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Abstract. Although quantum key distribution is regarded as promising secure communication, security of Y00
protocol proposed by Yuen in 2000 for the affinity to conventional optical communication is not well-understood
yet; its security has been evaluated only by the eavesdropper’s error probabilities of detecting individual signals
or masking size, the number of hidden signal levels under quantum and classical noise. Our study is the first
challenge of evaluating the guessing probabilities on shared secret keys for pseudorandom number generators
in a simplified Y00 communication system based on quantum multiple hypotheses testing theory. The result is
that even unlimitedly long known-plaintext attack only lets the eavesdropper guess the shared secret keys of
limited lengths with a probability strictly <1. This study will give some insights for detailed future works on this
quantum communication protocol. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
Recent heating-up in the development race of quantum com-
puters brings attention to secure communications that are
resistant to quantum computers. Quantum key distribution
(QKD) has been said to be the most promising technology
to protect communications from cryptanalysis even with
quantum computers.

On the other hand, Y00 protocol proposed by Yuen (its
original name is αη) in 20001–3 is compatible to conventional
high-speed and long-distance optical communication tech-
nologies while it sends messages directly and hides them
under quantum noise, enhancing the security of conventional
cryptographies.4–14 However, its security has not been well-
understood except some evaluations by unicity distance,15,16

numerical analyses by masking sizes that are the numbers of
signal levels hidden under quantum noise,17,18 or error prob-
ability in eavesdropping on individual signals.19 Therefore,
since fast correlation attack on Y00 protocol was found,20,21

Y00 protocol has been believed to be computationally secure
while QKDs are information-theoretically secure, although
“irregular mapping” was equipped on Y00 systems as a
countermeasure to fast correlation attack.22

This study gives the first example of security analysis on
Y00 protocol with an unlimitedly long known-plaintext
attack (KPA) by quantum multiple hypotheses testing theory.
It shows that Y00 protocol is secure with guessing probabil-
ities on the two shared secret keys of 128 bits strictly <1 even
under unlimitedly long KPA. However, as time passes the
attack increases the guessing probability, hence fresh keys
have to be sent instead of messages before Y00 communi-
cation systems are breached. In this case, if the probability
distribution of the provided fresh key is uniform, the guess-
ing probability on the key has to be evaluated by ciphertext-

only attack (COA). There are still some assumptions in this
study, therefore, this study is not rigorous yet. However,
it will give a better understanding of the security of Y00
protocol and some insights for detailed future works.

One of the major methods to evaluate information-
theoretic security has been calculation of the guessing prob-
ability on secret keys since Shannon23 and in the literature
following.24,25 Therefore, this study follows these concepts
as well to evaluate the security of Y00 protocol.

2 Known Works on Security Evaluations on
Information-Theoretic Secure Cryptography

The founder of the information theory, Shannon proved that
the “perfect secrecy” is satisfied only when the length of the
encryption key k with its probability distribution indepen-
dent and identically distributed has to be longer than the
plaintext x, which is one-time pad.23 Then the ciphertext
string c is given by the modulo-2 addition of x and k:

EQ-TARGET;temp:intralink-;e001;326;268xþ k ¼ cðmod 2Þ: (1)

Therefore,

EQ-TARGET;temp:intralink-;e002;326;226 PrðxjcÞ ¼ PrðxÞ: (2)

Alimomeni and Safavi-Naini24 proposed “guessing secrecy,”
generalizing Shannon’s concept; the encryption is not per-
fectly secure, but the key is obtained only probabilistically
by Eve’s guess as

EQ-TARGET;temp:intralink-;e003;326;156

X
c∈C

PrðcÞmaxx∈X PrðxjcÞ ¼ maxx∈X PrðxÞ: (3)

Iwamoto and Shikata25 proposed “worst-case guessing
secrecy,” considering the worst scenario such as

EQ-TARGET;temp:intralink-;e004;326;92maxðx;cÞ∈ðX;CÞ PrðxjcÞ ¼ maxx∈X PrðxÞ: (4)
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Therefore, this study follows the above concepts “guessing
probability on the key” to evaluate the security of Y00
protocol.

