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Abstract. We investigate the reconstruction of depth and intensity profiles from data acquired using a custom-
designed time-of-flight scanning transceiver based on the time-correlated single-photon counting technique.
The system had an operational wavelength of 1550 nm and used a Peltier-cooled InGaAs/InP single-photon
avalanche diode detector. Measurements were made of human figures, in plain view and obscured by camou-
flage netting, from a stand-off distance of 230m in daylight using only submilliwatt average optical powers. These
measurements were analyzed using a pixelwise cross correlation approach and compared to analysis using
a bespoke algorithm designed for the restoration of multilayered three-dimensional light detection and ranging
images. This algorithm is based on the optimization of a convex cost function composed of a data fidelity
term and regularization terms, and the results obtained show that it achieves significant improvements in
image quality for multidepth scenarios and for reduced acquisition times. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
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1 Introduction
Light detection and ranging (LiDAR) continues to be
the technique of choice in a variety of remote sensing
applications.1 The time-correlated single-photon counting
(TCSPC) technique has more recently emerged as a candi-
date technology for LiDAR, due to its high sensitivity
and excellent surface-to-surface resolution.2 The TCSPC
approach has been successfully demonstrated in a number
of LiDAR applications, such as long-range depth imag-
ing,3–5 underwater depth imaging,6,7 and multispectral
depth imaging.8 The TCSPC technique was used to obtain
both depth and intensity information for each pixel, building
up a three-dimensional (3-D) image of the target scene by
using scanning or multiple detector arrays.9 The use of
high-sensitivity single-photon detectors, such as InGaAs/
InP and Si single-photon avalanche diode (SPAD) detec-
tors,10–12 means that low average optical power levels can
be used even at long distances, resulting in the potential
for low-power eye-safe imaging.

The identification of targets that have been obscured by
clutter is a subject of significant relevance for long-range
field applications, in particular. Several experiments involv-
ing “seeing” behind or through various obscuring media
have been previously performed using LiDAR systems.13–17

References 13 and 14 present examples of 3-D laser radar
imaging using a range-gated approach that can provide high-
resolution gated images using very few laser pulses. This
approach requires high energy laser pulses (typically μJ) and
does not give a full surface profile of the target, but instead
provides a range-gated intensity image. Henriksson et al.15

presented a scanning TCSPC system that was successful in

imaging targets through foliage at a distance of ∼300 m.
The slow scan speed of the system meant that in the
example demonstrated the acquisition time was 30 min
for a 5 deg× 1 deg scene. Also, their algorithm for depth
estimation did not take into account spatial correlations
between neighboring pixels, resulting in many of the pixels
providing no depth information due to a lack of returned
photons. Some previous work has been performed on the
image processing of targets behind obscuring surfaces and
media, for example Refs. 16 and 17 described bespoke
image processing algorithms designed for TCSPC data that
reconstructed depth and intensity profiles. Wallace et al.16

presented an algorithm based on a reversible jump Markov
chain Monte Carlo technique, which successfully recon-
structed the depth profile of an object behind a wooden trellis
fence at a stand-off distance of 325 m. While this approach
works well and provides good depth information, the algo-
rithm required significant processing times. The algorithm
presented by Shin et al.17 was used to demonstrate high-
resolution depth estimations for multiple surfaces with a low
number of returned photons. The approach had relatively
short processing times; however, the data were obtained in
a laboratory-based trial at short target distances (around 4 m)
and did not demonstrate the effects of high levels of ambient
lighting or solar background.

In this paper, we explore the challenges of obtaining high-
resolution depth images of objects obscured by camouflage
netting using low laser powers at stand-off distances of
hundreds of meters and in the presence of high ambient
light levels. This paper also presents an advanced image
processing algorithm specifically designed to reconstruct
depth and intensity profiles of objects hidden in clutter or
behind obscuring media. The new algorithm exploits spatial
correlations in the photon data and was designed to be robust*Address all correspondence to: Gerald S. Buller, E-mail: G.S.Buller@hw.ac.uk
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when used in the sparse photon regime under high levels of
ambient background light. It considers two main assump-
tions: (i) the observed target exhibits spatial correlations
that can be exploited using a total variation (TV) approach
and (ii) a small number of depths are active with respect
to the observation range window. We describe the
reconstruction of 3-D depth and intensity profiles from
data acquired using a custom-designed time-of-flight
(ToF) scanning transceiver based on the TCSPC technique.
This active imaging system was successfully used to recon-
struct depth and intensity profiles of human figures standing
outdoors, both in plain view and obscured by camouflage
netting, from a stand-off distance of 230 m in bright daylight.
The system had an operational wavelength of 1550 nm and
the illumination beam exiting the system had an average
optical power of just under 1 mW. The wavelength of
1550 nm was selected for its high atmospheric transmission
and because the adverse affect of solar background at this
wavelength is significantly lower compared to operating at
wavelengths below 1 μm.18–20 Also, as this wavelength is out-
side the retinal hazard region, it permits, if circumstances
require, the use of higher average optical powers in compari-
son to wavelengths in the visible and near-infrared regions of
the spectrum.

