram might serve as an indicator of which approach to apply.
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The processing of the data from the TCSPC lidar system
with 392 ps FWHM IRF, indicating resolution of 59-mm,
could with several methods resolve contributions from
two surfaces at 53-mm range difference but not separate
the contributions at 33-mm range difference.
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