3 Security of Conventional Stream Ciphers Under
Long Known-Plaintext Attack

This section treats the security of conventional stream
ciphers with KPA; those are not randomized by quantum
noise to give a better understanding on the security of
Y00 protocol, which is a stream cipher randomized by quan-
tum noise. In conventional stream ciphers, a shared secret
key k is fed into the pseudorandom number generator
(PRNG) to generate a key stream s. A plaintext string x
from a sender, Alice, is converted into a ciphertext string c ¼
xþ smod 2. To decode c, the receiver, Bob, feeds the shared
k into his common PRNG, then recovers x ¼ cþ s mod 2. If
Eve has the same PRNG and knows x during a period of s,
she obtains s completely, hence her correspondence table of
k ↔ s recovers the original key k no matter how much com-
putationally complex the key expansion process is. Then
Eve can read all messages from the next period. In terms of
conditional probability, this means

EQ-TARGET;temp:intralink-;e005;63;509 Prðsjc; xÞ ¼ Prðkjc; xÞ ¼ 1: (5)

4 Security of Y00 protocol Under KPA During Least
Common Multiple of PRNGs’ Periods

This section describes the security of Y00 protocol with
KPA during the least common multiple (LCM) of the two
PRNGs’ periods using quantum multiple hypotheses testing
theory.26,27

4.1 Principles of Binary Y00 Quantum Stream Cipher

To start Y00 protocol, the legitimate users Alice and Bob
have to share a secret key k. Then they expand k into
a key stream s using a common PRNG equipped in each
transmitter/receiver. Then s is chopped every log2 M bits
to form M-ary string sðtÞ of times lot t while a message
bit xðtÞ is encoded into a coherent state jα½mðtÞ�i using
sðtÞ as
EQ-TARGET;temp:intralink-;e006;63;296mðtÞ ≔ Map½sðtÞ� þMfMap½sðtÞ� þ xðtÞmod 2g: (6)

Map½sðtÞ� is a projection from sðtÞ to Map½sðtÞ� ∈ f0;1; 2;3;
: : : ;M − 1g. Therefore, the message bit xðtÞ ∈ f0;1g corre-
sponds to a set of quantum states fjα½mðtÞ�i; jα½mðtÞ þM�ig
for even number Map½sðtÞ�, otherwise fjα½mðtÞ þM�i;
jα½mðtÞ�ig. On the other hand, Bob’s receiver sets an optimal
threshold(s) to discriminate the set of quantum states.
Therefore, he decodes xðtÞ since he knows Map½sðtÞ� thanks
to the common PRNG and the shared k. On the other hand,
the eavesdropper, Eve, has to discriminate 2M-ary signals
hidden under overlapping quantum and classical noise
since she does not know whether Map½sðtÞ� is even or odd,
hence xðtÞ neither.

When Eve launches KPA, a number of the hidden signal
level under noise effectively halves, hence it might help Eve
to guess k.

To avoid the situation, overlap-selection-keying was
proposed.28 An additional pair of PRNGs with another
shared key Δk are equipped in both a transmitter and

a receiver to randomize the plaintext x with pseudorandom
number Δx as

EQ-TARGET;temp:intralink-;e007;326;730mðtÞ ≔ Map½sðtÞ� þMfMap½sðtÞ� þ xðtÞ þ ΔxðtÞmod 2g:
(7)

Then the transmitter Alice sends a coherent state ρ½mðtÞ�with
classical randomizations named DSR and DER19 although
these are omitted in this study for simplicity.

Eve obtains coherent states separated from a beam-splitter
ρ 0½mðtÞ� and stores its time sequence in her quantum
memory. Denote the quantum sequence ρ 0ðx; s;ΔxÞ with
the splitting ratio η as
EQ-TARGET;temp:intralink-;e008;326;609

ρ 0ðx; s;ΔxÞ ≔ jηαðx; s;ΔxÞihηαðx; s;ΔxÞj
¼⊗T−1

t¼0 jηα½mðtÞ�ihηα½mðtÞ�j: (8)

Note that a set of (s;Δx) ∈ ðS;ΔXÞ is generated from (k;Δk)
∈ ðK;ΔKÞ. Therefore, there are only 2jKjþjΔKj patterns of
signal sequences, although the number of signal levels is
2M and the period of KPA is T. Hence, what Eve needs
is not 2M · T-ary quantum decision theory but 2jKjþjΔKj-ary
one, no matter how long the key-stream lengths of s and Δx
are. Therefore, the main problem is whether Eve can deter-
mine the correct ðs;ΔxÞ in the LCM of the periods of ðs;ΔxÞ
denoted as TLCM, like in case of the conventional
stream cipher explained in Sec. 3 or she needs longer than
TLCM .