In Sec. 2, there are details of the experimental setup used
for these measurements, describing the transceiver and out-
lining the key system parameters. Section 3 gives details on
the construction of the depth and intensity images from the
acquired data using a pixelwise cross correlation algorithm.
Section 4 shows results obtained using cross correlation for
both an unobscured target and a target hidden behind cam-
ouflage netting. The proposed algorithm for restoration and
noise reduction of both depth and intensity profiles is pre-
sented in Sec. 5 and is used to reconstruct the data used
in Sec. 4 to permit a comparison of this new algorithm to
the pixelwise approach outlined in Sec. 3. The conclusions
of this work are presented in Sec. 6.

2 Experimental Setup
A schematic of the single-photon depth imaging system
setup is shown in Fig. 1. The system used the TCSPC
technique, where the time difference is recorded between
a laser pulse being emitted and the occurrence of a photon
event. Typically, these measurements are recorded over m
any laser pulses for a given pixel, revealing the ToF and
hence depth, of the target. The pulsed illumination was pro-
vided by a broadband supercontinuum laser source (SuperK
EXTREME EXW-12, NKT Photonics) used in conjunction
with a series of high-performance spectral filters. The filters
used were a longpass filter with a cut-on wavelength of
1500 nm (LP1 as shown in Fig. 1), a shortpass filter (SP)
with a cut-off wavelength of 1800 nm, and a 1550-nm band-
pass filter (BP1) with a 10-nm full-width half-maximum
(FWHM) passband. This combination of filters allowed
a narrow band of light centered on 1550 nm to be transmit-
ted, while providing good out-of-band rejection. The super-
continuum laser provided the electrical synchronous start
signal for the TCSPC module (HydraHarp 400, PicoQuant).
The pulse duration of the laser was less than 100 ps and
the repetition rate was 19.5 MHz. The laser was coupled
to the transmit channel of the transceiver unit via a 10-μm-
diameter core optical fiber. The custom-built transceiver
unit employed for these measurements was configured
with optical components for operation at a wavelength of
1550 nm, with the layout similar to those used in our
previous work reported in Refs. 3 and 21.

The transmit and receive channels of the transceiver unit
were coaxial, resulting in a monostatic, parallax-free system,
which allowed for operation over a wide range of target dis-
tances without the need for realignment. A polarizing beam
splitter (PBS) was used to demultiplex the return signal from
the common channel. Two galvanometer mirrors (GM1 and
GM2 in Fig. 1) were used to raster scan the beam in X and Y
across the scene. An objective lens with an aperture of
80 mm diameter and an effective focal length of 500 mm

Fig. 1 Schematic of the single-photon depth imaging system that was operated at a wavelength of
1550 nm. It comprises a custom-built transceiver unit, a supercontinuum laser source, a TCSPCmodule,
and an InGaAs/InP SPAD detector. Optical components include: polarizing beam splitter, PBS; fiber
collimation packages, FC1, FC2, FCR, and FCT; scanning galvanometer mirrors, GM1 and GM2;
relay lenses, R1, R2, R3; objective lens, OBJ; longpass filters, LP1 and LP2; shortpass filter, SP; band-
pass filters, BP1 and BP2.
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was used to both focus the outgoing light on to the target and
collect photons scattered back from the target. The collected
return photons were routed to the receive channel and then
coupled to the detector using a 10-μm-diameter core armored
optical fiber. An electrically gated InGaAs/InP SPAD
detector module (Micro Photon Devices) was used in these
measurements, which had an operating wavelength range of
900 to 1700 nm and an active-area diameter of 25 μm. The
detector was set with a 5-V excess bias and had a single-
photon detection efficiency of ∼30% at the operational
wavelength.22 Due to the monostatic configuration of the
system, the presence of backreflections from the optical
components within the transceiver unit could result in
problems resulting from saturation of the sensitive optical
detection system. Hence, the detector was operated in an
electrically gated-mode in synchronization with the pulsed
laser return, with the detector gate positioned to avoid
these spurious backreflections. For the measurements
described in this paper, a 14-ns detector gate duration was
used. Afterpulsing can also present difficulties when using
InGaAs/InP SPAD detectors, causing increased background
levels. Afterpulsing is caused by charge carriers being
trapped in defects, which are subsequently released causing
spurious avalanches.23,24 In order to reduce the deleterious
effects of detector afterpulsing, a hold-off time was used to
deactivate the detector for a predetermined duration after a
recorded event, in order to allow the traps to empty without
triggering further avalanches. In the measurements described
in this paper a detector hold-off time of 40 μs was selected as
a compromise between reducing the effects of afterpulsing
and restricting the maximum count rate possible. More
detailed descriptions of the electronic gating approach used
for this detector are provided in Refs. 21 and 22. In order to
reduce the effects of solar background, the receive channel
was also spectrally filtered using a longpass filter (LP2)
with a cut-on wavelength of 1500 nm, and a 10-nm FWHM
bandpass filter (BP2), as shown in Fig. 1. The detector
module provided the electrical stop signal for the TCSPC
module, which was configured to output time-tagged detec-
tion events. The time-tagged event information was trans-
ferred to the control computer via a USB connection.