4.2 Brief Description of M-ary Quantum Detection
Theory

Before this section starts, here are some assumptions to be
satisfied.

• The projection Map[·] stays unchanged during the
running of Y00 protocol.

• Map[·] is known to Eve according to the Kerckhoffs’
principle, as known as Shannon’s maxim.

• Map[·] is well-designed irregular mapping so that
quantum noise covers all bits in sðtÞ equally.

The set of Eve’s measurement operators fEðs;ΔxjxÞg
satisfies

EQ-TARGET;temp:intralink-;e009;326;264

X
ðs;ΔxÞ∈ðS;ΔXÞ

Eðs;ΔxjxÞ ¼ I: (9)

By the Born rule, the measurement operator Eðs 0;Δx 0jxÞ
gives Eve a measurement result ðs 0;Δx 0Þ ∈ ðS;ΔXÞ from
a quantum state ρ 0ðx; s;ΔxÞ with a probability of

EQ-TARGET;temp:intralink-;e10;326;180tr½Eðs 0;Δx 0jxÞρ 0ðx; s;ΔxÞ� ¼ Prðs 0;Δx 0jx; s;ΔxÞ. (10)

Quantum multiple hypotheses testing theory based on the
Bayes criterion is applicable to decide which (s 0;Δx 0) is
the most possible. Let the Bayes cost in the theory be as
described in

EQ-TARGET;temp:intralink-;e011;326;99Cðs;Δx; s 0;Δx 0jxÞ ≔ −δs;s 0δΔx;Δx 0 . (11)
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When the prior probability is Prðs;ΔxÞ, the average Bayes
cost is
EQ-TARGET;temp:intralink-;e012;63;730

Ex½C� ¼ −
X

ðs;ΔxÞ;ðs 0;Δx 0Þ∈ðS;ΔXÞ
Prðs;ΔxÞδs;s 0δΔx;Δx 0

× tr½ρ 0ðx; s;ΔxÞEðs 0;Δx 0jxÞ�: (12)

The Hermitian risk operators are
EQ-TARGET;temp:intralink-;e013;63;658

Wðx;s0;Δx0Þ≔
X

ðs;ΔxÞ∈ðS;ΔXÞ
Prðs;ΔxÞð−δs;s0δΔx;Δx0 Þρ0ðx;s;ΔxÞ:

¼−Prðs0;Δx0Þρ0ðx;s0;Δx0Þ
¼−Prðs0;Δx0Þjηαðx;s0;Δx0Þihηαðx;s0;Δx0Þj:

(13)

To minimize Eve’s error probability, the necessary and
sufficient conditions are26

EQ-TARGET;temp:intralink-;e014;63;545½Wðx;s;ΔxÞ−Γ�Eðs;ΔxjxÞ¼Eðs;ΔxjxÞ½Wðx;s;ΔxÞ−Γ�¼0;

(14)

EQ-TARGET;temp:intralink-;e015;63;484Eðs;ΔxjxÞ½Wðx; s 0;Δx 0Þ −Wðx; s;ΔxÞ�Eðs 0;Δx 0jxÞ ¼ 0;

(15)

EQ-TARGET;temp:intralink-;e016;63;444Wðx; s;ΔxÞ − Γ ≥ 0; (16)

EQ-TARGET;temp:intralink-;e017;63;417

Γ ≔
X

ðs;ΔxÞ∈ðS;ΔXÞ
Eðs;ΔxjxÞWðx; s;ΔxÞ

¼
X

ðs;ΔxÞ∈ðS;ΔXÞ
Wðx; s;ΔxÞEðs;ΔxjxÞ: (17)