3 Estimation of Depth and Intensity Images using
Cross Correlation

For each pixel, the time-tagged photons were used to
construct timing histograms of the ToF information using
2 ps timing bins. Depth information was extracted from
these histograms using a cross correlation method, described
previously in Refs. 6 and 21. For each pixel, a cross corre-
lation, c, was performed between an instrumental response,
R, and the measured histogram, y

EQ-TARGET;temp:intralink-;e001;63;191ct ¼
XT

i¼1

ytþi × Ri; (1)

where yt is the timing histogram value at the t’th bin and T is
the total number of timing bins. The timing position corre-
sponding to the highest peak in the cross correlation was cal-
culated for each pixel to provide target depth information.
For each pixel, the number of photons in a range of 200
timing bins around the centroid location was summed to
obtain an estimate of the intensity (or reflectivity) of the

target. For these measurements, the instrumental response
function R was obtained by performing a single-point meas-
urement of a uniform, flat surface, which was placed in the
same nominal plane as the target position. An example of
the instrumental response function for the measurements
presented in this paper is shown in Fig. 2. Contributions
to the timing jitter originate from the detector response,
laser pulse duration, and other electronic components such
as the TCSPC module. In this case, the overall system jitter
was 226 ps (FWHM), with the largest contribution being the
detector jitter.

Typically, targets with a single reflecting surface will
result in one peak per histogram, which corresponds to
the target position (not including any peaks arising from
backreflections as previously discussed). This means that
pixelwise cross correlation can give satisfactory results since
there is only one distinct target return (it is worth noting that
the presence of background noise can affect the accuracy of
these estimates). However, for targets behind camouflage
netting or in obscuring media, the histograms may include

Fig. 2 Instrumental timing response taken from a uniform, scattering
surface located in the same nominal plane as the target. The overall
timing jitter (226 ps FWHM) of the system and the detector gating
window of 14 ns duration are shown in the figure. An arbitrary zero
was chosen for the displayed time-scale.

Fig. 3 Example of an aggregated timing histogram of a measurement
of a target placed ∼1 m behind camouflage netting. In this aggregated
histogram, data from all 12800 pixels in the image are summed and
displayed in this single histogram. In the figure, the larger peak con-
sists of the returns from the camouflage netting and the smaller peak
represents the returns from the target. The zero point in the depth axis
is chosen arbitrarily, the camouflage netting was ∼230 m from the
transceiver.
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multiple peaks, with the largest peak not necessarily corre-
sponding to the target position. In this case, the cross corre-
lation will assign a single depth point to only the largest
return peak. To illustrate this, Fig. 3 shows an aggregated
timing histogram constructed from an 80 × 160 pixel meas-
urement of a target located at ∼1 m behind a camouflage net.
This particular histogram, shown in Fig. 3, is the sum of the
histograms from all 12,800 pixels in the depth image. This
figure clearly shows that the return from the camouflage
netting is considerably greater than the return from the target
placed behind the camouflage. Preliminary results show that
more advanced image processing algorithms, designed for
multisurface targets that exploit spatial correlations between
neighboring pixels, can be used to reduce noise and improve
image quality, as described in Sec. 5.

4 Depth Imaging Using the Cross Correlation
Approach

A series of measurements were performed in daylight at
a stand-off distance of 230 m from the transceiver unit. The
weather was dry, with bright daylight and overcast cloud
coverage, with conditions remaining stable for the duration
of the measurements. This section presents preliminary
results from these trials with depth and intensity estimation
of targets obtained using the pixelwise cross correlation algo-
rithm discussed in the previous section. The target scene
comprised of an actor holding one item in different positions.
The first set of measurements was performed with an unob-
structed view of the actors and the second set was performed
with a double layer of commercially available camouflage
netting placed ∼1 m in front of the actors’ standing position
(see Fig. 4).

The first set of targets was imaged at a stand-off distance
of 230 m, unobscured by camouflage. The scanned area
(1 m × 2 m) was mapped by 80 × 160 pixels (X × Y).
This was equivalent to a pixel-to-pixel pitch of 12.5 mm
in both X and Y at the target plane. The focused beam diam-
eter at the target was ∼1 cm, meaning that there was little or
no overlap between adjacent pixels for each scan position.
A per-pixel acquisition time of ∼3.2 ms was used, which
gave a total image scan time of 41.0 s. An average optical

power level of just less than 1 mW at the target was used at
a laser repetition rate of 19.5 MHz. Figure 5 shows the results
from two measurement scenarios: the first scenario consisted
of an actor holding a rocket-propelled grenade (RPG) across
his chest; the second scenario is a different actor holding a
plank of wood in the same position. Both intensity and depth
profiles were obtained using pixelwise cross correlation.
In the results shown in Fig. 5, a threshold has been applied
to the data to exclude pixels with very low levels of photon
returns, since they were unlikely to originate from target
returns. The corresponding pixels in the depth profile were
subsequently excluded.

Due to the inherent problem of range ambiguity in high
repetition rate ToF systems,25 the depth range was taken from
an arbitrary zero point. In a fixed repetition rate LiDAR
system, range ambiguity occurs when there is more than
one possible position for a reflecting surface, which occurs
when, instantaneously, there is more than one optical pulse
in transit. This maximum unambiguous distance (drep) is
dependent on the fixed repetition rate (frep) of the laser as

EQ-TARGET;temp:intralink-;e002;326;532drep ¼
c

2frep
; (2)

where c is the speed of light in a vacuum. Given that a laser
repetition rate of 19.5 MHz was used in these measurements,
the maximum range for unambiguous determination of target
distance was only ∼7.7 m. Range ambiguity can be removed
by a reduction in repetition rate—which can significantly
increase measurement time—or by using techniques such
as laser pulse trains composed of pseudorandom patterns
or by the use of multiple sequential repetition rates.26,27

Some of the background noise exhibited around the target
in Fig. 5 originates from photon returns from foliage far
behind the target illuminated by earlier laser pulses.
Differences in the material reflectivity and dimensions of
both the RPG and the wooden plank are evident in the inten-
sity and depth profiles, making the two objects easily dis-
cernible in this example. The number of photon returns is
dependent on a variety of factors such as acquisition time,
optical power level, and the reflectivity of the target material
at the illumination wavelength.21,26,28 It is evident from these

Fig. 4 (a) Front view photograph of the double layer of commercially available camouflage net which was
located 1 m in front of the target position. (b) Side view of the setup showing both a double layer of
camouflage in front of the target and a single layer behind the target.
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images that at λ ¼ 1550 nm, the clothes of the actors yielded
a significant quantity of photon returns, whereas the gun
handle and the actors’ dark eye-wear yielded considerably
less photon returns. Low photon returns from the face and
hands demonstrate the low reflectivity of human skin at
λ ¼ 1550 nm, as previously shown in Ref. 29. In Fig. 5,
the overall depth range of the image is ∼0.5 m, and the
depth profile appears to show subcentimeter depth features
for most of the target.

The long acquisition time of the entire scan (41.0 s)
used for these measurements was chosen in order to
acquire an image with a far greater amount of photon returns
than required. In these measurements, both the macrotime
(time from start of scan) and the microtime (time between
the corresponding start signal and the recorded photon arrival
time) were recorded for each detection event. This meant that

we could use perpixel acquisition times that were shorter
than the original measurement using shorter duration sec-
tions of each pixel’s entire measurement data. The resulting
depth profiles, for the scenario shown in Fig. 5(f), for
per-pixel acquisition times of 3.2, 1.0, 0.5, and 0.1 ms, which
correspond to image acquisition times of 41.0, 12.8, 6.4, and
1.3 s, respectively, are shown in Fig. 6.

As seen in Fig. 6, the quality of the depth profile degrades
with decreasing acquisition time as the number of photons
arriving back from the target decreases.

Using the same experimental parameters as used for
the unobstructed scenarios, a series of measurements were
performed with the target obscured by camouflage netting.
The target scene consisted of an actor holding the object of
interest (in this case a wooden plank held across the chest)
∼1 m behind two layers of commercially available

Fig. 5 Reconstructed depth and intensity measurements of two unobstructed targets: an actor holding an
RPG across his chest and an actor with a wooden plank in the same position. Thesemeasurements were
taken at a range of 230 m, with a per-pixel acquisition time of ∼3.2 ms and an average optical power level
of just under 1 mW. (a, b) Photographs of the two actors holding the RPG and a wooden plank, respec-
tively. Both photographs were taken from the location of the transceiver unit using a Canon PowerShot
SX700 HS digital camera with the zoom lens set to a focal length of 135 mm. In the photographs, the
faces of the two actors were blurred for anonymity, although it should be noted that both actors are wear-
ing dark eye-wear. (c, d) The intensity maps of both target scenes, with the color scale illustrating photon
counts per pixel. (e, f) The depth profiles of both target scenes where the depth is shown on the color
scale, with zero depth being close to the front surface of the target. A pixel format of 80 × 160 (X × Y ) is
shown for each of the depth and intensity profiles.
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camouflage netting (see Fig. 4). Figure 7 shows the results of
this scenario processed using the pixelwise cross correlation
approach.

As can be seen in Fig. 7(b), when processed using pixel-
wise cross correlation, the intensity map only shows the
camouflage netting due to significantly higher returns.
Note that the netting moved slightly throughout the entire
41.0 s measurement duration due to a slight breeze. The
depth map [Fig. 7(c)] shows a limited amount of detail
from the obscured target where light has propagated through
gaps in the camouflage net. In Fig. 7(c), the camouflage net-
ting can be observed as being at the front of the depth profile
(colored in blue) at a distance of 0.5 m from the reference
point, whereas small regions of the target can be seen at a
depth of ∼1.5 m—a distance of 1 m behind the camouflage
netting. Therefore, in order to more fully profile the
target behind the camouflage, data were selected from only
the 1900 timing bins, which correspond to a 0.6-m depth
range centered around the target. The results [shown in

Figs. 7(d) and 7(e)] demonstrate that even behind a double
layer of camouflage, our approach can provide depth and
intensity reconstruction with approximately centimeter reso-
lution. Such high quality depth and intensity profiling allow
the targets to be identified in these examples. The “missing”
pixels in the depth profile shown in Fig. 7(e) are where there
were insufficient photon returns to provide depth estima-
tions. In order to improve the quality of these depth and
intensity images and permit use with low photon returns,
a bespoke image processing algorithm was developed and
will be described in the next section.

5 Restoration of Depth and Intensity Images Using
an Algorithm Based on a Total Variation
Approach

As highlighted in the results presented in Fig. 6, imaging
a cluttered target (or reducing the acquisition time) can result
in a large proportion of pixels to be either empty or contain

Fig. 6 Depth profiles of an unobstructed target (an actor with a wooden plank held across the chest) at
a range of 230 m. The pixel format was 80 × 160 (X × Y ). Depth profiles were reconstructed from data
with reduced acquisition time: (a) 3.2 ms per pixel, (b) 1.0 ms per pixel, (c) 0.5 ms per pixel, and (d) 0.1 ms
per pixel.