Then Eve’s maximum success probability of obtaining the
correct (s;Δx) is
EQ-TARGET;temp:intralink-;e018;63;336

Prðs;Δxjx; s;ΔxÞ ¼ 1 − ð1þ tr ΓÞ ¼ −tr Γ

¼
X

ðs;ΔxÞ∈ðS;ΔXÞ
Prðs;ΔxÞhηαðx; s;ΔxÞj

· Eðs;ΔxjxÞjηαðx; s;ΔxÞi: (18)

Now, denote Eðs;ΔxjxÞ as
EQ-TARGET;temp:intralink-;e019;63;247Eðs;ΔxjxÞ ≔ jðs;ΔxjxÞihðs;ΔxjxÞj: (19)

From Eq. (15),
EQ-TARGET;temp:intralink-;e020;63;205

Prðs;ΔxÞhðs;ΔxjxÞjηαðx;s0;Δx0Þihηαðx;s0;Δx0Þjðs0;Δx0jxÞi
¼Prðs0;Δx0Þhðs;ΔxjxÞjηαðx;s;ΔxÞihηαðx;s;ΔxÞjðs0;Δx0jxÞi:

(20)

For pure states, from Eq. (8),
EQ-TARGET;temp:intralink-;e021;63;127hηαðx; s 0;Δx 0Þjηαðx; s 0;Δx 0Þi ¼ 1

¼
X

ðs;ΔxÞ∈ðS;ΔXÞ
jhηαðx; s 0;Δx 0Þjðs;ΔxjxÞij2: (21)

Therefore, Eq. (20) gives 22jKjþ2jΔKj − 2jKjþjΔKj equalities
and Eq. (21) gives 2jKjþjΔKj equalities. Thus there are
22jKjþ2jΔKj equations in total, and there are 23jKjþ3jΔKj varia-
bles including fPrðs;ΔxÞg.

To remove remained variables fPrðs;ΔxÞg, apply
Cauchy–Schwarz inequality to Eq. (18):

EQ-TARGET;temp:intralink-;e022;326;683

−tr Γ ¼
X

ðs;ΔxÞ∈ðS;ΔXÞ
Prðs;ΔxÞjhηαðx; s;ΔxÞjðs;ΔxjxÞij2

≤

2
4 X
ðs;ΔxÞ∈ðS;ΔXÞ

Pr ðs;ΔxÞ2
3
5
1∕2

×

2
4 X
ðs;ΔxÞ∈ðS;ΔXÞ

jhηαðx; s;ΔxÞjðs;ΔxjxÞij4
3
5
1∕2

: (22)

Let Eve know the prior probability Prðs;ΔxÞ under
Shannon’s maxim. Then Eve can choose her fEðs;ΔxjxÞg
so that the equality of Eq. (23) is satisfied

EQ-TARGET;temp:intralink-;e023;326;524 Prðs;ΔxÞ ¼ jhηαðx; s;ΔxÞjðs;ΔxjxÞij2P
ðs;ΔxÞ∈ðS;ΔXÞ jhηαðx; s;ΔxÞjðs;ΔxjxÞij2

:

(23)

Therefore, the prior probability distribution fPrðs;ΔxÞg
vanishes as follows:

EQ-TARGET;temp:intralink-;e024;326;442 max½−tr Γ� ¼
P

ðs;ΔxÞ∈ðS;ΔXÞjhηαðx; s;ΔxÞjðs;ΔxjxÞij4P
ðs;ΔxÞ∈ðS;ΔXÞ

jhηαðx; s;ΔxÞjðs;ΔxjxÞij2 :

(24)

The condition Eq. (23) satisfies Eq. (14) trivially, and
Eqs. (15) and (16) are converted as follows:

EQ-TARGET;temp:intralink-;e025;326;350jhηαðx; s 0;Δx 0Þjðs 0;Δx 0jxÞij2hðs;ΔxjxÞjηαðx; s 0;Δx 0 Þi
× hηαðx; s 0;Δx 0Þjðs 0;Δx 0jxÞi