Fig. 7 Analysis of a scene with an actor holding a wooden plank across his chest and standing 1 m
behind camouflage netting at an overall range of ∼230 m. (a) A photograph of the actor holding the
wooden plank behind the camouflage net. (b, c) The intensity and depth profiles of the target scene
using the entire collected single-photon data. (d, e) The intensity and depth profiles after time gating
to exclude all data except those within a 0.6 m range around the target location. The pixel format
used in the depth and intensity profiles was 80 × 160.
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depth information from surfaces that are not relevant.
This challenging problem has already been tackled by
the image processing community and several algorithms,
based on the Poissonian statistics of single-photon data,
have been designed.15,17 For example, Shin et al.17 presented
a reconstruction algorithm that restores multiple depths from
an object behind a scattering media by solving a convex
optimization problem accounting for the Poisson statistics
and the sparsity of the data. However, this algorithm does
not consider the possible spatial correlation of the hidden
object and was only demonstrated using single-photon
data obtained in indoor conditions over a range of 4 m.
Alternatively, Henriksson et al.15 demonstrated a simple mul-
tisurface Gaussian fitting algorithm used in outdoor trials
over tens of meters. This algorithm (i) filters the raw photon
data to obtain a smaller number of peaks and (ii) uses a sim-
ple Gaussian fitting on the filtered histograms in order to
obtain depth information.15 Again this approach does not
account for the spatial correlations of the hidden object
and may present poor results when the measurement time
is reduced. In the presence of multiple surfaces and at
low acquisition times, a reduced number of photon counts
is collected, resulting in no depth data or highly erroneous
depth information being assigned to a significant number of
pixels using pixelwise-based approaches. The resulting data
can be improved using image processing algorithms that take
into account the spatial correlation of the observed targets.30

In this paper, we consider a new algorithm that has two main
objectives: (i) reducing the effect of Poisson noise affecting
the observed histograms and (ii) reconstructing the different
target surfaces. This is achieved by adopting a statistical
approach that restores the LiDAR data while accounting
for the Poisson data statistics and introducing prior informa-
tion to improve the algorithm’s performance. In this paper,
we consider two prior assumptions, the first regularizes

intensities by accounting for spatial correlations between
adjacent pixels; the second assumes a reduced number of
detected peaks that are located in close depth regions,
which regularizes the depths. By denoting by Y the ðT × NÞ
observed histograms gathering the T bins and N pixels, the
algorithm is based on the minimization of a cost function C
with respect to X, as follows:

EQ-TARGET;temp:intralink-;e003;326;675CðXÞ ¼ LðY;XÞ þ τ1ϕ1ðXÞ þ τ2ϕ2ðXÞ; (3)

where τ1 > 0, τ2 > 0, andX is a ðT × NÞmatrix representing
the cloud points after denoising and restoration of the
observed targets. More precisely, the elements of the n’th
pixel xt;n, ∀ t are zero except in the presence of a target
at distance dn, where the value xdn;n ¼ In will be associated
with the target’s intensity In. This cost function accounts for
the Poisson statistics of the observed histograms (Y) through
the use of the log-likelihood of the data LðY;XÞ. However,
since the problem is ill-posed, additional information should
be included to improve its results, which justifies the pres-
ence of the regularization terms ϕ1 and ϕ2. The latter
promote the following properties: (i) a small number of
depths are active with respect to the observation range
window; (ii) the observed objects present spatial correlations
between adjacent pixels. Due to the fine depth resolution
and the large observed range window, the first property
assumes that the number of layers is lower than the number
of available time bins, which is introduced using a collabo-
rative sparse prior ϕ1 associated with an L21-mixed norm.31

The second property is promoted using a convex TV regu-
larization term ϕ2, which is of great interest in the image
processing community since it promotes smoothness while
preserving edges. To deal with sparse data and because of
the fine depth resolution, ϕ2 assumes spatially correlated
pixels after the sum of a predefined set of range bins32

Fig. 8 Point cloud representation of the scene showing both depth and intensity. The target scene con-
sisted of an actor holding a wooden plank when standing 1 m behind camouflage netting at a range of
230 m. The analysis was performed using (a) cross correlation and (b) the new TVþ L21 algorithm.
In both analyses (a) and (b), the entire histogram is analyzed in each case and no time gating was used.
The zero point for the depth axis was chosen arbitrarily. The normalized intensities are represented by
the color scale shown on the right of each image reconstruction.
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(a four neighborhood structure is considered with these
results). The resulting algorithm is therefore denoted by
TVþ L21 to highlight the importance of these regularization
terms. The cost function in Eq. (3) is convex and can be opti-
mized using different convex algorithms, including the alter-
nating direction method of multipliers algorithm considered
in this paper.33,34 More details on the algorithm are presented
in Ref. 35.

Figure 8 compares the pixelwise cross correlation with
the TVþ L21 approach when all the data are used, i.e.,
with no time gating of the data. The figure clearly shows
that the TVþ L21 algorithm has extracted more information
from both the main reflecting surfaces, with the weaker sig-
nal from the target much more evident than in the case of
cross correlation, which will only display the highest ampli-
tude reflection in the histogram. The field trial data were then
processed using the following steps: (i) filter the histograms
using the TVþ L21 algorithm (as in the case of the point
cloud shown in Fig. 8), (ii) time gate the histograms to
extract the temporal region of interest of the target, and
(iii) determine the position and amplitude of the maximum
of each pixel that correspond to the depth and intensity of
the target. Figures 9 and 10 show the estimated depth and

intensity images obtained by the cross correlation and
TVþ L21 algorithms, for different acquisition times while
considering downsampled images of 40 × 80 pixels from
the 80 × 160 acquired pixels.

As expected, there is a decrease in the quality of the
reconstructed image for both algorithms as the acquisition
time is reduced, due to the photon returns being correspond-
ingly lower. With reduced acquisition time, the cross corre-
lation depth estimates exhibit a higher level of noise.
However, the TV approach offers better restoration results
where the noise surrounding the target is reduced, and the
missing pixels of the part of the image comprising the
human figure and the object of interest are restored. This per-
formance was achieved as a result of considering the spatial
correlation between pixels, and the use of collaborative spar-
sity to limit the number of active depths, which are mainly
due to noise. A similar behavior is observed for the inten-
sities where smoother and less noisy results are obtained by
the image processing algorithm, especially at t ¼ 0.1 ms,
where the average photon return from the human target is
well below one photon per pixel. These results highlight
the interest of image processing algorithms in improving
the performance of the sparsity-based single-photon data.

Fig. 9 Depth profiles of the target (actor holding a wooden plank) standing 1 m behind the camouflage
netting. The depth reconstruction is for four different per-pixel acquisition times of 3.2, 1, 0.5, and 0.1 ms
(shown left to right). (a) The pixelwise cross correlation algorithm used for time-gated data corresponding
to 4 ns and (b) the new TVþ L21 algorithm for the same time-gated data used in (a). This figure shows
downsampled images of 40 × 80 pixels.
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6 Conclusion
This paper presents reconstructions of high-resolution depth
and intensity profiles of distant targets obscured by camou-
flage. The data used were acquired at outdoor field trials
using a single-photon ToF scanner, and the images were
reconstructed using extremely low levels of photon return,
down to a level of under 1 photon per-pixel, on average.
All measurements were taken at a stand-off distance of
230 m in daylight, and the scanning transceiver operated
at a wavelength of 1550 nm. The pulsed laser used had
an average optical power of just under 1 mW, although con-
siderable reductions in measurement acquisition time are
possible with a modest increase in laser power. Overall,
a good level of target identification can be observed, even
for the camouflaged targets. This paper also presented
an algorithm to restore the 3-D data cube representing
histograms of single-photon data. The proposed method is
based on an optimization of a convex cost function com-
posed of a data fidelity term and regularization terms. The
proposed formulation and algorithm showed good restora-
tion results when processing field trial data representing

a human figure standing behind a camouflage net. Such algo-
rithm development and characterization will contribute to
a more complete depth imaging model to inform next-
generation single-photon transceiver design and to test the
performance limits in terms of maximum stand-off distance,
optical power requirements, and frame rate.

Acknowledgments
The authors thank Bradley Schilling of the US Army
RDECOM CERDEC NVESD and his team for their assis-
tance with the field trial measurements described in this
paper. This work was supported by the Defence Science
and Technology Laboratory (DSTL), the DSTL National
PhD Scheme, and the UK Engineering and Physical
Sciences Research Council Grants EP/N003446/1, EP/
K015338/1, EP/M01326X/1, and EP/J015180/1.

References

1. V. Molebny et al., “Laser radar: historical prospective from the east to
the west,” Opt. Eng. 56(3), 031220 (2017).

2. G. S. Buller and A. M. Wallace, “Ranging and three-dimensional im-
aging using time-correlated single-photon counting and point-by-point

Fig. 10 Intensity profiles of the target (actor holding a wooden plank) standing 1 m behind the camou-
flage netting. The intensity reconstruction is for four different per-pixel acquisition times of 3.2, 1, 0.5, and
0.1 ms (shown left to right). (a) The pixelwise cross correlation algorithm used for time-gated data
corresponding to 4 ns and (b) the new TVþ L21 algorithm for the same time-gated data. This figure
shows downsampled images of 40 × 80 pixels.

Optical Engineering 031303-9 March 2018 • Vol. 57(3)

Tobin et al.: Long-range depth profiling of camouflaged targets using single-photon detection

http://dx.doi.org/10.1117/1.OE.56.3.031220


acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015
(2007).

3. A. McCarthy et al., “Long-range time-of-flight scanning sensor based
on high-speed time-correlated single-photon counting,” Appl. Opt.
48(32), 6241–6251 (2009).

4. A. M. Pawlikowska et al., “Single-photon three-dimensional imaging at
up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).

5. Z. Li et al., “Multi-beam single-photon-counting three-dimensional
imaging lidar,” Opt. Express 25, 10189–10195 (2017).

6. A. Maccarone et al., “Underwater depth imaging using time-correlated
single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).

7. A. Halimi et al., “Object depth profile and reflectivity restoration from
sparse single-photon data acquired in underwater environments,” IEEE
Trans. Comput. Imaging 3, 472–484 (2017).

8. A. M. Wallace et al., “Design and evaluation of multispectral lidar for
the recovery of arboreal parameters,” IEEE Trans. Geosci. Remote Sens.
52(8), 4942–4954 (2014).