¼ jhηαðx; s;ΔxÞjðs;ΔxjxÞij2hðs;ΔxjxÞjηαðx; s;ΔxÞi
× hηαðx; s;ΔxÞjðs 0;Δx 0jxÞi: (25)

EQ-TARGET;temp:intralink-;e026;326;255hðs;ΔxjxÞj½Wðx; s;ΔxÞ − Γ�jðs;ΔxjxÞi
×

X
ðs;ΔxÞ∈ðS;ΔXÞ

jhηαðx; s;ΔxÞjðs;ΔxjxÞij2

¼ −jhηαðx; s;ΔxÞjðs;ΔxjxÞij4
þ

X
ðs;ΔxÞ∈ðS;ΔXÞ

jhηαðx; s;ΔxÞjðs;ΔxjxÞij4 ≥ 0: (26)

Therefore, Eq. (26) originated from Eq. (16) is also satisfied
while a new condition is Eq. (25). The absolute value of
Eq. (25) is
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EQ-TARGET;temp:intralink-;e027;63;752jhηαðx; s 0;Δx 0Þjðs 0;Δx 0jxÞij4jhðs;ΔxjxÞjηαðx; s 0;Δx 0Þij2
¼ jhηαðx; s;ΔxÞjðs;ΔxjxÞij4jhðs 0;Δx 0jxÞjηαðx; s;ΔxÞij2:

(27)

4.3 Security of Y00 under KPA on Secret Key:
In Case of Exact Signal Detections for Eve

Although it is impossible for Eve to obtain the correct signal
sequence without any errors because of quantum noise in
Y00 protocol, it is worth considering an imaginary case
where Eve could detect signals without any errors to com-
pare Y00 protocol with conventional stream ciphers in
Sec. 3.

The situation where Eve could detect signals without any
errors is that, from the Born rule,

EQ-TARGET;temp:intralink-;e028;63;581jhðs;ΔxjxÞjηαðx; s 0 ≠ s;Δx 0 ≠ ΔxÞij2 ¼ 0: (28)

Equation (28) also implies from Eq. (21) that

EQ-TARGET;temp:intralink-;e029;63;539hηαðx; s 0;Δx 0Þjηαðx; s 0;Δx 0Þi ¼ 1

¼ jhηαðx; s;ΔxÞjðs;ΔxjxÞij2: (29)

Then from the left-hand side of Eq. (22),

EQ-TARGET;temp:intralink-;e030;63;477

−tr Γ ¼
X

ðs;ΔxÞ∈ðS;ΔXÞ
Prðs;ΔxÞjhηαðx; s;ΔxÞjðs;ΔxjxÞij2 ¼ 1:

(30)

Therefore, through one period of (s;Δx), that is TLCM, Eve
would obtain the correct (s;Δx) with a probability of 1. Then
the situation is the same as conventional stream ciphers.
Therefore, the effect of unavoidable quantum noise in
Eq. (28) as a nonzero factor should play an important role
in Y00 protocol.

4.4 Security of Y00 under KPA on Secret Key:
In Case of Erroneous Signal Detections for Eve

Unless Eve’s detections are error-free expressed by Eq. (28),
from Eq. (21),

EQ-TARGET;temp:intralink-;e031;63;290jhηαðx; s;ΔxÞjðs;ΔxjxÞij2 < 1: (31)

Therefore, Eq. (24) satisfies the following inequality as well:

EQ-TARGET;temp:intralink-;e032;326;752 max½−tr Γ� ¼
P

ðs;ΔxÞ∈ðS;ΔXÞjhηαðx; s;ΔxÞjðs;ΔxjxÞij4P
ðs;ΔxÞ∈ðS;ΔXÞ

jhηαðx; s;ΔxÞjðs;ΔxjxÞij2 < 1:

(32)

Even if Prðs;ΔxÞ is uniform, that is Prðs;ΔxÞ ¼ 2−jKj−jΔKj,
since Eve has to make the success probability in measure-
ment larger than the failure probability,

EQ-TARGET;temp:intralink-;e033;326;657jhηαðx; s;ΔxÞjðs;ΔxjxÞij2 ≥ jhηαðx; s;ΔxÞjðs 0;Δx 0jxÞij2:
(33)