9. D. Shin et al., “Photon-efficient imaging with a single-photon camera,”
Nat. Commun. 7, 12046 (2016).

10. R. H. Hadfield, “Single-photon detectors for optical quantum informa-
tion applications,” Nat. Photonics 3(12), 696–705 (2009).

11. S. Cova et al., “Avalanche photodiodes and quenching circuits for
single-photon detection,” Appl. Opt. 35, 1956–1976 (1996).

12. G. S. Buller and R. J. Collins, “Single-photon generation and detection,”
Meas. Sci. Technol. 21(1), 012002 (2009).

13. B. W. Schilling et al., “Multiple-return laser radar for three-dimensional
imaging through obscurations,” Appl. Opt. 41(15), 2791–2799 (2002).

14. O. Steinvall et al., “Performance of 3D laser radar through vegetation
and camouflage,” Proc. SPIE 5792, 129–142 (2005).

15. M. Henriksson et al., “Continuously scanning time-correlated single-
photon-counting single-pixel 3-D lidar,” Opt. Eng. 56(3), 031204
(2017).

16. A. M. Wallace et al., “Full waveform analysis for long-range 3D imaging
laser radar,” EURASIP J. Adv. Signal Process. 2010(1), 896708 (2010).

17. D. Shin et al., “Computational multi-depth single-photon imaging,”Opt.
Express 24(3), 1873–1888 (2016).

18. D. Killinger, “Free space optics for laser communication through the
air,” Opt. Photonics News 13(10), 36–42 (2002).

19. I. I. Kim, M. Mitchell, and E. J. Korevaar, “Measurement of scintillation
for free-space laser communication at 785 nm and 1550 nm,” Proc.
SPIE 3850, 49–62 (1999).

20. F. Nadeem et al., “Continental fog attenuation empirical relationship
from measured visibility data,” Radioengineering 19(4), 596–600
(2010).

21. A. McCarthy et al., “Kilometer-range depth imaging at 1550 nm wave-
length using an InGaAs/InP single-photon avalanche diode detector,”
Opt. Express 21(19), 22098–22113 (2013).

22. A. Tosi et al., “Fully programmable single-photon detection module for
InGaAs/InP single-photon avalanche diodes with clean and sub-nano-
second gating transitions,” Rev. Sci. Instrum. 83(1), 013104 (2012).

23. G. S. Buller et al., “Single-photon avalanche diode detectors for quan-
tum key distribution,” IET Optoelectron. 1(6), 249–254 (2007).

24. M. A. Itzler, X. Jiang, and M. Entwistle, “Power law temporal depend-
ence of InGaAs/InP SPAD afterpulsing,” J. Mod. Opt. 59(17), 1472–
1480 (2012).

25. P. A. Hiskett et al., “A photon-counting time-of-flight ranging technique
developed for the avoidance of range ambiguity at gigahertz clock
rates,” Opt. Express 16, 13685–13698 (2008).

26. N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambi-
guity in a photon counting depth imager operating at kilometer distan-
ces,” Opt. Express 18(9), 9192–9206 (2010).

27. Y. Liang et al., “1550 nm time-of-flight ranging system employing
laser with multiple repetition rates for reducing the range ambiguity,”
Opt. Express 22, 4662–4670 (2014).

28. J. S. Massa et al., “Time-of-flight optical ranging system based on time-
correlated single-photon counting,” Appl. Opt. 37(31), 7298–7304
(1998).

29. C. C. Cooksey, B. K. Tsai, and D. W. Allen, “A collection and statistical
analysis of skin reflectance signatures for inherent variability over the
250 nm to 2500 nm spectral range,” Proc. SPIE 9082, 908206 (2014).

30. A. Kirmani et al., “First-photon imaging,” Science 343(6166), 58–61
(2014).

31. P. Sprechmann et al., “Collaborative hierarchical sparse modeling,” in
44th Annual Conf. on Information Sciences and Systems (CISS ’10),
pp. 1–6, IEEE (2010).

32. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Phys. D 60(1), 259–268 (1992).

33. S. Boyd et al., “Distributed optimization and statistical learning via
the alternating direction method of multipliers,” FNT Mach. Learn.
3, 1–122 (2011).

34. A. Halimi et al., “Fast hyperspectral unmixing in presence of nonlinear-
ity or mismodeling effects,” IEEE Trans. Comput. Imaging 3, 146–159
(2017).

35. A. Halimi et al., “Restoration of multilayered single-photon 3D lidar
images,” in 25th European Signal Processing Conf. (EUSIPCO ’17),
pp. 708–712 (2017).

Rachael Tobin is a PhD research student under the supervision of
Professor Gerald S. Buller in the Institute of Photonics and
Quantum Sciences at Heriot–Watt University. She received her
B.Sc. (Hons) in physics from Heriot–Watt University and began her
PhD in 2015. Her current research interests include single-photon
LiDAR and imaging through obscurants at low light levels.

Abderrahim Halimi received his Eng. degree in electronics from the
National Polytechnic School of Algiers, Algeria, in 2009, and both his
MSc and PhD degrees in signal processing from the Institut National
Polytechnique de Toulouse, Toulouse, France, in 2010 and 2013,
respectively. From October 2013 to September 2015, he was a post-
doctoral research associate with the University of Toulouse and
the University of Technology of Troyes, France, under the support of
the HYPANEMA ANR Project. Since November 2015, he has been
a postdoctoral research associate within the School of Engineering
and Physical Sciences, Heriot–Watt University. His research activities
focus on statistical signal and image processing, with a particular
interest in Bayesian inverse problems with applications to hyperspec-
tral imaging, satellite altimetry, and single-photon depth imaging.