Then from Eqs. (21) and (22),
EQ-TARGET;temp:intralink-;e034;326;601

−tr Γ ¼
X

ðs;ΔxÞ∈ðS;ΔXÞ
Prðs;ΔxÞjhηαðx; s;ΔxÞjðs;ΔxjxÞij2

¼ 2−jKj−jΔKj
X

ðs;ΔxÞ∈ðS;ΔXÞ
jhηαðx; s;ΔxÞjðs;ΔxjxÞij2

≥ 2−jKj−jΔKj: (34)

Therefore, Eve has an advantage in obtaining the correct
(s;Δx) compared to pure-guessing. Thus even Eve launches
KPA using quantum multiple hypotheses testing theory dur-
ing an LCM of the periods of two PRNGs; she cannot pin
down the keys deterministically, far different from conven-
tional stream ciphers. The problem is how long Y00 protocol
stays secure.

5 Security of Y00 Protocol under Unlimitedly Long
KPA

This section describes the security of Y00 protocol under
unlimitedly long KPA so that Eve guesses the most likely
by the Bayes criterion.29

5.1 Y00 Protocol Under Unlimitedly Long KPA

Since (s;Δx) is pseudorandom of a period of TLCM while the
plaintext x is supposed not to repeat, Eve can statistically
confirm the most likely (s;Δx) during N · TLCM periods
as shown in Table 1.

At the n 0th period of n ∈ f1;2; 3; : : : ; Ng, Eve
measures coherent states jηαðxn; s;ΔxÞi with a set of oper-
ators denoted as fEðs;ΔxjxnÞg based on known plaintext xn:
EQ-TARGET;temp:intralink-;e035;326;263½Wðxn; s;ΔxÞ − Γ�Eðs;ΔxjxnÞ

¼ Eðs;ΔxjxnÞ½Wðxn; s;ΔxÞ − Γ� ¼ 0; (35)

Table 1 A timetable of a set of variables (m, s, Δx , and x ).

t 0 1 . . . T LCM − 1 T LCM . . . 2T LCM–1 2T LCM . . . 3T LCM–1 3TLCM . . .

m mð0Þ mð1Þ . . . mðT LCM–1Þ mðT LCMÞ . . . mð2T LCM–1Þ mð2T LCMÞ . . . mð3T LCM–1Þ mð3T LCMÞ . . .

s sð0Þ sð1Þ . . . sðT LCM–1Þ sð0Þ . . . sðT LCM–1Þ sð0Þ . . . sðT LCM–1Þ sð0Þ . . .

Δx Δxð0Þ Δxð1Þ . . . ΔxðT LCM–1Þ Δxð0Þ . . . ΔxðT LCM–1Þ Δxð0Þ . . . ΔxðT LCM–1Þ Δxð0Þ . . .

x xð0Þ xð1Þ . . . xðT LCM–1Þ xðT LCMÞ . . . xð2T LCM–1Þ xð2T LCMÞ . . . xð3T LCM–1Þ xð3T LCMÞ . . .
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EQ-TARGET;temp:intralink-;e036;63;752

Eðs;ΔxjxnÞ½Wðxn; s 0;Δx 0Þ−Wðxn; s;ΔxÞ�Eðs 0;Δx 0jxnÞ ¼ 0;

(36)

EQ-TARGET;temp:intralink-;e037;63;712Wðxn; s;ΔxÞ − Γn ≥ 0; (37)

EQ-TARGET;temp:intralink-;e038;63;675

Γn ≔
X

ðs;ΔxÞ∈ðS;ΔXÞ
Eðs;ΔxjxnÞWðxn; s;ΔxÞ

¼
X

ðs;ΔxÞ∈ðS;ΔXÞ
Wðxn; s;ΔxÞEðs;ΔxjxnÞ: (38)

Since Eve just performs 2jKjþjΔKj-ary quantum hypotheses
testing to obtain (s;Δx) based on known xn, the results
are independent of n. Therefore, from the Born rule, define
as follows:

EQ-TARGET;temp:intralink-;e039;63;574jhðs;ΔxjxnÞjηαðxn; s 0;Δx 0Þij2 ≔ Prðs;Δxjx0; s 0;Δx 0Þ; (39)

EQ-TARGET;temp:intralink-;e040;63;543Γ0 ≔ Γn: (40)

Suppose that Eve has obtained nðs;ΔxÞ times of her meas-
urement result ðs;ΔxÞ during N · TLCM periods, then such
a probability is
EQ-TARGET;temp:intralink-;e041;63;484

Prðnðs;ΔxÞjx0; s;ΔxÞ ≔ NCnðs;ΔxÞ Pr ðs;Δxjx0; s;ΔxÞnðs;ΔxÞ

× ½1 − Prðs;Δxjx0; s;ΔxÞ�N−nðs;ΔxÞ:

(41)

At the boundary where Eve makes a wrong decision,
the Bayes criterion requests,

EQ-TARGET;temp:intralink-;e042;63;393 Prðs;ΔxÞPrðnThjx0; s;ΔxÞ ¼ Prðs 0;Δx 0ÞPrðnThjx0; s 0;Δx 0Þ:
(42)

Two nearest probability distributions give the following
boundary conditions:

EQ-TARGET;temp:intralink-;e043;326;752

PrðnThjx0; s;ΔxÞ ¼ NCnTh Pr ðs;Δxjx0; s;ΔxÞnTh
× ½1 − Prðs;Δxjx0; s;ΔxÞ�N−nTh ; (43)

EQ-TARGET;temp:intralink-;e044;326;700

PrðnThjx0; s 0;Δx 0Þ ¼ NCnTh Pr ðs;Δxjx0; s 0;Δx 0ÞnTh
× ½1−Prðs;Δxjx0; s 0;Δx 0Þ�N−nTh : (44)

Substituting Eqs. (43) and (44) into Eq. (42), nTh is given in
EQ-TARGET;temp:intralink-;e045;326;644

log2
Prðs;ΔxÞ PrðnThjx0; s;ΔxÞ

Prðs 0;Δx 0Þ PrðnThjx0; s 0;Δx 0Þ ¼ 0

¼ log2
Prðs;ΔxÞ
Prðs 0;Δx 0Þ þ nThlog2

Prðs;Δxjx0; s;ΔxÞ
Prðs;Δxjx0; s 0;Δx 0Þ

þ ðN − nThÞlog2
1 − Prðs;Δxjx0; s;ΔxÞ
1 − Prðs;Δxjx0; s 0;Δx 0Þ ; (45)

EQ-TARGET;temp:intralink-;e046;326;531nTh ¼
Nlog2

1−Prðs;Δxjx0;s 0;Δx 0Þ
1−Prðs;Δxjx0;s;ΔxÞ þ log2

Prðs 0;Δx 0Þ
Prðs;ΔxÞ

log2
Prðs;Δxjx0;s;ΔxÞ½1−Prðs;Δxjx0;s 0;Δx 0Þ�
Prðs;Δxjx0;s 0;Δx 0Þ½1−Prðs;Δxjx0;s;ΔxÞ�

: (46)

This situation is depicted in Fig. 1.
There are 2jKjþjΔKj patterns of possible probability distri-

butions, and only one is for the correct ðs;ΔxÞ. Therefore,
maximizing nTh by all wrong sets of ðs 0;Δx 0Þ and defining
it as max nTh,
EQ-TARGET;temp:intralink-;e047;326;426

PrðfailÞ ¼
Xmax nTh

nðs;ΔxÞ¼0

NCnðs;ΔxÞ Pr ðs;Δxjx0; s;ΔxÞnðs;ΔxÞ

× ½1 − Prðs;Δxjx0; s;ΔxÞ�N−nðs;ΔxÞ: (47)

Thus Eve’s success probability in obtaining the correct
ðs;ΔxÞ corresponding to the shared secret keys ðk;ΔkÞ in
the Y00 system is Pr(success) = 1–Pr(fail).