Aongus McCarthy received his BSc degree from the University
College Galway, Galway, Ireland, in 1989, the diploma degree in elec-
tronics engineering from the Institute of Technology, Carlow, Ireland,
in 1990, his BSc degree in physical optoelectronics from Essex
University, Essex, United Kingdom, in 1991, and his PhD in physics
from Heriot–Watt University, Edinburgh, United Kingdom, in 2002. He
worked in industry from 1992 until 1997 as a design team leader on
the development of a thermal transfer printing system. He is currently
a research fellow with the School of Engineering and Physical
Sciences, Heriot–Watt University. His research interests include opti-
cal and optomechanical system design, time-of-flight depth imaging,
single-photon counting technologies, and microscope systems. He is
a member of the Optical Society of America (OSA) and the IEEE
Photonics Society.

Ximing Ren received his PhD in physics with a prize scholarship from
the Scottish Universities Physics Alliance in the Single-Photon Group
at Heriot–Watt University, United Kingdom, studying single-photon
time-of-flight imaging under the supervision of Prof. Gerald S.
Buller in 2015. He is currently a postdoctoral research associate
with the Institute of Photonics and Quantum Sciences, Heriot–Watt
University. He is interested in the research of sparse photon depth
imaging, using single-photon detectors. This involves optical imaging
at the extreme levels of sensitivity and time resolution in order to
reconstruct 3-D profiles of objects in challenging environments
(e.g., underwater or at long distances). He is a member of the OSA.

Kenneth J. McEwan graduated with a BSc (Hons) degree in physics
from the University of Strathclyde in 1986 then joined the Royal
Signals and Radar Establishment (RSRE) in Malvern. While working
at RSRE he obtained a DPhil degree in physical chemistry from the
University of Oxford in 1991. He is currently a fellow at the Defence
Science and Technology Laboratory at Porton Down and
a fellow of the UK Institute of Physics. His role covers the military
applications of electro-optic systems with current interests in
advanced thermal imaging, imaging through obscuration, and stand-
off chemical detection.

Stephen McLaughlin is a professor of signal processing and head of
the School of Engineering and Physical Sciences. His research inter-
ests lie in the fields of adaptive signal processing and nonlinear
dynamical systems theory and their applications to biomedical,
energy and communication systems. He is a fellow of the Royal
Academy of Engineering, the Royal Society of Edinburgh, the
Institute of Engineering and Technology, and the IEEE.

Gerald S. Buller graduated with his BSc (Hons) degree in natural
philosophy from the University of Glasgow in 1986 and his PhD in
physics from Heriot–Watt University in 1989. Currently, he is a profes-
sor of physics at Heriot–Watt University and holds an EPSRC estab-
lished career fellowship. He cofounded Helia Photonics Ltd. in 2002,
where he remains company chairman. He is a fellow of the Royal
Society of Edinburgh, a fellow of the UK Institute of Physics, and
a fellow of the OSA. His research interests are single-photon physics
and applications, including single-photon imaging, single-photon
detectors, and quantum communication.

Optical Engineering 031303-10 March 2018 • Vol. 57(3)

Tobin et al.: Long-range depth profiling of camouflaged targets using single-photon detection

http://dx.doi.org/10.1109/JSTQE.2007.902850
http://dx.doi.org/10.1364/AO.48.006241
http://dx.doi.org/10.1364/OE.25.011919
http://dx.doi.org/10.1364/OE.25.010189
http://dx.doi.org/10.1364/OE.23.033911
http://dx.doi.org/10.1109/TCI.2017.2669867
http://dx.doi.org/10.1109/TCI.2017.2669867
http://dx.doi.org/10.1109/TGRS.2013.2285942
http://dx.doi.org/10.1038/ncomms12046
http://dx.doi.org/10.1038/nphoton.2009.230
http://dx.doi.org/10.1364/AO.35.001956
http://dx.doi.org/10.1088/0957-0233/21/1/012002
http://dx.doi.org/10.1364/AO.41.002791
http://dx.doi.org/10.1117/12.603546
http://dx.doi.org/10.1117/1.OE.56.3.031204
http://dx.doi.org/10.1155/2010/896708
http://dx.doi.org/10.1364/OE.24.001873
http://dx.doi.org/10.1364/OE.24.001873
http://dx.doi.org/10.1364/OPN.13.10.000036
http://dx.doi.org/10.1117/12.372823
http://dx.doi.org/10.1117/12.372823
http://dx.doi.org/10.1364/OE.21.022098
http://dx.doi.org/10.1063/1.3675579
http://dx.doi.org/10.1049/iet-opt:20070046
http://dx.doi.org/10.1080/09500340.2012.698659
http://dx.doi.org/10.1364/OE.16.013685
http://dx.doi.org/10.1364/OE.18.009192
http://dx.doi.org/10.1364/OE.22.004662
http://dx.doi.org/10.1364/AO.37.007298
http://dx.doi.org/10.1117/12.2053604
http://dx.doi.org/10.1126/science.1246775
http://dx.doi.org/10.1109/CISS.2010.5464845
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1109/TCI.2016.2631979
http://dx.doi.org/10.23919/EUSIPCO.2017.8081299