True distribution
Pr(n | x0, s, Δx)nTh

Pr(fail)

Pr
ob

ab
ili

ty

In a long run (sufficiently large N.TLCM)

False distribution
Pr(n | x0, s′, Δx′)

n(s, Δx)

Pr
ob

ab
ili

ty

n(s, Δx)

Fig. 1 Schematic view of how the security of Y00 system is evaluated by Eve’s failure probability.
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To perform numerical simulation, all conditional proba-
bilities fPrðs;Δxjx0; s 0;Δx 0Þg defined in Eq. (39) have to
be determined. However, those parameters are dependent
on implementations of Y00 systems including key-
expansion algorithms. Therefore, this study gives numerical
examples as follows. Assume initial key lengths are
jKj ¼ jΔKj ¼ 128 bits and

EQ-TARGET;temp:intralink-;e048;63;498 Prðs;Δxjx0; s;ΔxÞ ¼ Prðx 0;Δx 0jx0; x 0;Δx 0Þ ≔ p; (48)

EQ-TARGET;temp:intralink-;e049;63;466

Prð∀s 0 ≠ s; ∀Δx 0 ≠ Δxjx0; s;ΔxÞ
¼ Prð∀s ≠ s 0; ∀Δx ≠ Δx 0jx0; s 0;Δx 0Þ
¼ ð1 − pÞ∕ð22×128 − 1Þ; (49)

EQ-TARGET;temp:intralink-;e050;63;405 Prð∀s; ∀ΔÞ ¼ 2−2×128: (50)

The numerical simulation result with the above situation is
shown in Fig. 2.

As Eve’s success probability of obtaining the correct
(s;Δx) in one TLCM smaller, Eve needs a larger number
of N, which is a repetition number of the period TLCM of the
two PRNGs. However, note that even with p ¼ 2–16, Eve
needs N ¼ 104 periods to pin-down the correct (k;Δk) with
a probability of almost 1. When p ¼ 2–64, even N ¼ 106

periods are not enough for Eve, only allowing her to
guess the correct (k;Δk) with a probability of about
10–13. Therefore, it was shown that Y00 protocol can go
beyond the Shannon Limit of cryptography.30

While Eve’s success probability is small enough, Alice
has to send fresh keys to Bob to continue secure quantum
communications. In this case, Eve’s probability of obtaining
the fresh keys has to be evaluated by COAwith probabilisti-
cally known (k;Δk), that is,
EQ-TARGET;temp:intralink-;e051;63;192

Prðknew;ΔknewÞ¼
X

ðs;ΔxÞ∈ðS;ΔXÞ
Prðs;ΔxÞPrðknew;Δknewjs;ΔxÞ:

(51)

6 Results and Discussions: Assumptions Used in
Security Analysis and Future Works

In this work, it was shown that even a Y00 system with a
few-hundred bits of shared keys can be secure far longer
than the period of its PRNGs, such as 106 periods if its

implementations are well-designed. The security analyses
in this study applied the following assumptions.

1. Irregular mapping3 makes quantum noise cover all bits
in the chopped key stream equally.

2. Irregular mapping is fixed and known to Eve during
her eavesdropping.

Hence, there are still necessities of further studies to give
mathematically more rigorous analyses when the above
assumptions are not satisfied. Also, the security of fresh
keys is not given in this study yet. Hence, it has to be ana-
lyzed in the next work.

7 Appendix A: Simulation Code for Fig. 2 on
Mathematica 11.3

Simulation code for Fig. 2 on Mathematica 11.3

ps[p_]: = p;
pf[p_]: = (1 - ps[p])/(2^(128*2)-1);
nth[n_, p_]: = n*Log[2, (1 - pf[p])/(1 - ps[p])]/Log[2, ps[p]

*(1 - pf[p]) / pf[p] / (1 - ps[p])];
prob[n_,p_]: = 1 - CDF[BinomialDistribution[n, ps[p]],

Floor[nth[n, p]]];
Show [Table [LogLogPlot [prob [Floor[m], 2^(-b)],

{m, 1,10^6},
PlotRange -> {{1, 10^6}, {5*10^(-21), 4}}, Frame ->

True,
PlotLegends -> {Switch[b, 8, “p=2-8”, 16, “p=2-16”, 32,

“p=2-32”, 64, “p=2-64”]},
PlotStyle->{Switch[b, 8, Blue, 16, Orange, 32, Green,

64, Red]}], {b, {8, 16, 32, 64}}]]
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